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PREFACE TO: SOLUTIONS MANUAL FOR


ELECTROMECHANICAL DYNAMICS, PART II:


FIELDS, FORCES, AND MOTION


This manual presents in an informal format solutions to the problems


found at the ends of chapters in Part II of the book, Electromechanical


Dynamics. It is intended as an aid for instructors, and in special cir­


cumstances for use by students. We have included a sufficient amount of


explanatory material that solutions, together with problem statements, are 

in themselves a teaching aid. They are substantially as found in our records 

for the course 6.06, as taught at M.I.T. over a period of several years.


Typically, the solutions were originally written up by graduate student


tutors, whose responsibility it was to conduct one-hour tutorials once a


week with students in pairs. These tutorials focused on the homework, with 

the problem solutions reproduced and given to the students upon receipt of


their own homework solutions.


It is difficult to give proper credit to all of those who contributed


to these solutions, because the individuals involved range over teaching


assistants, instructors, and faculty, who have taught the material over a


period of more than four years. However, significant contributions were 

made by D.S. Guttman, Dr. K.R. Edwards, M. Zahn, F.A. Centanni, and T.B. 

Jones, Jr. The manuscript was typed by Mrs. Barbara Morton, whose patience 

and expertise were invaluable.


H.H. Woodson


J.R. Melcher


Cambridge, Massachusetts 

September, 1968 





MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.1


It is the purpose of this problem _I


to illustrate the limitations


inherent to common conductors in 
 _ 

achieving long magnetic time


constants. (Diffusion times.) For 

convenience in making this point


consider the solenoid shown with


I = 	length


A = 	 cross-sectional dimensions of single layer of 

wire (square-cross section). 

r = 	 radius (r >> A) but r << £. 

Then there are R/A turns, each having a length 2nr, and the total d-c resistance 

is directly proportional to the length and inversely proportional to the area 

and electrical conductivity a. 

R 2ir
-)

27r

a(A2 )


i 
The H 	field in the axial direction, by Ampere's law, is H = and the flux 

linked by one turn is 0 H(wR
2 ) so that 

=poH(r 292 = o(.r 2) i 

and it follows that


L = 0o(wr 2X92) 

Finally, the time constant is


L 1

E f 	porAc 

Thus, the diffusion time (see Eq. 7.1.28) is based on an equivalent length 

IVr. Consider using copper with 

a = 5.9 x 107 mhos/m


A = 10 m


and find A required to give L/R = 102


A 2(L 1 (200)


R 0or (47x107)(10)(5.9x10 )


-1

= 2.7 	 x 10 m or 27 cm 



MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.1 (Continued)


Note that to satisfy the condition that k >> r, the length must be'greater 

than 10 meters also. The coil is larger than the average class-room! Of 

course, if magnetic materials are used, the dimensions of the coil can be 

reduced considerably, but long L/R time constants are difficult to obtain on a 

laboratory scale with ordinary conductors. 

PROBLEM 7.2 

Part a 

Our solution will parallel the one in the text, only now the B field will 

be trapped in the slab until it diffuses away. The fundamental equations are 

VxB =pJi= paE; -3


VxVxB = V(V.B) - V~B - aVxi = - pa 

Because V.B = 0, 

2no­

or in one dimension


a2B aB

1 x x (a)

pa z2 at


at t = 0+ 

0 z<0 

S B0 < z<d 

0 z > d 

This suggests that between 0 and d, we can write Bx(z) as 

B W()= a sin(-n z )  0 < z < d

n=l n


To solve for the coefficients an, we take advantage of the orthogonal property


of the sine functions.
d oodm7rz d nTz mTrz 
B() sin( )dz = a sin )sin( )dz 

o n=l o


But 2dB

B uTzd mdzd 0 m od d 
B ()sin( )dz = B sin( -)dx = 

d o dm even 



MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.2 (Continued) 

Also d ad n nz niz a sin(-~--)sin( )dz 2 
o 0 n m 

Hence, 
4B


m odd


0 m even
'm 1mITLO 
B (t=O,z) = 

-4 Bosin( n 
0< z< d 

x nlnf o 

n odd 

We assume that for t > 0, O < z < d 

B (t,z) - I -B sin(n--)e
x nlniT 0 d

n=1 

n odd 2 

Plugging into (a) we find that !.T-) = an Let's define T = po( ) 

as the fundamental diffusion time. Then 
c 2 

B (t,z) = --- B sin(nz-- n t)e O<z<d 
x nlnf o dn=l t>O
t > 0


n odd


Part b


2n
VxB - 1 3Bx 4Bo~ no -n t/T
3 i =-~T cos(--e O<z<d11 z y Y od n I 

t>O

n odd 

PROBLEM 7.3


Part a


If we neglect the capacitance of the block, the current we put in at t=O


will have to return by means of the block. This can be seen from the magnetic


field system equation


VxH = J (a) 

which implies


V3 = o0 (b) 

or "what goes in must come out".


If the current penetrated the block at t=0+ there would be a magnetic field


within the block at t=0+, a situation we cannot allow since some time must


elapse (relative to the diffusion time) before the fields in the block can change


significantly.




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.3 (Continued) 

We conclude that the source current returns as a surface current down the 

left side of the block. This current must be 

K = -I /D (c)
y o 

where y is the upwards vertical direction. The current loop between x = - L 

and x = 0 thus provides a magnetic field


-I /D -L~x<O 
H (t=O+) = (d) 

S0 O<x


where z points out of sketch. 

Part b 

As t + = the system will reach a static state with input current I /D per 
unit length. The current will return uniformly through the block. Hence, 

I 
J (x)= (e)

y Dd


.-S (x) 

4 

- Z I (Y.)
j M -5p 5-P-

Part c 

As a diffusion problem this system is very much like the system of


Fig. 7.1.1 of the text except for the fact that here diffusion occurs on only


one side of the block instead of two. This suggests a fundamental diffusion


time constant of


22


where we have replaced the term d2 by (2d) 2 in Eq. 7.1.28 of the text.


PROBLEM 7.4


Part a


This is a magnetic field system characterized by a diffusion equation.


With B =ReB (x)ez z




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.4 (Continued)


2A

d2B


1 
dx2 

z = B (a) 
a z 

d ax 
Let B (x) = Be , then 

a.2 jpa (b) 

or 

a + (1 + j), 6 = \j (c) 

The boundary conditions are 

B (x=O) = -pi/D (d) 

Sz('( ) -o 

which means that we use only the (-) sign 

p -X/6 6(Wt

B (x,t)=-Re D e e (e) 

Part b 

VxB P 3 (f) 

or 

aB 

ax y 

so that 

^ . j(Wt- x-Re--


J = -Re e e (h)
yPart
c


Part c




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.4 (Continued)


Part d


The electric fild is given by 
E


VxE = w-aJBz z


E 
y 

(x=O) =-2 
2D 

(1+j)i (j) 

Faraday's law (Eq. 1.1.23, Table 1.2, Appendix E) written for a counter-clockwise


contour through the source and left edge of the block, gives


jw 0o(Ld) 
V+Ed i (k)y D 

where from (j) 

A1 d1
Ed =- (1 (+)

y a-

Hence, assuming that V = i[R(w)+jwL(w)], (don't confuse the L's) 

R(0) = ( ) = (m) 

L(w) = + (n) 

Thus, as w-+ the inductance becomes just that due to the free-space portion


of the circuit between x=0 and x=-L. The resistance becomes infinite because


the currents crowd to the left edge of the block.


In the opposite extreme, as w+O, the resistance approaches zero because


the currents have an infinite x-z area of the block through which to flow.


Similarly, the inductance becomes large because the x-y area enclosed by the


current paths increases without limit. At low frequencies it would be


necessary to include the finite extent of the block in the x direction in the


analysis to obtain a realistic estimate of the resistance and inductance.


PROBLEM 7.5


Part a


This is a magnetic field system characterized by a diffusion equation. 

Place origin of coordinates at left edge of block, x to right and z out of paper. 

With B = ReB (x)e
x x 

82B

1 z J


Sax2 (a)
=jwBB 




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.5 (Continued)


Let B (x) = Be , then 

a2 jw~pa (b)


a6 (c)


The boundary conditions are


A 

Bz(x=0) = - 1 - (d) 

Bz(x=•) = 0 (e) 

because all of the current Io(t) is returned through the block. Thus the'


appropriate linear combination of solutions to satisfy the boundary conditions


is 

B (x,t) = Re I sinh[a(x- jeJ•

SR D sinh (at) 

where a is a complex quantity, (c). The current is related to Bz by 

aB 
Vx = a i = VJ = VJyy (g)ax y yy 

From (f) and (g),


jIa cosh[a(x-R)l]e jot 
(h) 

y D sinh at 

Part b


The time average magnetic force on the block is given by


fReDd fa J (x)B *(x)dx
f = Re Dd Y 2 (i) 

x 2 

where we have taken advantage of the identity


^ jWt A jWt 1 ^^ 

<Re Ae ReBe > =-12 Re AB* 

to integrate the force density (JxB)x over the volume of the block. Note that 

a detailed calculation is required to complete (i), because a in (f) and (h) 

is complex.


This example is one where the total force is more easily computed using


the Maxwell stress tensor. See Probs. 8.16, 8.17 and 8.22 for this approach.




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.6


As an example of electromagnetic phenomena that occur in conductors at 

rest we consider the system of Fig. 7.1.1 with the constant-current source


and switch replaced by an alternating current source.


i(t) = I cos Wt (a) 

We make all of the assumptions of Sec. 7.1.1 and adopt the coordinate system 

of Fig. 7.1.2. Interest is now confined.to a steady-state problem. 

The equation that describes the behavior of the flux density in this


system is Eq. 7.1.15


2aB B

1 x x 
a a2 at (b) 

and the boundary conditions are now, at z = 0 and z =d, 

B = B cos at =[Re Be0Jit (c) 

where 
) NI 

B = -- (d)

o w 

The boundary condition of (c) coupled with the linearity of (b) lead us to 

assume a solution


Bx = Re[B(z)eijt] (e) 

We substitute this form of solution into (b), cancel the exponential factor,


and drop the Re to obtain


d 2BdB j poa B (f)
2


dz 

Solutions to this equation are of the form 

rz 
B(z) = e (g) 

where substitution shows that 

r = + = + (l+) (h) 

It is convenient to define the skin depth 6 as (see Sec. 7.1.3a)


6 2 (i) 

We use this definition and write the solution, (g) as




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.6 (Continued) 

(1+j) -(+j) 
B(z) = cle + c2e (j) 

The boundary conditions at z = 0 and z = d (c) require that 

B0 c + c 2 

o 1 2 

Solution of these equations for cl and c 2 yields 

Bo1 - e ( 
C Bo[l D (k)

1 D 

-B1l e+ 
C2 0 D (Z) 

where D = 2(cos sinh + J sin cosh d 

We now substitute (k) and (Z) into (J); and, after manipulation, obtain


B(z) = Bo[f(z) + J g(z)] (m) 

where


M d d N d d 
f(z) = V cos sinh -+ sin cosh ­

F 6 6F 6 6 

N d d M d d 
g(z) = f cos E sinh sin d cosh ­

F 6 6 F 6 6


z z d-z d-z
M = cos sinh + cos (-z sinh (-z 

N = sin cosh + sin d-z cosh (d-z
6 6 Ci:: 

2d 2d 2d 2d
F = cos -sinh2 + sin2 cosh ­

6 .6 6 6 

Substitution of (m) into (e) yields 

B x = B 
nm
(z)cos[wt + 8(z)] (n) 

where


Bm(Z) = Bo \[f(z)]2 + [g(z)] (o) 

-
0(z) = tan 1 g(z) (P)
f(z)


It is clear from the form of (n) that both the amplitude and phase of the 

flux density vary as functions of z.


To illustrate the nature of the distribution of flux density predicted


-9­




MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.6 (Continued) 

by this set of equations the maximum flux density is plotted as a function of 

position for several values of d/6 in the figure. Recalling the definition 

of the skin depth 6 in (i),we realize that for a system of fixed geometry 

and fixed properties t/vw, thus, as increases, the frequency of the excitation 

increases. From the curves of the figure we see that as the frequency increases 

the flux density penetrates less and less into the specimen until at high 

frequencies (- >> 1) the flux density is completely excluded from the conductor. 

At very low frequencies (d << 1) the flux density penetrates completely and is 

essentially unaffected by the presence of the conducting material. 

It is clear that at high frequencies ( >> 1) when the flux penetrates 

very little into the slab, the induced (eddy) currents flow near the surfaces. 

In this case it is often convenient, when considering electromagnetic phenomena 

external to the slab, to assume oa-x and treat the induced currents as surface 

currents. 

It is informative to compare the flux distribution of the figure for a 

steady-state a-c problem with the distribution of Fig. 7.1.4 for a transient 

problem. We made the statement in Sec. 7.1.1 that when we deal with phenomena 

having characteristic times that are short compared to the diffusion time constant, 

the flux will not penetrate appreciably into the slab. We can make this statement 

quantitative for the steady-state a-c problem by defining a characteristic time 

as 

1 
c W 

We now take the ratio of the diffusion time constant given by Eq. 7.1.28 to this 

characteristic time and use the definition of skin depth in (i). 

T 2 d 2 (q) 
T 27 

Thus, for our steady-state a-c problem, this statement that the diffusion time


constant is long compared to a characteristic time is the same as saying that


the significant dimension d is much greater than the skin depth 6.


The current distribution follows from the magnetic flux density by using


Ampere's law; 

S= 1 
aB 
x (r) 

y 0 az 

-10­

-10­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.6 (Continued)


Thus the distribution of IJyl is somewhat as shown in the figure for B .


The instantaneous J has odd symmetry about z = 0.5 d.

y


j 

w

j


f 

r\ 

Fo~j PO 

4 
ý.- cx 

o O•. 0,4, 0.6 0.08 /,.

PJsTfli1u7IloT OI lnIUX DENSITý WITH SI•N EFFEdCT 

-11­



MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.7 

Part a


Assume the resistors in the circuit model each have approximately their


D.C. resistance


R
S 

RD
D.C. 

a1-a oAD (a) 

The inductance is the "loop" of metal 

Depth D 

i at 
L = (b)

D 

Hence the time constant involved is


- = o (c) 
2R 2 

The equivalent length in the diffusion time is A/S >> A. 

Part b


By adding the vacuum space of region 2 we have increased the amount of 

magnetic field that must be stored in the region before equilibrium is reached 

while the dissipation is confined to the two slabs. In the problem of Fig. 

7.1.1, the slab stores a magnetic field only in a region of thickness A, the 

same region occupied by the currents , while here the magnetic field region is 

of thickness t. 

Part c 

-12­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.7 (Continued)


Since diffusion in the slabs takes negligible time compared to the main problem,


each slab could be modeled as a conducting sheet with


S= (aA)• (d) 

In region 2


VxH = 0 or H = Ho(t) z = - K2 (t)i (e) 

From


fEd9 = - -- JBn da (f) 

we learn that 

a[ Kl(t)-K 2 (t)] = + [poat K2 (t)] (g) 

Since Ko(t) = Kl(t) + K2 (t) we know that 
I dK2 (t) 

K (t) = U-l(t) = 2K2 (t) + apl0 A dt (h) 

The solution.is therefore 

I -t/T 01 A9. 
K2 (t) (l-e ) t) (i) 

and,because K2 = - Ho, the magnetic field fills region (2) with the time 

constant T. 

PROBLEM 7.8 

As in Prob. 7.7, the diffusion time associated with the thin conducting 

shell is small compared to the time required for the field to fill the region 

r < R. Modeling the thin shell as having the property 

K = A (a) 

and assuming that 

H 1 (t)tz = [Ho-K(t)] z (b) 

-13­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.8 (Continued)


We can use the induction equation


•Ei- BEn da (c)


to learn that, becauseH° = constant for t > 0 

2_R K(t) = - R21 dKt (d)
Aa o dt 

The solution to (d) is 

-t/Tu •RAR 
K(t) = H e-t/Tu (t); T (e) 

and from (b), it follows that 

Hi(t) = H0-K(t) = H (1-e-t)u_(t) (f) 

The H field is finally distributed uniformly for r < a, with a diffusion time 

based on the length A¶A. 

PROBLEM 7.9 

Part a 

Vx E = - (a)
at 

V x B = oE (b) 

So 

V xV x B = - (c)at 

But


Vx(VxB) =V(V.B)- V2B = - V2 (d) 

So 

at 

Part b 

Since B only has a z component 
aB 

V2B = Ipa z (e)
z at 

In cylindrical coordinates 

V2 1 3 (3r 2 822 
lVar +12 (f)
r r 9r 2 z2 

Hr a= aBz


Here B = B (r,t) so z z 

-14­
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MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.9 (Continued) 

r (r + B (g) 

Part c 

We want the magnetic field to remain finite at r = 0, hence C2 = 0. 

Part d


At r = a 

B(a,t) = 0HRo - C Jo(41 0--a a) = poHo (h) 

Hence if CI # 0 

Jo(V - a) = 0 (i) 

Part e 

Multiply both sides of expression for B(r,t=0) = 0 by rJo ( j r/a) and 

integrate from 0 to a. Then, 

a a2 

p ° H r J (v r/a)dr = p H 2 J(V) Q) 

o CiJo(V i r/a)r Jo(j r/a)dr = C - J2(v) (k) 
o i=1 o1 0 J22 1 

from which it follows that 

C (o)
j v1jJl(v) 

The values of vj and J l (vj) given in the table lead to the coefficients 

C C C 
1 

211HF2 
.802; 2 

H 
.535, 3 

)2pH 
0.425 (m) 

Part f 
2 

2 

= 2 = 0.174 Uooa 2 (n) 
V1 

T (0.174)(4rx 10
-77 ) 

10 
(25) x 10 

-4 

-
- 4.35 x 10 7 seconds (o) 

-15­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.10


Part a

aE


VxE = iz 3x at B z z 00 	 (a) 

D B 4. 
VxB = - i 

y Dx = -a o = vo0(E -UB )i 
y 

(b) 

VxVxB = V(V*B) - V2B 

a2B DE aDB

= 	 x2 ;z = 0pa0(a- Y U )-z (c) 

DE

But 	- = 0 from (a), so ax 

a2B aB 

2 Z x 
o 

aU 
ax	 (d) 

ax

Part 	b


At 

x = 0 B = - K (e) 

at x = L B =0 	 (f)
z 

Part 	c


Let

ax


Bz (x) = C e , then 

a(a-o aOU) = 0 	 (g) 

a = 0, a = i oU 	 (0) 

Using the boundary conditions


joGU(x-L) 

z 0 1-e-1 0UL 

Note 	that as U+O


B (x) =- PoK ( ) 	 (3)z 

as expected.


-16­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.11 

Part a


F - JxB = - J B i yxz 

R z/Z R z/1

oI2  R e (em -1)


i (a)2 R z

w (e m -1)2


Part b 2 
Part b -F wd dz = P1 df 


(b)
z fz 2w 

This result can be found more simply by using the Maxwell Stress Tensor by methods


similar to those used with Probs. 8.16 and 8.17. 

Part c 

The power supplied by the velocity source is


pI 2 dU I2d R 
P = - fU= o 1d m (c)U - f 2w wtR 2 

The electric field at the current source is


J (zn=) 
Ey(z=j) = y - UB (z=£) (d)Cxy 

R
I m (e)

a1w R

(e m -1)


Power supplied by the current source is then


-VgI = + E dI = + 2d Rf)

g y OW R


Power dissipated in the moving conductor is then


I2d Rm eRm + 1(g)
P d = PU + VI 2 Rm (g)~d ~'U g aRw2 R 

which is just what is obtained from


Pd= wd "- dx (h) 
o 

-17­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.12


If a point in the reference frame is outside the block it must satisfy


Vx= - (a) 

= 
= 0 and VxB 0 (b)


Since the points outside the block have J=O, and uniform static fields (for


differential changes in time),(a) and (b) are satisfied.


Points inside the block must satisfy


1 aB x 
=J (c)o az y


S2B DB aB 
1 x + x = - V a x (d) 
oa •z2 at 

Since these points see


3B B 2

x o aB


J aVB , 2 O0 (e) 
y o' az a' z 

DB B

x 

=t- v -- and Vyioa = Iat . 0 
these conditions are satisfied. 

Points on the block boundaries are satisfied because the field quantities 

F and B are continuous. 

PROBLEM 7.13 

Part a 

Because V*.BO the magnetic flux lines run in closed loops. The field 

lines prefer to run through the high 1 material near the source, hence very 

few lines will close beyond the edge of the material at z=O. Currents in 

the slab will tend to remain between the pole pieces. 

Part b 

a2B aB aB 
1 _-= + v (a) 
Sazz2 at az 

j(wt-kz) 
Let B (z,t) = C e , then 

k - jpoVk + jpaw = 0; (b) 

A quadratic equation with roots


-18­




MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.13 (Continued)


k = Ilj[Y ++[ ] (c) 

or in terms of R = VaVL and 6 =/ 
m Wia


R R 2 2


k ')L = j + j () + J2 (~) (d) 

From Fig. 7.1.16 of the text we see that 

k+ =k+ +j k k +k
k ir 


where


-k= k+ >0 and k >-k > 0 (e)
r r i i 

To meet the boundary condition of part (a) we must have 

B (z,t) = C[ - e -jkZeijt (f)
y 

Using the boundary condition at z = - L 

B + 
B (z,t)= (eJz _e-Jk) ejt (g) 

y =(ek +Le jkL) 

Part c

aB 

x az x x/Ato 

+ tJ JB°/ (k+ e-jk z -K- e- z)e j (1) 
x + ­

(ejk L-ejk L) 

Part d R 

Asw+-O ký -O,k + Lj 

By B (Rm/L) z-R
B-R - ((-e (m) 

(1-e m) 

B /L (R /L)z

J = R e (k) 

x -R m 
(1-e M)


-19­




MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.13 (Continued) 

-C 

As the sketch Fig. 7.1.9 of the text suggests, we could realize this problem by 

placing a current sheet source


B

R=-- p o i x e-S t


K 0 

across the end z = - L and providing perfect conductors to slide against the 

slab at x = O,D. The top view of the slab then appears as shown in the 

figure. 

---- ~I/ $I~P-~D·CI - -_ --- Li~ 
m 

C-uen 
/7/,S~ e.(? ' 

Výba -6 - - - ­

If 
0 'b t 

Note from (j) and (k) that as Rm0,m the current density J x is uniform and B y is 

a linear function of z. This limiting case is as would be obtained with the 

given driving arrangement. 

PROBLEM 7.14


Part a


Since J' =
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.14 (Continued)


= 1 (a)izK cos(kUt-kx) 


= IzKocos(wt-kx); w = kU


Part b 

The track can be taken as large in the y direction when it is many skin 

depths thick 

L = track thickness >> = o koa0 (b) 

In the track we have the diffusion equation 

1 V2i 3B (c)
pa at o 

or, with B = Re B exp j(wt-kx), 

_- _ k = jB (d)

pa 2 x x 

o ay 

Let B (y) = C e ry , then 
x2 

1 2 k
- a jW + (e) 

wpa U oO 
a = k 1+JS ; S = = (f) 

k2 k


Since the track is modeled as infinitely thick


a y
B = C e ej (wt-kx) (g)
x 

The gap between track and train is very thin; thus,


- i x B--- = K ej(wt - kx) i (h)
y p o z 

which yields 

eay ej(t-kx) (i) 

We must also have VBE = 3Bx/ax + 3By /y = 0 or 

B= Jk Bx(x,y,t) (j)
y a x 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.14 (Continued) 

To compute the current in the track we note that 

3B aB 
VxB = i z x - = o 

= - (j S 
k)	
2) 

--
Bx 

(x,y,t)i

a 0j


Part c 

The time average force density in the track is (see footnote, page 368) 

<F 	> = 1 Re(J B*)

y 2 z x


Hence the 	time average lifting force per unit x-z area on the train is


<T> 	= - <F >dy = - Re 0 1-J B* dy 
y _m 	 2 zx 

1 	 2T 0loK


See Fig. 7.1.21 of the text for a plot of this lifting force.


Part 	d


The time average force density in the track in the x direction is


<F > 	= Re(J B*) 
x 2 z y 

The force on the train in the x direction is then

oo 1 

< > = - <F >dy = - Re J B dy

fj K2 -­


K2

o00 S


4 2Iý+S ReVl1jS 

The problem is that this force drags the train instead of propelling it in the


x direction. (See Fig. 7.1.20 of the text for a plot of the magnitude of


this drag force). To make matters worse, if the train stops, the magnetic


levitation force becomes zero.
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.15


Part a 

Let the current sheet lie in the plane y = - s. In the region -s<y<O 

we have the "diffusion equation" 

V2B = 0 (a)z 

If B (x,y,t) = Bz(y)eJ(t-kx) this equation yields
z z 

22
B

S= k2B (b)
a2 z


Hence we can conclude that 

B = [A cosh k(y+s) + B sinh k(y+s)]eJ t- k z) (c)z 

At y = - s we have 'the boundary condition 

iy x Bz = PoK cos(wt-kz)ix (d) 

Thus 

B = [ K0 cosh k(y+s) + B sinh k(y+s)]e w t-k z )  (e) 

Since V*- = aB /ay + aB z/az = 0 we must have 

=By [j( 0K0 sinh k(y+s) + B cosh k(y+s))]e j (t-kz) (f) 

In the conductor the diffusion equation is 

1 2- aB 3BVB =- + V- (g)11a at az 

Then 

32B

- = (Jo(a-kV) + k2 )B (h) 

ay 

which suggests a solution


Sao(w-kV) 
Bz(y) C e-ay ,V = k/l+jS, S 2 (i) 

k 

Since V-B = 0 in the conductor too, we must have 

B B' (j)B =-jkB zi)y a z 

As the boundary y = 0 we must have 

Byl = By2, Hz1 = Hz2 (k) 

Note that. 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.15 (Continued)


cosh ks Bz2 + J sinh ks By2 

= p K (cosh2ks - sinh2ks) = oIK (1) 

Then we must also have


0Ko = cosh ks BZ1 + j sinh ks Byl


k

= C (cosh ks + - sinh ks) (m) 

It follows that the B field for y>O is 

oK k 
k " y + iz)e-e (n) 

S 0 (_j + ay eJ(t-kz) 

cosh ks + sinh ks


Comparing with Eq. 7.1.91 of Sec. 7.1.4 of the text we see that it is only


necessary to replace


K 
K by k


cosh ks + sinh ks


starting with Eq. 7.1.90. The average forces depend on the magnitude, not the


phase, of Ko, which is reduced by this substitution.


Part b


We note that if ks << 1


K

0 =K 

k o (0) 
cosh ks + - sinh ks a 

which shows that the results of Sec. 7.1.4 are valid when ks << 1. 

Part c 

When ks * 

K 
0 -- 0


k

cosh ks + - sinh ks a 

No fields will then be present in the conductor.


PROBLEM 7.16


Part a


Because the charge needs time to move through the conductor, at t=0+ there


is only free charge on the plates. The electric fields are directed in the


negative vertical direction and satisfy
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MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.16 (Continued) 

Eb + E a = V (a) 

at the interface at t=O+


EE = EE (b). o g 

Hence at t=0+ 
V V 

E = , E = (c)
E 8 g E 0b + --- a o

E 0-b + a 
o £ 

Part b 

As t+a the charge on the interface excludes the fields from the conducting 

liquid, hence 
V 

E = 0 Eg =0 (f) 

Part c


The charge on the interface at any time is


Of = cE - E E (g) 

Conservation of charge requires


do 
- oEE= (h) 

The voltage across the plates is Vo for t>O


V° = E b + E a (i) 
o 9. g


Solving g, h, i we find that the charge obeys 

(e + E b/a) dof = E 

a dt + a f = - a V o (j) 

E+£ b/a 
Let T = , then 

cV

f = 00 (- e -t/T ) t> 0 (k) 

e AV 

q A0 (1 - e - t/T) t > 0 (9)
f i a 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.17


Part a


In the inner sphere


oi Pf

E Pf + 	ý = 0 (a) 

o 

So we find that


-ai/ t° 
Pf(r,t) = P (r)e , t > 0 r < Ri (b) 

A similar equation holds for the charge in the outer sphere, but it has no initial


charge distribution at t = 0, so


Pf(r,t) 	= 0, t > 0 R <r<Ro (c) 

Part b 

Let R 

Q = f 4wr
22 po(r)dr (d) 

o 

Also define 

aA = the surface charge density at r = Ri 

"B = the surface charge density at r = Ro 

The field at R is, by Gauss' law 
o 

E(Ro) ( e) 
4re R 

oo


Then, conservation of charge requires that the electric field at r = Ro obey


a E(Ro) 	+ o E (R)- 0 (f) 

o o/g)t
E(R') e , t > 0 (g)


4re R

oo


We can thus conclude that 

a = Q2 (1- e ), t > 0 (h) 
4wR 

Since charge is conserved we now know that


SA
A 	 2 

(eJrR - e0 ), t > 0 (i) 

i 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.17 (Continued) 

Part c 

PROBEM
717 (ontiued


I 

sAA;tY~/QO 

YO-- 0 Tr &Xr.­

I 44 ~7; ý=&xr­

~t~k-rgi7 

PROBLEM 7.18


Part a


At the radius b


e[E(b ) - E(b-)] = f (a) 

aaf a 
o[E(b+)-E(b-)]= - = (-E (b)- [E(b )-E(b)] 

For t < 0 when the system has come to rest


V*3 = (o/c)V.E = - t- = 0 (c) 

For cylindrical geometry this has the solution


E + A i ; V = +b Edr = A In(b/a) (d) 
r J r 

a 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.18 (Continued)


then


E(r=b )= +
bn+ n(b/a) b 

t = 0 (e) 

E(r=b+ ) = 0 

Since E(b + ) - E(b-) = af/E it cannot change instantaneously, so 
+ V 

E(b ) - E(b-) = -
o 
(b/a) e 

-0/) t , t > 0 (f) 

Because there is no initial charge between the shells, there will be no charge 

between the shells for t > 0, thus 

SCl (t) 
+ a<r<b
r 

Er = C2 (t) t > 0 (g) 

+ r b<r<c

r 

The battery adds the constraint 

V° = C1lln(b/a) + C21ln(c/b) (h) 

while (f) becomes 

C - C = 0 e t1 2 In(b/a) (i) 

Solving (h) and (i) for C1 , C2 

C 0 (1- e ) t (j)2 In c/a (1 

Vo ln(c/b) e-(/E)Ct) (k) 
1 In c/a ( + ln(b/a) 

Part b 

a= 4 (E(b+ ) - E(b-)) = b In(b/a) t (V) 

Part c 
Inc/b , = 27e 

'b - 2a ' b in c/b 

In(b/a) 2C S 
Cb Ra 

= 2ro ' Ca In b/a 

cc, 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.19


While the potential v is applied the system reaches an equilibrium. During 

this time 

V*J = of = -(a) 

in the bulk of the liquid. If the potential V is applied for many time constants 

(T=C/a) any.charge in the fluid decays away. For t>O if the fluid is 

incompressible (V'v = 0) and J = oE + p fv we know that 

V-3 =(a/E)Pf + vVpf = t f(b) 

But in a frame moving with the particles of fluid


d •- ff - vVof =--(+lE)pfd- + (c) 

Pf(t) = Pf(t=O)e ( l E) t t > 0 (d) 

where Pf(t) is the local charge seen by a moving particle. But for all fluid


particles


Pf(t = 0) = 0 (e) 

Hence the charge remains zero everywhere for t > 0. 

Now draw a volume around the upper sphere big enough to enclose it for a 

few seconds even though it is moving. 

-da =- f f dV (f) 
S V 

Now because pf = 0 in the fluid 

3 = aE, fJ*da =(a/e) Eida =(a/E)Q(t) (g) 

S s 

Then 

(a/)Q(t) = - dJ P dV = - d Q(t) (h) 

V 

which has solution


Q(t) = Q e-t/;T =/a 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.20


Part a


We can use Gauss' law


c o E da = Pf dV (a)-

S V 

to determine the electric field if we note that there is no net charge in the


system, which means that


E= E = 0 x<0 and x>3d (b)
x x 

FoE (x) = - dx = Q x (c)ox o D2d D2 d t 

There is no charge in the middle region so


E = ---- d<x<2d; t = 0 (d)
x D2


o


In the region 2d<x<3d


Eo(E (x) - Ex(2d)) = ddx = - 2 (x-2d) (e)
2d D2d D2 d 

E (x) Q_ (3d-x) 12d<d<3d

x D2C d lt = 0


~tx 

1ZE,


As t-*o all the charge on the lower plate relaxes to the surface x = d, while the 

charge on the upper plate relaxes to the surface x = 2d. The electric field then 

looks like 

Q 
e6.0 



MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.20 (Continued)


Part b


Each charge distribution can be thought of as made up of many thin charges


sheets; any two such sheets,


one located somewhere in the top conductor, one located somewhere in the bottom


conductor, attract each other with a force


AQ1 AQ2AF= (g)
2


2E D 
o 

which is independent of their separation, hence the net attractive force between


plates does not change with time. At t-m there is a surface charge


a =- - x = 2dD 
(h)


B = + 9- x= d 
D


and the force per unit area Tx is simply that found for a pair of capacitor plates


having separation d and supporting surface charge densities + Q. (See Sec. 3.1.2b).


2

Tx = Q D-2 t > 0 (i) 

2c D
0


This force can be easily seen to be constant from the viewpoint taken in Chapter 8,


where the force on the lower plate can be found from the Maxwell Stress Tensor.


The only contribution comes from Txx = - E2 evaluated at x = d, and thus 

Txx(x = d) = Tx as given by (i) regardless of t. Problem 8.23 is worked out 

following the stress-tensor approach.


PROBLEM 7.21


Part a


If the electric field beyond the plates is zero the conservation of charge


equation


J'da = t fPdV = -t eEdda (a) 

S V S 
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MAGNETIC DIFFUSION OF CHARGE RELAXATION


PROBLEM 7.21 (Continued)


becomes


GE 
^EI 

(x) = - j WE E (X) 

That is, the equation for Ex 
is as given by (f) of Example 7.2.3, with £ now 

a function of x. 

^ = I ^IA 

Ex() A(o+Jw) 02 £2

[ol + - x+JW(£+ -- x)1


From Coulomb's law


dd El dE do I 
Pf = x= -

(J dx dx d+ 
+ 

(jw£ + 0)2 

E2 E2 02 £2­pfA (1 + T- x)(JW -- + i -) 

I 02 02 2
£2


[(01 + - x) + JW(E 1 + x)] [(01+ r- x)+JW(E+ 7 x)]1 it 1 Z 

Part b


Consider the effect of a small change in E alone


02 = 0; 2/l << 1 

then


Pf 12 2 (f) 
A2(jw£ 

1+01) 

It is seen from (f) that in the presence of conduction the gradient of C causes


free charge to be stored in the bulk of the fluid. This effect is highly


dependent on frequency, being greatest at zero frequency and disappearing when


the cycle time is short compared to the relaxation time of the material.


PROBLEM 7.22


Part a


In the fluid the consitutive law for conduction is


J = ovE + PfV 

Since the given velocity distribution has the property
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.22 (Continued)


V'v = 0 (b) 

*V p= 
o 

pf + U 2Lx Pf 
pf 

(c) 
a


V*j = V*(cE) + 

or 
S+ u = -- (d) 

The charge is relaxing in the frame of the moving fluid. The solution has the


form ox J(t- x 

Pf = Re p e e 2 2 (e) 

= 0 elsewhere in the channel 

where y = 0 is the channel center. Note that (e) satisfies the boundary condition 
x 

at x = 0 and states that a charge at x at time t has been decaying U seconds 

(since it left the source) and was dumped in the channel at time


t' = t 
U 

Substitution of (e) into (d) verifies that it is a solution.


Part b


From (e) it is clear that the wave length of the sinusoidally (and decaying)


charge stream is 2fTU/w. Thus, the wave length can be altered simply by changing


w. One technique for measuring the flow velocity would consist in measuring


the voltage induced across the resistance R (as shown in the figure) as a function


of the frequency. With the distance between electrode centers d equal to 1/2 wave


length, a peak in the output signal would be expected. If we call the frequency


at which this peak occurs wip, then 

4 4 o ­
A t 1 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.22 (Continued)


27U
W-- = 2d


p 

or

dw


U = --
Tr


Thus, a determination of w gives U. There are, of course, problems with this


approach. For example, there would be lesser peaks in the output at harmonic


frequencies that could be mistaken for the desired peak. Alternatives are to use


the decay rate, but such techniques are vulnerable to conductivity variations


which are likely to be large.


PROBLEM 7.23


Part a


Current is carried by the conductor because of normal conduction and also


because of convection of a net charge.


J = GE + pv 

Also


(j-ply)
pf/E = V(-P

VoE = 

But 

ap f
V.J = - = 0 in steady state 

V*v = '.(U ix ) = 0 also, so that 

V'VPf U apf
vfVE =
a a ax


The solution to this last equation is


p = p e 

x 
i.e., the charge relaxes in the conductor; the time T = is a measure of how long 

since the charge left the source at the first screen. 

Part b 

Let


Ex(x=O) = Eo


aE o( 0 a 
()


- x = p(x) --= 
Poo -(Pq) 

e ax e 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.23 (Continued) a X


Pf(x)(x PU U 
E (x) dxE+ = E + (1-e 

Note that since J (x=0) = OE + poU V 
x 0 0 RA 

Sx

V poU E U


Ex(X) RA


We must finish the problem to know V 

Part c 

Sv 2 a E £U 

V = - Ex(x)dx = + P )poo0a (1-e 

2

V= ( O ( l-e


1+

RAG


PROBLEM 7.24


Part a


The model for this problem is similar to that used in Example 7.2.6 of the


text. Each ring induces a charge on the stream having opposite polarity to its


potential. Thus, conservation of charge for the can at potential v3 (under


the ring at potential v1 ) is


dv v

-C nv = C d + v (a)1 1 dt R 

Similarly, for the other two cans,


dv v 
-Ci nv2 =-C d + (b) 

dv v

-C i nv3 = C +2 (c) 

To solve these three equations, we assume solutions of the form


^ st 
v i = vi e (d) 

and the complex amplitudes vi are governed by the conditions that follow from


substitution of (d) into (a)-(c)


7cn 0 (Cs +)


= 0 (e) 

1 Cs)

0 (Cs + -) Cin 



MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.24 (Continued)


The solution for s is


s =--+ 1 Cin + j 2 ]r3­
RC C 2 2 

Part b


Thus, the system is unstable if


1 Cn 

RC 2C (g) 

Part c


In particular, from (g), the system is self-excited as


1 Cin 
I = n(h)

R 2


Part d


The frequency of oscillation under condition (h) follows from (f) and (h),


as


cIn /r 
2C RC


PROBLEM 7.25


The crucial quantities in the respective systems are the magnetic diffusion 

time (Eq. 7.1.28) and the charge relaxation time (Eq. 7.2.11) relative to the 

period of excitation T = 1/f. The conductivities required to make these 

respective times equal to the excitation period T are


a =i2 T/Po d2 (a) 

a = S/T (b) 

In terms of the given numbers,


a = (3.14)2(10-5)/(4)(3.14 x 10- 7)(10- 4 

(c) 
= 7.85 x 10 mhos/m 

and 

a = (81)(8.85 x 10-12)/10- 5 = 7.16 x 10- 5 mhos/m (d) 

For the change in depth to have a large effect on the inductance, the


conductivity must be greater than that given by (c). Thus, the magnetic device


would not be satisfactory. By contrast, (d) indicates that the conductivity


of the electric apparatus is more than sufficient to make a change in


capacitance with liquid depth apparent even if c=c o . Both devices would be


attractive for this application only if the conductivity exceeded that given


by (c).
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.26


This problem depends on the same physical reasoning as used in connection


with Prob. 7.25. There are two modes in which either device can operate.


Consider configuration (a): the inductance can change either because of the


magnetization of the water, or because of currents induced in the water. However,


water is only weakly magnetic and so the first mode of operation is not attractive.


Moreover, the frequency is too low to induce appreciable currents, as can be seen


by comparing the magnetic diffusion time to the period of excitation. Hence,


configuration (a) does not represent an attractive approach to the engineering


problem.


On the other hand, configuration (b) can operate either because of a change


in capacitance between the electrodes due to the change in position of the


polarized liquid (at high frequencies) or due to a change in position of a


perfectly conducting liquid (low frequencies). As the calculations of Prob.


7.26 show, it is this last mode of operation that is appropriate in this case.


PROBLEM 7.27


Part a


Because we have changed only a boundary condition,the potentials in regions


(a) and (b) are still of the general form


# = A sinh kx + B cosh kx 
a(a) 

Ob = C sinh kx + D cosh kx 

There are now four boundary conditions: 

ýa(d) = V (b) 

a(o) = o) (0) c)


a( ) (0) 
Xat +V-Ve (- C az + C ax (d) 

- b(O) (0) 

b(-f) = 0 (e) 

Only boundary condition (e) is new; it has replaced the assumption that


must go to zero as x + - -.


Solving for A, B, C and D we find that
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MAGNETIC DIFFUSION AND CHARGE RELAXATION


PROBLEM 7.27 (Continued)


a = Re 2[(l+jS E/E )sinh kx + jS tanh kf cosh kx]ej( t - k z) (f)
a A 

v j(ft-k)
zOb = Re [{jS sinh kx + jS tanh kf cosh kx]ej - k (g) 

where A = (1+jS c/co)sinh kd + JS tanh kf cosh kd. 

Part b 

If 

Ifk >> 1 

tanh kf + 1 (h)


A comparison shows that in this limit the results agree with Sec. 7.2.4 if


we note that


kx

e = cosh kx + sinh kx (i) 

PROBLEM 7.28 

Part a 

The regions between the traveling wave electrodes and the moving sheet are


free space, and therefore the fields are governed by


V2 = 0 (a) 

where 

H= - VD (b) 

Moreover, solutions that have the same (z-t) dependence as the imposed 

traveling wave potentials, and that satisfy (a) are 

Oa = Re[Alcosh kx + A2sinh kx]ej(w
t-k x ) (c) 

b = Re[Blcosh kx + B2sinh kx]e
j (wt-k z ) (d)


The constants A ,A2,B,B 2 must be adjusted to make these solutions satisfy


the boundary conditions


a = VV at x = c (e) 

=bV at x =-c (f) 

aa b at x= o (g) 

aEa 

++ U- ) aEa cE)+E a (h) 

Part b


The symmetry requires that 
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MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.28 (Continued)


Ya(x,Zt) = 4b(-X,Z,t) (i) 

and this implies that A1 = B1, A2 = - B2 . The boundary conditions become 

A cosh kc + A2 sinh kc Vo () 

JS (2A2) = A1 (k) 

where 

S = (w-kU)Eo/kas (9) 

Thus, 

A = B = 2j SVo/(sinh kc + 2j S cosh kc) (m) 

and 

A 2 = - B2 = V/(sinh kc + 2j S cosh kc) (n) 

Part b


A section of the sheet can be enclosed by a thin volume of small area in


the y-z plane to give the force per unit area as


T 
z 
= 2T

zX 
a (x = 0) (o)


where the symmetry has been used to set


Ta b (p.)

zx zx


Thus, the time average force per unit area is


<T > = ReE0 (0)Ea (0)1 (q) 

and from (m) and (n), 

<T > = Re[Eo(-jk)A*(-k)A 2 ]  (r) 
z 2 2 
= Re o (s)

sinh2kc+4S2cosh2ke


2tok2Vo 2S(

(t) 

(sinh2kc+4S2cosh2kc) 

It follows from (t) that the maximum occurs as 

S' = 1 tanh kc (u)
2 

or ok 

= kU + -- tanh kc (v) 
o
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MAGNETIC DIFFUSION AND CHARGE RELAXATION 

PROBLEM 7.28 (Continued)


Part c


Note that if S is held fixed at the value given by (u), the force per unit 

area remains fixed. Thus, as as 4 0, the velocities of the potential wave and 

the sheet must become equal to retain the force at a constant value 

w - kU (w) 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.1 

The identity to be verified is 

V-(iýA) = 4IV.A + R-*VI 

First express the identity in index notation.. 

aA 
I = + A[PA] ý 

x m x m ax 
m m m 

The repeated subscript indicates summation. Thus, expanding the first term on 

the left yields: 

3A 
m

"x 
+ AA 

m ax 
0iV.A + A.V (c) 

m m 

PROBLEM 8.2 

We wish to show that 

B-v(ipA) = iBviA + AB.V 

First, the identity is expressed in index notation, conssidering the mth 

component of this vector equation. Note that the equat:ion relates two vectors. 

(B.[V(pA)]) m = (B*.[VAI) m + A B.Vm	 (b) 

Now, consider each term separately 

(BE[V(1A)])m = Bk (A m ) = Am Bk axk +PBk 

aA 
(iB*[VA]) =B B 

Am*V = AmBk[Vi k = AmBk


The sum of (d) and (e) give (c) so that the identity is verified.


PROBLEM 8.3


Part 	a 

aik is the cosine of the angle between the x axis and the xk axis 

(see 	page 435). Thus for our geometry 

/1 1 
aik


o 	 o 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.3 (Continued)


Now, we may apply the transformation law for vectors (Eq. 8.2.10)


Ai = aikAk (b) 

where the components of A in the (xl,x2 ,x3) system are given as 

Al = 1; A2 = 2; A 3 - 1 (c) 

Thus:


A' =alk =allA + al2A 2 + a13A3 (d)


A' = 1/2 + /Y (e) 

A a2kAk 2 + 1 (f)


A3 a3kAk = - 1 (g) 

Using matrix alegbra, we can write a more concise solution. That is:


A1 a11  12 13 A1yl 

A2 = a 2 1 a2 2 a23 A2 - ! + 1) (h) 

L3j La31 3 2  a 3 3  3 1) 

Part b


The tensor aik is associated with coordinate transforms involving the


direction of force while the tensor a is associated with coordinate trans­


forms involving the direction of the area normal vectors. The tensor


transformation is (Eq. 8.2.17), page 437;


T'j = aik ajTk£ (i) 

For example, 

T11 = allk Tkt = allallT1 + al2allT21 + al3allT31 

+ alla12T12 + a12a12T22 + a13a12T32 (


+ alla13T13 + a12a13T23 + a13a13T33


Thus:


T11= + (k)
11 4 4 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.3 (Continued)


Similarly


T2 3 +/3

12 2 4 

T' = 0

13


3 +r
21 2 4 

5 3/

22 4 2


T' = 0

23


T' = 0


T' = 0 

T'3 1
33 

Written in matrix algebra, the problem is solved below: 

T' T' T] a a11 12 13 11 12 T12 a21 a31


Tl T' T2'a a T22 a22 a32
21 T22 T23 21 22


T'31 T'32 33 a 31 a32 T32 a23 a33


Note that the third matrix on the right i.s the transpose of aij. Matrix 

multiplication of (t) gives


7 6 3 

+ 2 ) (- 2 + r34 
3 5 3r


ij


PROBLEM 8.4


th

The m component of the force density at a point is (Eq. 8.1.10)


F =


i 
 dax


Thus in the 11 direction, 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.4 (Continued)


2 2


aF aT12 3T 

F + + T = ( xI 
-0 o x +0 = 0

X2 
1 2 3 a a 

Similarly in the 12 and 13 directions we find 

aT aT aT 
2F= (axi 22 x1 =0


2 1 a2 X3

aT aT aT 

Fj3 = 3x1
1 

+x2 
32 

+x3 

3 

Hence, the total volume force density resulting from the given stress tensor is 

zero. 

PROBLEM 8.5


I__.e i~> in region (1) E=Eo 3 1+ i ) 

in region (2) E = 0 
ii> 

I 0b)


3 

Tij =E EiE - EoEEk 

Thus in region (2) 

Tij = 10] 

in region (1) 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.5 (Continued) 

5 E2 3 2

8 o0 2 oo


3 E2 5 2 
Tij 2 oo 8 o0 Cc) 

0 3 E 2 
8 oo 

The total contribution to the forces found by integrating the stress tensor 

over surface (c) is zero, because surface (c) lies in region (2) where the 

stress tensor is zero. By symmetry the sum of contributions to the force 

resulting from integrations over the two surfaces perpendicular to the x3 axis 

is zero. 

Now let us note the fact that: 

area (a) = 2 (d) 

area (b) = 3 (e) 

Thus: 

fi = Tij n da (f) 

f = fT 1 1 da + fT12da + fT1 3da 

(b) (a) 

=5 
8 o 

E23) + 3 
2 

E 
oo 

E2 (2) (g) 

f= 4 E2 (h)
1 8 o0o


f2 = fT21da + fT2 2da + fT2 3da


(b) (a) 

2 oo 8 oo3 2 5 

f2 3 -
4 o E

2 
o (j) 

f-3 fT 3 1 da + fT 3 2 da + fT33da 

=0 (k) 

Hence, the total force is:


7 2 + 1 2 )
84E E i i + 3 cEo i()8 0 0 oo 2 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.6


Part a


At point A, the electric field intensity is a superposition of the imposed 

field and the field due to the surface charges; E = (/0f/ )1 . Thus at A, 

a 
E= i(E ) + i (E + --) (a)

x 0 y 0 E o 

while at B,


E= ix (Eo) + Cy(Eo) (b) 

Thus, from Eq. 8.3.10, at A,


12 af 
T = So[E -(E + ) ] CE (E + -) 0

ij 0 0


af a 2 
CE e[( - 0+-) [(E +-) E] (c)


S a 2
0 0 E 0 [E2+(E0+ -- ) I 

o ý 

while at B the components are given by (c) with of + 0. 

Part b


In the x direction, because the fields are independent of x and z,


fx = cb-a)[(TxyA -(T y D = (b-a)DEo f (d) 

or simply the area multiplied by the surface charge density and x component


of electric field intensity.


In the y direction

2 

of 
f = (b-a)(T - T )D = (b-a)D[E f + 2] (e) 
y jA Y B 0o 

Note that both (d) and (e) could be found by multiplying the surface


charge density by the average electric field intensity and the area, as


shown by Eq. 8.4.8. 
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FIELD DESCRIPTION OF MAGNETIC AND ELECT IC FORCES


PROBLEM 8.7 

I	 , = L 

(4) 

Before finding the force, we must calculate the H field at xl = L. To find 

this field let us use 

- 0Bnda = 
J 

over the dotted surface. At x1 = + L, 

H(xl=L) = Hoi1 (b) 

over surface (4) H = 0, and over surface (2), H is in the 1idirection, where 

n = 12. Thus over surface (2) B'n = 0. 

Hence, the integral in (a) reduces to 

- I H0da + pfoH(xl = + L)da = 0 

(1) (3)


- oHo a + oHb = 0 per unit depth


Thus: 

H(x, = + L) = ýa/b)Ho i I 

Hi o kHk


Hence, the stress tensor over surfaces (1), (2) and (3) is:


-OH2 0 0 

Tij o -j 2 

2 	 1.


1o 2

T 0 - H 0


ij 2 1


o 2
-0 	 0 2 H1 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.7 (Continued) 

over surface (4)


T = [01


Thus the force in the 1 direction is 

=fl Tij n-da 

fl=-f T 11da+ f T1 1da+ f T1 2 da 

(1) (3) (2)


Thus, since the last integral makes no contribution,

11 o 2 Vo 2 a 2 0o 2

f 1 - Ho (a) + -22 H2 o ()b2 *b = o a b - 1} 

Since Tij = 0 over surface (4) there is no contribution to the force from 

this surface. and by symmetry, there is no contribution to the force from the 

surfaces perpendicular to the x 3 axis. Thus, the force per unit depth in 

1 direction is (k). 

PROBLEM 8.8 

The appropriate surface of integration is shown in the figure 

'I)


tI ~ 

-I 
I 

The stresses acting in the x direction on the respective surfaces are as


shown. Because the plates are perfectly conducting, all shear stresses


required to complete the integration of Eq. 8.1.17 vanish. The only


contributions are from surfaces (i), (ii), (iii) and (iv), where the fields


-48­




FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.8 (Continued) 

are known to be 

E = 

V 
i 

a y 

V 
-i= 
a y 

(i) ;E 

(ii) ; E 

= 

= 

V 

b 

V 

-s•i 
b 

i 
y 

y 

(iii) 

(iv) 

(a) 

Thus, 

f = (T1 1) ad + (T11) ad ­ (T ) bd ­ (T11) bd 
i ii iii iv 

= dV2 1 - ] 

oob a 

The plate tends to be drawn to the right, where the fields are greater. 

(b) 

(c) 

PROBLEM 8.9 

A- - - )Z. 

The volume enclosing the half of the plate is arbitrary so lo6ng as it is


defined so that it does not include additional charge. Thus the volume shown


in the figure encloses no more than the desired distribution of charge. More­


over, surfaces (i) and (ii pass through the fringing fields half way


between the plates where by symmetry there is no x2 component of E. Thus surfaces


(i) and (iii) support no shear stress T2 1 . There is no field at surface (iv) 

and hence the only contribution is from surface (i), where the square of the 

field is known to be 
2


E2 V2o (a)
1 2

s


1 2

and it follows that because T22 on (i) is - 2 CeoE and the normal vector is 

negative

4wse V2


f o o (b)

2 22


s
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.9 (Continued)


The fringing field tends to pull the end of the plate in the + x2 

direction. 

PROBLEM 8.10 

'1 I: 

;I(7	 IB~ 

Part a 

Consider the surface shown in Figure 1. The total force in the x 

direction is: 

f= f T da - T da + da TT f T da (a) 

1,3 5,7 4 8 2,6 

The first 	four integrals disappear because: 

T = CE E = 0 on 1, 3, 5 and 7 because we are next 
xy xy


to the conducting plates (Ex = 0)


T = 0 an 4 and 8 because the E field = 0 there xx 

Hence 

f= T da E2 da (b) 
x xx 2 y 

2,6 2,6


where Tij is evaluated using Eq. 8.3.10.


E = 	 (c) 
y s 

and hence:
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.10 (Continued)


f = ESd2 
( da= - -- v 

2 
(d) 

x -2 s 
2,6 

Part b


The coenergy of the system is


W' = C(x)v2 (e)
2


where C(x) = 2(a-x)d(f)

s 

Thus, (see Sec. 3.1.2b)


f = =W' 21 3C(x) v2 = ----de v 2 (g)x ax 2 ax s 

which is the same value determined in part (a). 

Part c 

The equation of motion of the plate is:


2 
M 

dt
2 x 
2 + K(x-a) = f = -- V (h)

x s o


When the system reaches equilibrium with the switch closed,


K(X
0 
-a) =-dE 

s o (i) 

thus 

X 
o 

= a 
sK 

V2 
o 

() 

After the switch is opened, 

M 2 + K(x-a) = - dc v2 (t) (k)
dt s

dt


The electrical circuit is like an R-C circuit with time varying elements


+÷

v R(x) 

v + R(x)i(t) = 0 (M) 

d 
v + R(x) d [C(x)v] = 0 (m) 

dv dC(x) dx 
v + R(x)C(x) - + R(x) dxv = 0 (n)

dt dx dt
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.10 (Continued)


where:


R(x) s and C(x) 2d(a-x)E (o)
2ad(a-x) s


Hence


v + d-- -x 

a dt La (a-x) d t] 

v = 0 (p) 

Part d 

Dropping the inertial term from (h) leaves: 

K(x-a) = - _c v2(t) from (k) (q)
S 

But we may write the identity


1 dx 1 d
= K(x-a) (r)
(a-x) dt K(x-a) dt


and then, from (q)


1 dx s d d 2 
(a-x) dt dev 2 t) dt s


1 d 2 2 dv 
2 dt v t v dt (s) 

Substituting back into (p) we have 

v+ E -dv + -2E dv= (t)a dt a dt 

Solving we find 

v = V e-(/3E) t (u)
o


and substituting back into (q),

2a 

x = a -• dE V 
2 

e 
3 E 

(v)
sK o 

Along relaxation time is consistent with neglecting the inertial terms, as


then x(t) varies slowly.


Part e


Proceed as in (c), and record the time constant T of a-x(t) by measuring 

the mechanical displacement. Then, 

= 22- (w)a 3 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.10 (Continued)


This problem should raise questions as to the appropriate form of Tij


used in (b). Note that the surface of integration encloses liquid as well


as the plate. We want only the force on the plate, so our calculation is


correct only if there is no net force on the enclosed liquid. The electrical


force density in the liquid is given by Eq. 8.5.45. There is no free charge


or gradient of permittivity in the bulk of the liquid and hence the first


two of the three contributions to this force density vanish in the liquid.


However, there remains the electrostriction force density. Note that it is


ignored in our calculation because the electrostriction term was not included


in the stress tensor (we used Eq. 8.3.10 rather than 8.5.46). Our reason for 

ignoring the electrostriction is this: it gives rise to a force density that 

takes the form of the gradient of a pressure. Hence, it simply alters the 

distribution of liquid pressure around the plate. Because each element of the 

liquid is in static equilibrium and can give way to motions of the plate without 

changing its volume, the "hydrostatic pressure" of the liquid is altered by 

the electric field so as to exactly cancel the effect of the electrostriction force 

density. Hence, to correctly include the effect of electrostriction in integrat­

ing the stresses over the surface, we must also include the hydrostatic pressure 

of the liquid. If this is done, the effect of the electrostriction will cancel 

out, leaving the force on the plate we have derived by two alternative methods 

here.


PROBLEM 8.11


B 

(C-2)I 

L_ _ _ - -- - ­
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.11 	(Continued)


First, let us note the E fields on each of the surfaces of the figure 

over surfaces (1), (3), (5) and (7), E1 = 0 (a) 

over surface


(6) E2 = 	 -a = 0 (b) 

V 
(4) 	 E2 - E1 =0 (c) 

V 
(2) E2 = 	 - E1 = 0 (d) 

c 

From Eq. 8.3.10, 

Tij= oEE -E F F (e)
ij oij 2 0ok k


Hence, over surfaces (1), (3), (5) and (7)


T12 = 0 	 (f) 

and over surfaces 
E V 2 

(6) T11 	= ( (g) 
S v 2 

(4) 	T11 = - (h) 

C V 2 
(2) T11  ) 	 (i 

Now;


f= fTij nfda = T1 lnlda + T12n2da + fT1 3 n 3 da 	 (j) 

IT 1 3n 3 da 	= 0 because the problem is two dimensional. (k) 

Let us consider each of the other integrals: 

fT1 2 n 2 da = 0 (a) 

because the surfaces which have normal n2 are (1), (3), (5) and (7) and by 

(f) we have shown that T12 = 0 over these surfaces. Also, we get no 

contribution to the force over surface (8), because E + 0 faster than the 

area 4 m. 

Hence the calculation of the force reduces tc
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.11 (Continued)


f l i= 	 T6) da T(4) da - T) da2 (m) 

(6) 	 (4) (2)

2


E DV
D o 	 1 1 1(n)
f 0+ 0 (n) 
1 2 a b c 

Note: by symmetry, there is no contribution to the force from the surfaces


perpendicular to the x3 axis.


PROBLEM 8.12


Part a

,, 	 P 

77

T1 
0-~ / - / / / / / / ,- , ,, / -­

S, -- 7	 -­

From elementary field theory, we find that 

wx2 - wxl/a 
= o sin -'- e (a)o 	 a 

satisfies V25 = 0 in the region between the plates and the required boundary 

conditions. The distribution of E follows from 

E = - V4 	 (b) 

Hence,


w - wxla wx wx2 
- 0o 1 'r2 - os2

E -- e In a i - cos --a 	 (c)
a a l a 2 

The sketch of the E field is obtained by recognizing that E is directed 

perpendicular to contours of constant 4. 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.12 (Continued)


Part b


To find the force as the bottom plate, we use surface (2). E = 0 every­

where except on the upper side where the normal n = 12 (d) 

and the field is

o$ - Txl/a


= - - e i

a 2


Hence,


fl = ITi n da = 0 

f2 = T2 j n da = T2 2 n 2 da 2 

per unit x3, this reduces to 

f2 F T 2 2 dIx
1 

2.2 1

1 1 a
-o


but, T EE = -E 0 e
22 2 o 2 2 

a 

and thus 
2


f2 1dx


2a2


2 4a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.12 (Continued)


Part c


On the top plate, use surface (1). Only the sign of the normal changes,


and the result is


fl =0

2 

2 4a


or the force is equal and opposite to that on the bottom plate.


PROBLEM 8.13


Part a 

Tij EiEj - EKEk 

Hence: 
2V 2 

22 
3a 

2V 2 

T21 ooE2E1 
3a 

x 1 x 2 

Part b 

Consider the surface of integration shown in the figure.


D


O 

f2 =T 2jnjda2 = f22T2 1n1da + f22T22 n22 da + f~l3/3da 

(2)(3) (1)(4) by symmetry 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 (Continued)


Let us look at each of these integrals separately


T22da
ST22n2da - 22da 
(1)(4) (1) (4) 

over surface (1), E 0 * T22 0 and hence, the integral is merely: 

Sxl=a E° 2V 2 
0 

- T22 da 4 = - (- ) (x2 - xl) wdx1Jx =-a 2 3a 

x 2 = 2a
2a


E V2 
44 o0o 

T7 a 

Thus, 
SV2w


Snda 44 oo


S22n2 =27 a

(1)(4)


Let us now evaluate:


I T 21nlda 

(2)(3)


Consider the surface shown.


in this region field = 0


hence, no contribution to the


integral over this area.


i Z•r =• 
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FIELD DESCRIPTION OF 	MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 	(Continued)


Thus; 
x2=a5d 2V 2 

IT21da = 
x 2a 

awx2dx2 
(3) 	 x2a 3a


xl=a


0V2w 
2 oo 
9 a 

Over surface (2), we have essentially the same thing, except n = - i 

and xl = - a. Hence: 

E V2w

I 2 oo


ST21da2 a9
"a

(2)


Therefore, the total 	force in the f2 direction is 

E V2w 
56 00


2 27 a


Part c


0 
= + T12n2da + f1T da

f1 Tllnlda 
(2)(3) (1)(4) by symmetry


f-T1 2da4 
over (1) we get


I T12n2da 
(1)(4) (4) 0 as before 

S 2V02 fa x x2wdx1 = 0
0 3a2 -a 	XX2WdX 

x2=2a


Now, over surfaces, 2 and 3


Tl1 1n 
da = - T 11da2 Tllda 3 0


(2)(3) (2)


because,


T1 1 12 T1113


hence fl = 0.
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 (Continued)


Part d


a = n E0 	 (o) 

at the lower surface of the movable conductor. The functional relation,


f(xl 2), for the lower surface if the movable conductor is given as


f(x1x2 ) = 4a2 + x - x2 = 0 	 (p) 

the outward unit normal 	to this surface is


n ~Vf(xlx2) xl I - i (q) 
l'2 [ 2 

at x 2 = 4a + x12 

S1/2 
2 x 2 24 2 /
12 


of Eo[n l E + n 2 E2 ] = 	 32 x2 4a 2 2xl 
3a 2 J4a +2x 

The surface force density (see Eq. 8.4.8) is equal to:


-E + E•

f 2


where, Eb = field just below the charge sheet 

Ea = field just above the charge sheet 

Since 

a = 0, T = 1 a (t) 

thus 2 2 2 1/2 
e 2V 2 x 4a + x 
o o0

T 2- 2 ) + x2 x1il- 2i2 4a2 + 2 (u) 
3a x2 4a + 2x1 J 

To find the total force, the surface force density must be integrated over the


surface. Hence, we find


V 2 a 1/2 1/2 

2- 0 fx2 dx1f2 = 2c a j2x 2 + 4a2 + 4a2} 	 (v)
3a -a


If the student wishes, he may carry out this integral, but the complexity of


the integration shows the value of the stress tensor in calculating such a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 (Continued)


force. We realize that by using the stress tensor, we have essentially


carried out this difficult integral by an integration by parts.


PROBLEM 8.14 

Part a

V 

i - xY (a)1 2 

a


= - V (b) 

hence, V 
E ( 2 x2) + 2 - xl) (c) 

a a 

and, from Eq. 8.3.10 

Ti = CEE - 6j 1ýE (d) 
T ijhe
stress tensor becomes2


Thus, the stress tensor becomes: 

V 2 V 2 

(-) - (x2-x ) (-) o(xlx2) 0

a a 

V V 2 E°

Tij - (X1 X2 ) (- ) -2- (x-x2) 02 (e) 

a a 

V 2 ) 
0 -(-) -•xx 2 

a


Part b 

Consider the surface shown, bounded by the line segment x2 = 2a, x2 = a, 

and xl = a/2 and x1 = a. 

XK 

1
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.14 (Continued)


As before, because the geometry and fields are two-dimensional, the force in 

the 13 direction is zero. Also, since along surface (1) , = constant, then 

the E field = 0, and hence Tij = 0 along this surface. Thus the calculation 

of the force on AB reduces to:


fl = - T11da - T12da (f) 
(2) (3)


f2 = - T2 1da - f T22 da (g) 

(2) (3)


V 2 2 a 2 a + 

fl 2 oD x2 - (2 ) ]dx (h)a a/2


and hence 
V 2 

fl - Eo=- ()a 
a 

Da3 17[*•] (i) 

Similarly: 

V 2a 1 a 2 2 
f
2 a Do x(x-a2 x2d2 2 a/2 l 

)dxl (J) 

and hence

V 2


f
2 

- oD 
o 

a3 (- ) 
48 (k) 

a 

Thus, 2
v

o 17 31

f = - E D [i - + i 4 o a 1 12 48 (-)
2 

PROBLEM 8.15


Part a


The E field in the laboratory frame is zero since the two perfectly


conducting plates are shorted. This can be seen by integrating E around a


fixed contour through the block and short and recognizing that the enclosed


flux is constant. Hence,


E'E+vx E , E 0 (a) 

and thus


E' v x B = - V1 oHi2 (b) 

Therefore we may now calculate J in the moving block.
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.15 (Continued) 

J' aE' - ap VHo 2 

Thus: 

F Jx ap2 VH2i 
0 o 1 

- (3 x B)dV =- i oVH (abD) 10 0 1 
volume


Part b 

The closed surface of integration is shown in the figure below.


All, 

""~~ "I'I­

' -­

IX ( 

I i A 

XI 

Since the field is uniform everywhere, the only non-zero components of the stress 

tensor are the diagonal elements


T =T 1 H2 T 1 H2 
11 22 2 oo 33 2 oo 

Thus 

f1 = i T1da3 - f Tllda2 
(3) (2) 

= H2 bD - H2bD = 02•o 2 o 

Similarly 

f2 = T22da - T22da4 =0 

(1) (4)


f3 = T 33da5 - T 33da6 =0 

(5) (6)


Hence:




FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.15 (Continued)


Part c


The magnetic field strength and the current density are inconsistant. The


quasi-static magnetic field cannot be uniform and irrotational in a region where


a finite current density exists. The Maxwell stress tensor was developed with


the aid of Ampere's Law (quasi-static) which relates current density and magnetic


field rotation.


S=VxH (k) 

F V o J x H = o(VxH)x H (1) 

For this case, we have assumed that


V x H = 0 (m)


In the limit of small magnetic Reynold's number, (Rm << 1), the motion does not


appreciably affect the field, and the answer found in part a is a good


approximation. There are some problems more easily handled with the stress tensor.


This problem illustrates that in other cases it is easiest to use the force


density J x B directly. Note that we could compute the field induced by J and


then use the Maxwell stress tensor and the self-consistent fields to find the


same force as given by (e).


PROBLEM 8.16


To find the force on the block, we will use the stress tensor over the


surface shown in the figure. Note that the surface is just outside the block.


X,
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.16 (Continued)


In the region to the left of the block 

I


and to the right H=0

=D o 13 , 

Thus: 

f n T12n2da + T1 3 da (a)T11nda + 3 n

but, since 

H1 = H2 = 0; T12 = T13 = 0 
(b)


hence,


f = - Tl1da5 + f T1dal (c) 

(5) (1) 

on surface (5), J 12 

T o o (d)
11 2 2 d

D 

on surface (1) 

T11 f 0 (e) 

therefore 2 2


f1 + 2 oo
2 .Dd = + 2D 

(f)(f)
D


Similarly, f2 reduces to


f2 = T22da2 - T22da6 (g) 

2 6 

But, since T22 is a function of xl alone (1 is a function of x l alone) the 

two surface integrals are identical, and hence f2 = 0. Similar reasoning 

shows that f = 0 and thus the total force is 

- ~ood

f d


2D i


PROBLEM 8.17


Part a


2-B V =po- (a)o at 
Assume a solution of the form: 

H = Re [H (x)e iWt (b) 

e-z


- joZ o HZ (c)
2 ax 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.17 (Continued)


Try

Kx


H (x) = H eKx 

where


K
22 


= •0 ° 

and hence


K = + (1+j)


Let us define the skin depth as: 

6 2 

And thus [ (+j) 

-H= e 2+He iz 

Because the skin depth 6 is assumed to be small, and the excitation is on 

left, 

Hz(large x) + 0 which implies 12 = 0 
Hence, - x(l+j) 

H(xlt) = H e ejt z 


But, our boundary condition at x = 0 is 

H(x=O,t) =ReHe = - Re - e i 
H(Ot)z D z


and thus


(x•) D e +J)ejt i 

3H - -K(l+j) 
J=VxH=- ((6)i

yx 
-

D 6 
ee ejt i 

y 

Part b


= f x EdV= JfxV RdV 

f Re dV] + ReL 2- e2jWt dV] 

Now, solving each of these integrals:


S2x


2 dV = oaD (1 (1+j) e dx


T Da I (1+j)i

4 D x x 

(d)


(e)


(f) 

(g)


(h) 

the


(i)


(j) 

(k) 

(M)


(m)


(n) 



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.17 (Continued) 

2x 
fixi e 2 2xT(1+j) 

1 o•a 2 2jwt (p) 
4 D x 

Hence, taking the real part, the force as in equation (n) is:


S1 oa 12(1 + cos 2wt)i (q)
4 D x 

Part c


Using the Maxwell stress tensor, we choose the surface shown in the


figure,

O 

f = T jnjda = Txxn da + T n da (r) 

(1)(3) (2)(4) 

Along surfaces (2) and (4), Hx = 0 along the interface between the perfect 

conductors and the finite conductivity block. Thus, 

T = oHHy = 0 (s) 

At surface (3), the field is zero since all current filaments complete a 

closed loop circuit with the source through the block. Hence 

T = 0 on surface (3) (t) 
xx


Therefore the calculation of the force reduces to 

f =- f T da (u) 

T o H2 (v) 
xx 2 z


And thus, 
aDoH 

f = o H2 (w) 
x 2 z 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.17 (Continued) 

where the field Hz is evaluated on surface 1, i.e. x = 0 and is simply given 

by the boundary condition (j). Thus it follows 

al

a=4D 2 (1 + cos 2wt}ix (x)


which checks with (q). Note that the distribution of J and H, as found in 

part (a), are not required to find the total force in this problem. Even more, 

(x) is not limited to 6 << x block d1•lension, while the detailed integration is.


Note: We have made use of the rule for products, namely of:


a(t) = Re[Ae
jwtj ] = 

Ae +
2

A*e 
2 

b(t) = Re[Be ] = 2 
2 

then


-
AB* + A*B ABe 2 jwt + A*B*e 2 jwt


a(t)b(t) = 44 +4 4


AB* AB 2jwt
= Re[ --

2 
* + Re[-

2 
e t 

avg. value time varying part


PROBLEM 8.18


Choose the surface shown in the figure.


r -----­
/ 0j r- - - - -­

I-. -- -­

f fTijnjda = f Tlnlda+ T2n2da + T3n3da (a) 

3,4 5,6 1,2 

Since the plates are perfectly conducting, E1 = 0 at surfaces (5) and (6) 

and .hence T12 = 0 on surfaces (5) and (6). Surfaces (1), (2), (3) and (4) 

are far from the body so 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.18 (Continued)


V 
E= i (b)

d z


at each of them, and thus, on surfaces (1) and (3), T1 3 0=. Therefore,


fl = - 11da3 + f Tllda (c) 

(3) (4) 

T(3) T ) o (V (d)11 11 2 

and a3 = a 4 (areas). Hence, 

fl = 0 (e)


PROBLEM 8.19


Part a


Since the system is electrically linear, 

S= BI + Br (a) 

where BZ and Br are respectively the fields from the left and right wires. 

The force on a unit length of the right wire is 

=r x B da = Jr x , da + x BE da (b) 

but, 

Jr x Br da = 0 (c) 

ane hence, 

f = J x Bi da (d) 

Since, we don't need the fields near the wire, 

P I x2 1- (xl+a) 2 
9 2 (xl+a) + x2 e 

0
1l -x2 1 + (x 1-a)12S 
r 2 (x -a) 

Hence, 

fr = rx B da 

2 p o1 (2a)i 

r 2w1 2
(2a) 

22 
+x 2 j (f) 

- I 3 x Bz (xx (g)

1 a, x2=0) 


pl 2 

4wa 1 (h) 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.19 (Continued)


Part b


I 
I /­

Along the symmetry plane of the surface shown in the figure


- o (-2a) (i)
=2w 2 2 2 

(a +x 2 ) 

The terms of Tij go as B2, but B2a - and the surface area goes as 27R on surface 

(2), hence the contributions of the stress tensor will vanish on surface (2) as 

R-o; we need only compute the integral on surface (1). Because H1 0 in the 

plane xl = 0 

f= f-T1 1 da = 2 dx2 

o 	Ia2 dx 2

22 2


- -j- (a +x2) 

Solving this integral, we find

Io2


f P 	 (k)

1 4ra


also


f2 f3 = 0 (Y) 

since 

T21 T = 0 31 (m) 

and hence the total force is that of (k) and it agrees with that determined 

in part (a). 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.20


ioL7 

\
\~


4-21 0 
| • | !


- X.IF- O .j~ I 
r 

/ 
0 / 

I~/


Part a


Use the contour indicated in the figure. At infinity the fields will go


to zero, and hence there will be no contribution to the force from the semi­


circular part of the area, i.e. surface (2).


Along the line x2 = 0, E2 = 0 by symmetry and


2 X

E1 = ( )sin8 

o

2 2 2


r = a + X 

x1 x


sinG =

r 2


Hence 
o x1 

X X1 
E1 = oe a2+x22 

f2 = T2jnda = T21nda + t22n2da + T23n3da 

(1) (1) (1)


first and last integrals = 0, n 1 and n3 = 0 on surface 1 
2 

T 2 2)o2 2 
22 2 1 2 c ft (a +x )2 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.20 (Continued) 

Thus 

f 
2 
=- 2 

f2 

2cr 

SXl2 
dxl 

x 2 22 
o (a +x ) 

f2 

2 P4a a 

Part 	b


From electrostatics,


f = AE 

From the figure, we see that 

E(x2=a) = 2 (2a)


Hence,

2 

4we 0 a 2 

which is the same as we obtained using the stress tensor - (see equation (h)).


PROBLEM 8.21


Part a 

From Eq. 8.1.11, 

BB 
Xy 0 
lo


0Tij	 2L0 x y 

0 1 2 2
0 - (-Bx-By)

2v x y0 

where the components of B are given in the problem. 

Part b 

The appropriate surface of integration, which is fixed with respect to the 

fixed frame, is shown in the figure.


We compute the time average force,
 to

d.h iUbL rL U i I LUL U f an 	 ence contr ut. ons rom SUL aces 

(1) and (3) cancel. Fields go to


zero on surface (2), which is at


y-. Thus, there remains the stress

I on surface (4). The time average 

value of the surface force density T +· c c~ea 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.21 (Continued)


is independent of x. Hence,


T = - <T (y=O)> (b) 
y yy


T <-B 2 + B2> (c) 
y 21p x y


Observe that

^ -JkUt 

<Re A -e jkUt Re B e kUt> 
22 

Re A B* (d) 

where B* is complex conjugate of B, and (c) becomes 
T R-kx (-jklj 0K°) jkx (jki K ) jk x 

e-Ty Re-( Koe kX) (p K )+ e e 
0 

2 k2 (e) 

= 4 (1 aa* ) (f) 

Finally, use the given definition of a to write (f) as


T = - - (g) 
y 4 U 2 

S1+ (-10-)

Note that T is positive so that the train is supported by the magnetic field.


Y 
However, as U-O (the train is stopped) the levitation force goes to zero.


Part c


For the force per unit area in the x direction;


1T - <B B (y=o)> (h)
x 21 ° x y 

1 Re[V° K e j k x 
( 

-jk0 -jk (i)= Re Kek K ejkx M 
2V a* o0 

Thus •K2 V aU 

Tx 0 Re j 1- j 
SaU 2 1/2 

2[1 + (-ý) I 

As must be expected, the force on the train in the x directions vanishes as 

U-O. Note that in any case the force always tends to retard the motion and 

hence could hardly be used to propel the train. 

The identity sin(e/2) = + /(l - cosO)/2 is helpful in reducing (j) to 

the form 

- K2 p crU 2 
T=° 0 ( 1+ (-e- 1) (k) 

11 0oU--2 1/2
2-
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.22


This problem makes the same point as Probs. 8.16 and 8.17, with the


additional effect of material motion included. Regardless of the motion,


with the current constrained as given, the magnetic field intensity is zero 

to the right of the block and uniform into the paper (z direction) to the left 

of the block, where 
I 

H= i 0 (a)zd 

The only contribution to an integration of the stress tensor over a surface


enclosing the block is on the left surface. Thus


f = ds T = - ds1 H (b)
x xx 2 0oz


2

I 

ds 1o 0) (c) 

The magnetic force is to the right and independent of the magnetic Reynolds


number. 

PROBLEM 8.23


In plane geometry, a knowledge of the charge on the upper plate is equivalent


to knowing the electric field intensity on the surface of the plate. Thus, the


surface charge density on the upper plate is


I t I 
a = I coswt dt sin wt (a)f A o a)

0


and


E
X

(x=a) = 
Qf 

E AE 

I 
0Wsin wt (b) 

o o 

Now, we enclose the upper plate with a surface just outside the electrode


surface. The only contribution to the integration of Eq. 8.1.17 using the


stress tensor 8.3.10 is 
A 2 

f = - AT (x=a) = o E2(x=a) (c)
x xx 2 x


which we can evaluate from (b) as


AE I 22 

fx o2 ( ow)sin20t (d) 
o 

The force of attraction between the conducting slab and upper electrode is not


dependent on 01 or ao .
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.24


The force on the lower electrode in the x direction is zero, as can be seen


by integrating the Maxwell stress tensor over the surface shown.


t


The fields are zero on surfaces (2), (3) and (4). Hence, the total force per 

unit depth into the paper is 

f f= T dx (a) 

where contributions from surfaces in the plane of the paper cancel because the


problem is two-dimensional. Moreover, by symmetry the electric field intensity


on the surface (1), even in the fringing regions, is in the y direction only 

and T = C E E in (a) is zero. Thus, the total x directed force is zero. 
xy oxy 

PROBLEM 8.25


The force density in the dielectric slab is Eq. 8.5.45. Not only is the


first term zero, but because the block moves as a rigid body (we are interested


only in the net force giving rise to a rigid body displacement) the last term,


which originates in changes in volume of the material, does not give a


contribution. Hence, the force density is


= E.Ev- (a) 
2 

and the stress tensor is

6


T = EEIE - - c k E (b) 

Note that, from (a), the force density in the xl direction is confined to the


right edge of the block,.where it acts as a surface force. Thus, we obtain the


total force by simply integrating over a surface that encloses the right edge;
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.25 (Continued) 

fl = aD E +1 (Eb) (c)ao(E2 


where a and b are to the right and left of the right edge of the slab. Also


Ea = 
2 

E 
2 

= - V/a. 
0 

Hence (c) becomes 

V 2 
fl 2 (o) (ECo) (d)(d) 

The force acts to the right, as could be computed by the energy method. 

PROBLEM 8.26


Part a


The force density for polarizable materials is:


- 1 1 -­
F =- E*E VC + - V(E*E p -) (a)

2 2 ap 

The second term on the right side represents electrostriction. Note that 

this is a case where the material volume must change, and hence the effect of 

electrostriction is important. Sincd free space and the elastic bulk are homogeneous,


changes in permittivity and ac/ap occur only at the boundary where 

the permittivity is discontinuous. The upper and lower elastic bulk surfaces


are constrained by the plates. Thus only the xl component of force is pertinent.


Since the left-hand edge is fixed, any stress arising from the discontinuity in


permittivity at that boundary is counterbalanced by the rigidity of the wall.


Therefore, all of the force arises at the right-hand boundary which is free to 

move.


The closed surface of integration is shown in the figure.
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FIELD DESCRIPTION ON MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.26 (Continued) 

1 9e 
Tij EEi J 2 ij - p EkEk (b) 

1
Since a/c << 1 and b 2- a the field at the dielectric interface is essentially 

uniform. V 
- 0o
E-= - i 2 aW (c) 

The relevant components of the stress tensor are: 

S 2 1 ae 2
T - 2 + p E2 (d)

11 2 2 2 ap 2 

T12 = E1EE2 =0 (e)


f = nT11nda + T 22da (f) 

(1)(3) (4) 

Hence 

f fT11da3 - fTldal 
(3) (1) 

E 
S 2 

V 
T) 

2 
(aD) -

E 1 V 
(1 

2 
) (aD) + P 

V 2 
(aD) (g) 

Thus;


(E- Eo)V2 D V2 D 
00 r 0(h)f 

1 
1 
2a 

o 
2 d ( a ) 

Part b


In order to use lumped parameter energy methods, the charge on the upper


plate will be found. The permittivity of the dielectric bulk is a junction of


the displacement of the rightýhand edge. That is, if mass conservation is to


hold,


po abD = (po + Ap)aD(b+F) (i) 

where 

P = Po + Ap, Ap = 0 if 5 = 0 (j) 

Thus, if Ap << po and E << b, to first order 

Ap = -p (k)
-Po b 

(see Eqs. 8.5.9 and 8.5.10) 

Furthermore, to first order, using a Taylor series,
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PROBLEM 8.26 (Continued)


a p Po 2E


1 +p 1 b ap


Also, the electric field will be assumed as uniform everywhere between the


plates. Hence; in the block


V

-2a + Ap] } (m)
;-T 22 [2 l 


to the right of the block

V


D=- 1 2a--E (n)

2 aa 0 C2 (o 

By employing Gauss's law, we find the charge on the upper plate as: 

V p0 V 

q = (P - p E}(b+)D + Eo--)(c-b-Q)D (o) 

dw = fqdv + f dx (p) 

integrating we find 

w'e = i(a 11 E 22 a o(c-b-)D2 b ap (b+ý)D + 1 (q)


Thus, 
Thus, (E-E)V2D V2 

f 
e 

eo 
e 
c v=V 

-- 0
2a 

o 1 

2 
o 

a o 
_E 

pr) 
(PD 

o 

Second order terms have been dropped in the co-energy expression (alternatively,


first order terms can be dropped in the force expression).


Part c


If the result of part (a) is written for p = po + Ap, where po >> Ap, 

then the answers to part (a) and (b) are identical to first order. This 

should be expected since the lumped parameter approach assumed a value for 

permittivity which was correct only to first order. 

PROBLEM 8.27 

The surface force density is 

T = [Ta - Tbn (a) 

m mn mn n 

For this problem, we require m = 1 and n = 12. Thus 

T1 = (T 2 - Tb2 ) (b) 

From Eq. 8.5.46,
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.27 (Continued)


T1 =EoEEa EEbEb (c) 

Note that E2 = E2 (see Eq. 6.2.31). Moreover, because there is no free charge 

coEa = CE1 (see Eq. 6.2.33). Thus, (c) becomes 

T 1 = 2 ol - EEl]1 f 0 (d)Ea[EoE I 


That the shear surface force density is zero in the x3 direction follows the


same reasoning.


PROBLEM 8.28


The force density, Eq. 8.5.45, written in component form, is


F = E ac a 1 ac (a)
i i ax 2 Ekk +a EkEk ) (a) 

The first term can be rewritten as two terms, one of which is in the 

desired form 

a i 1 De 1 E) (b) 
i -x (i j ax 2 k k ax ax 2 k k -5p (b) 

Because V x = O, aDE/axj = Ej/Dx i so that the second term can be rewritten 

and combined with the third. (Note the j is a dummy summation variable.) 

a a i a i 

Finally, we introduce 6 (see Eq. 8.1.7) to write (c) in the required form


aT

F= (d)
i ax 

where 

Tij = CE - (E-p ) (e) 
This is identical 8.5.46.
to E. 


This is identical to Eq. 8.5.46. 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.1


The equation of motion for a static rod is


d26

0 = E d 


dx2 
+ F where F = pg


x x


We can integrate this equation directly and get


2

6(x) = - () + Cx + D,


E 2


where C and D are arbitrary constants.


Part a


d6

The stress function is T(x) = E x and therefore

dx 

T(x) = - pgx + CE. (c) 
We have a free end at x = Z and this implies T(x=2)=O. Now we can write the 

stress as 

T(x) = - pgx + pg£. (d) 

The maximum stress occurs at x = 0 and is T = pg£. Equating this to the 
max


maximum allowable stress, we have


2 x 109 = (7.8 x 103 )(9.8) 

hence 

t = 2.6 x 104 meters. 

Part b 

From part (a) 

T(x) = - pgx + pg£ (e) 

The fixed end at x = 0 implies that D = 0, so now we can write the displacement 

2 

6(x) = - •) +--E x)


Part c


6(R) = -
g2 

E 2 E 2E 

For 2 = 2.6 x 10 meters, 6(£.) = 129 meters. This appears to be a large 

displacement, but note that the total unstressed length is 26,000 meters. 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.2


Part a


The equation of motion for a static rod is


2

0 = E 22 + pg (a)


dx


If we define x' = x-L1, we can write the solutions for 6 in rod I and in rod 2


as

apg 2 

61 (x) = E ) + C2 + D1 (b) 

and

p 2 g ,2


62(x) - + C2 x' + D2 (c)


d6

where C1,C2,D1, and D2 are arbitrary constants. Since T = E 1we can also write 

the tensions, 

T1(X ) = - plgx + EIC (d) 

and 

T2(x') = - 2 gx' + E2C 2 (e) 

We must have four boundary conditions to evaluate the constants and they are:


6 (X=O) = 0, (f) 

6 2 (x'=0) = 61 (x=L1) (g) 

0 = - A 1T(x=L1 )+A2T2 (x'=0) + mg, (h) 

and


0 = - A2T2(x'=L 2) + Mg + fex (i)


where fe is found using the Maxwell stress tensor 
x 2 

o 0oe 

x 2d2


where we assume d >> 6(2) (x'=L2).

Equations (f), (g), (h) and (i) serve to define the constants of integration.


Substitution of (b)-(e) shows that


DI = 0 (k) 

plg L


E + C1L1 + D1 - D2 =0 (£)

1


-81­




SIMPLE ELASTIC CONTINUA


PROBLEM 9.2 (Continued)


-A1[-PlgL 1 + E1C1 ] + A2[E2C2] + mg = 0 	 (m)


E A V2 

-A2 -P2gL2 + E2C2] + Mg + o M_2d = 0 (n)

2d


Solution of these expressions, beginning with (n), gives


C2 = g + 2d2 +P2gL 2A2 A E2 	 (o) 

and hence


C1 = g + gL1 A1 + A2E2C2] A1E1 

SoA V2 

= {[(M+m) + 1 L1A1 + P2L2A2 2 AE (p) 
12 22d2


L1 1M1A1 +oA+M 2 

D=
2 AE 

{[ClL)++ 
2 P

2 
2L2A]2 2d2

0 (q) 

D1 = 0 	 (r) 

Thus, (b) and (c) are determined.


PROBLEM 9.3 

Part a 

Longitudinal displacements on the rod satisfy the wave equation 

2 2 
p = E and the stress T = E -(a)

2 2 	 ax
at ax 

We can write 6(xt) = Re[6(x)e ] for sinusoidal excitations. 6(x) can be 

written as 6 (x) = C1sin ýx + C2 cos fx where = ww/p7E. The two constants are 

found from the boundary conditions 

2


M 	2 6 (£,t) = - AT(k,t) + f(t) (b) 
at 

6(0,t) = 0. 	 (c) 

These conditions become


2 ds
-M2 6(£k) - AE - (k) + f 0 	 (d)

dx o 

and 

S(0) = 0 (e) 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.3 (Continued)


for sinusoidal 	excitations.


Now we find C2 	 = 0 and 

f 
Co (f) 

AE~cos8t- MW sin8t2


Hence,


6(x,t) = sin~ x 2 Re[foet ( 
AE$cos 8t-Mw sinat 

and


T(x,t) = E EaEcosx Re[f wt]e (h) 
x AE~cos$Z-Mw sin 2 0 

Part b


At x = 2, 

6(t,t) = Re[foe et 	 (i) 

AEMcotaS-Mw2


where 8cot8£ = 	wv 7T cot (wt/r7E). 

For small w, cot(wt/pE) + 1 and 

6(1,t) 	 MAE2 f(t) (j) 
MW 

This equation is as used to describe a mass on the end of a massless spring:


2 
Mdx = - Kx + f(t) (k) 
o dt2


and 	 H Mto 

x = Ref[eJWt],


- M x = - Kx 	+ fo, (0) 

or


x f(t) (m) 
K-M w 

Comparing (j) and (2)we note that 

K = AE and t = Z. 	 (n) 

Our comparison 	is complete and since M >> pAt we can use the massless spring model


with a mass M 	= M on the end. 
0 
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PROBLEM 9.4

A response that can be represented purely as a wave traveling in the negative


x direction implies that there be no wave reflection at the left-hand boundary.


We must have


v(O,t) + 1 T(O,t) = 0 	 (a) 

as seen in Sec. 9.1.1b.


This condition can be satisfied by a viscous damper alone:


AT(O,t) + Bv(O,t) = 0 	 (b) 

Hence, we can write


B = ArpE


M = 0 	 (c)


K = 0. 

PROBLEM 9.5 

Part a 

At x = k the boundary condition is 

36

0 = - AT(£,t) - B 2- (£,t) + f(t) 	 (a) 

Part 	b


We can write the solution as


6(x) 	= CI sin Bx + C2 cos 8x, (b) 

where a = w . At x = 0 there is a fixed end, hence 6(x=O) = 0 and C2 0. 

At x = Z our boundary condition becomes 

F = 	 JwB6(x=2) + AE d•x (x6=), (c)o 	 dx


or in terms of C1;


Fo = 	JwBC1 sin 8£ + AESC1 cos at (d)


After solving for C1, we can write our solution as


F sinSx

(x) = o 	 (e)AE~cosaB+jwBsini(


Part c


For w real and B>O, 6 cannot be infinite with a finite-applied force, because


the denominator of 6(x) can never be zero.


Physically, B>O implies that the system is damped and energy would be
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PROBLEM 9.5 (Continued) 

dissipated for each cycle of operation, hence a perfect resonance cannot occur.


However, there will be frequencies which will maximize the amplitude.


PROBLEM 9.6


First, we can calculate the force of magnetic origin, fx, on the rod. If 

we define 6(9,t) to be the a.c. deflection of the rod at x = Z, then using 

Ampere's law and the Maxwell stress tensor (Eq. 8.5.41 with magnetostriction 

ignored) we find


=
f 2 (a)

X 2[d-6(ý,t).] 

This result can also be obtained using the energy methods of Chap. 3 (See


Appendix E, Table 3.1). Since d >> 6(t,t), we may linearize f : 
2oAN222AN22 

f 
x 

-
2d2 

+ 
d3 S(£,t) (b) 

The first term represents a constant force which is balanced by a static deflection


on the rod. If we assume that this static deflection is included in the


equilibrium length X, then we need only use the last term of fx to compute the


dynamic deflection 6(£,t). In the bulk of the rod we have the wave equation;


for sinusoidal variations


6 (x,t) = Re[6(x)e1j t ] (c) 

we can write the complex amplitude 6 (x) as 

6(x) = C sin Bx + C cos ýx (d) 

where a = U4. At x = 0 we have a fixed end, so 6(o) =0 and C2 = 0. At x = Z 

the boundary condition is


0 = f - AE (£,t), (e)x x 
or AN2 2 

p AN d

0 = 6(x9=) - AE (x=9) (f)3 dx 

Substituting we obtain


p AN2 2 

d3 C1 sin 8£ 
= C1 AEa cos BZ 

(g) 

Our solution is 6 (x) = C1 sin ax and for a non-trivial solution we must have 

C1 j 0. So, divide (g) by C1 and obtain the resonance condition: 
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PROBLEM 9.6 (Continued)


i AN212


( 3 ) sin BU = AEB cos B$ 
d 

Substituting B = w and rearranging, we have 

3

~(N212 = tan( .-­


-
o1N2 12t 

which, when solved for w, yields the eigenfrequencies. Graphically, the first


two eigenfrequencies are found from the sketch.


I I 
I I 

StE~A 3/~44 ,N 
1

Ejc.A3' 

;IE-

Notice that as the current I is increased, the slope of the straight line decreases


and the first eigenfrequency (denoted by wl) goes to zero and then seemingly


disappears for still higher currents. Actually w1 now becomes imaginary and can


be found from the equation


oL ( IfwlI I) = tanh( ol Z)
10N212Z


Just as there are negative solutions to (i), -wl, -w2 " etc., so there are now


solutions + JIwlI Thus, because wl is imaginary, the system is unstable,
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PROBLEM 9.6 (Continued)


(amplitude of one solution growing in time).


Hence when the slope of the straight line becomes less than unity, the system


is unstable. This condition can be stated as:


STABLE 
Ed
Ed > 1 (k) 

S0N2 2 
or 

UNSTABLE 
Ed 

2 < 1 (a) 

pN2 2 

PROBLEM 9.7 

Part a 

6(x,t) satisfies the wave equation 

2 2 
p 2--E 2 (a) 

at ax 

ac 
and the stress is T = E 2-. We can write 

ax 

6(x,t) = Re[•6(x)e J t ] (b) 

and substitution into the wave equation gives


d2ýd + B22 6 = 0. (c) 

dx 

For x > 0 we have, 

6(x) = C1 sin ax + C2 cos ax (d) 

and 
Ta(X) = C1ER cos ax - C2Ea sin 8x (e) 

and for x < 0 we have, 

6b(x) = C3 sin ax + C4 cos Bx 
(f)


and


Tb(x) = C3ER cos ax - C4 EB sin ax (g) 

Part b


There are four constants to be determined; thus we need four boundary


conditions. At the right end (x=L), we have


6 (x=L) = 0 (h) 
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PROBLEM 9.7 (Continued) 

and the left end, 

6 b (x-L) = 6oe 

There are two conditions at the middle (x=O), 

6a(= 0+ ) = 6^(x=O -

and 

(i) 

(1) 

-Mo 
2 

6a(x=O) = ATa(x=+ +
) - ATb(x=O) - 4K6a(x0) (k) 

Part c 

Solving for C1 ,C 2 ,C 3 , and C4 we obtain 

-j 
-6 AEBe cotBL 

c o ()
1 sin6L(4K+2AEBcotBL-M 2 ) 

6 AEBe 
C 
2 sinBL(4K+2AEBcotSL-M 2) (m) 

11E 7 
-j -j­


6 AE~e cotBL 6 e

= o o (n) 

3 sinL (4K+2AEBcot L-Mw2) sRL) 

C =4C2 (o)


Thus, (b), (e), and (g) with these constants give the desired stress distribution.


PROBLEM 9.8 

In terms of the complex amplitudes, (k) and (r) become 

LI 
T'(0) = i (R) - text (a) 

and 
LLI


T'(Z) = o i' (r) - text (b)
aA 

where i - Gv 
0 

Equation (t) without the approximation becomes


^ GLo (P+p) ^ L I

v = - j + j 6 (c)

o 1-11 o a o


Using the steady-state solutions for the rod, we can solve for T(x) in terms of


the boundary values T(O) and T(P): 

-88­




SIMPLE ELASTIC CONTINUA


PROBLEM 9.8 (Continued)


T(x) T(O) sin[k(k-x)]
sin[kt] 

+ T() sin[kx]
sin[k2] 

(d) 

then 

1 [ cos[k(-x)] cos[kx] (e) 
sin[kt] sin[k] 

From (a) and (b), this becomes


)_ 1 lo_ 1 o ^ cos[kt~
6(M) = 60 i v 	 (f)o a•aA i sin[kt] aA o sink 	 f) 

Thus, in view of (c) solved for 60, we obtain the system function


H(w) = 
i 2 wGL (1+1) 2 
i cosfkt]+j/p ()(a oI ) sin[kP]- o AC G(+a I)sin[k)] 

o o 

(g) 

PROBLEM 9.9


Part a


First of all, y(t) = 6(-L,t) where 6 (x,t) = Re[6(x)eJet]. We can write the 

solution for 6 as 6(x) = C1sinBx + C2cosBx, where = wm/pE. The C2 is zero 

because of the fixed end at x = 0(6(0) = 0). At the other end we have 

2 
M 26 (-L,t) = A2 E -xL (-L,t) + fe(t) (a) 
Bt 

Using the Maxwell stress tensor, (or the energy method of Chap. 3) we find 

Ae N2 	 [ -(t)]2 [I( + I(t) 2 (b) 

[d-D+6(-Lgt)] [d-D-6(-L,t)]2 

which when linearized becomes,


fe(t) - C I(t) - C 6(-L,t), (c) 

where 

2N2p AI 2N21oAI2 

CI 0 2 ;C 
(d-D)2 'y (d-D)3 

Our boundary condition (a)becomes 

2 d6 ^ 
-Mw 6(-L) = A2 E dx (-L) - C I - C 6(-L) 	 (d) 

Solving 	for C1 we obtain


-89­



SIMPLE ELASTIC CONTINUA


PROBLEM 9.9 (Continued)


CI 
CI 2 , (e) 

A2EcosSL - (M -C )sinBL 

and we can write our solution as


y(t) = Re[-C sinBL ejWt]. (f)


Part b


The transducer is itself made from solid materials having characteristics


that do not differ greatly from those of the rod. Thus, there is the question


of whether the elastic response of the transducer materials is of importance.


Under the assumption that the rod and transducer are constructed from materials


having essentially the same elastic properties, the assumption that the yoke


and plunger are rigid, but that the rod supports acoustic waves,is justified


provided the rod is long compared to the largest dimension of the transducer,


and that an acoustic wavelength is long compared to the largest transducer


dimension. (See Sec. 9.1.3).


PROBLEM 9.10


Part a


At the outset, we can write the equation of motion for the massless plate:


-aT(l,t) + fe (t) = M (£,t) 0 (a) 
at 

Using the Maxwell stress tensor we find the force of electrical origin fe(t)

to be


(V0 - v(t)) 

6 (b) 
(d6 (L, t)'Zý"to'-5 

Since v(t) << Vo and 6(£,t) << d, we can linearize fe(t):


2E AV2 2E AV 
fe(t) [oaV (,t) + v(t) (c) 

Recognizing that T(£,t) = E ýx (£,t) we can write our boundary condition at 

x = R in the desired form: 

2E AV2 2c AV 
ax (t) 0 6(,t) + o2 v(t) (d) 

d d 
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PROBLEM 9.10 (Continued)


Longitudinal displacements in the rod obey the wave equation and for an


jWt
assumed form of 6(x,t) = Re[6(x)et] we can write 6(x) = C1sinax + C2cosax, 

where 8 = wr/7E. At x = 0 we have a fixed end, thus 6(x=0) = 0 and C2 = 0. 

From part (a) and assuming sinusoidal time dependence,we can write our boundary 

condition at x = 2 as 

2c AV 2 2E AV 
aE L(Z)

dx 
= 

3d 
6() + 

2
d 

o (e) 

Solving


2E AV V 
C1 o o (f) 

2c AV
2 

aEd28cos - o o sin S£
d


Finally, we can write our solution as


2eoAVo0 jwt ]6(x,t) = FAV 2 Re[Vet (g) 

2 S£ 2 AV aEd2 cos - d sinat 

PROBLEM 9.11


Part a


For no elastic wave reflection at the right-hand boundary we must have a


boundary condition of the form


v(0,t) + 1 T(0,t) = 0 (a) 

(from Sec. 9.1.1b). Since v(O,t) = -6 (0,t), we can write 

-- (O,t) = T(O,t) (b) 

If we write the boundary condition at x = 0 for our example we obtain 

0 = - ST(O,t) + fe(t), (c)x


or for perturbations


0 = - ST(0,t) + fe (t) (d)
a.c. 

Combining (b) and (d) 

fe (t) = - - (0,t) (e)SpE
a.c. at 
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PROBLEM 9.11 (Continued) 

and since 365/t (O,t) = dys/dt, 

dy_


f ec (t) 	 = - SP a.c. 	 dt 

The perturbation electric force can be found using the Maxwell stress tensc 

(using a surface of integration similar to that illustrated by Prob. 8.10): 

E V2D E V2D 2E V Dv 
e o oo + o s 

ft) 	 -- + 
x a a a


2E V Dv

where we 	associate fe (t) s


a.c. a 

Equation (f) now becomes 

2e
o2	
V 

o 
Dv 

s = S/pf -
dy 

(Oh) 
a edt 

Now that 	we have dealt with the force balance we can write the circuit equat ions.


The capacitance of the


+. V. device is found to be


C = ­

Note that 	q = Cv and i=d- . The basic circuit equation is 

v+iR = V =v+R =v+RC d+vd (i)
o 	 dt dt dt 

Substituting, 	we obtain 

2E DR 

V = v + RC +dv o dy 
o 	 dt a dt 

and 	for perturbation quantities,


dv 2E DV R dy s
s o 	 o
O = v + 	RC + 0 

s o dt a dt 

Since w << v >> RC dv /dt and now we have
RC s 	 R o 

2E DV R dy

0 v +


s a dt
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PROBLEM 9.11 (Continued) 

Equations (h) and (t) must be satisfied simultaneously and this can occur 

only if 

2E DV0R aSp (m) 
o = (m) 
a 2c VD 

oo


Finally from (m) we have the condition on the d.c. voltage,


Vo= S- (n)n1/2
V o - 2E D [SvR l (n) 

PROBLEM 9.12


Part a


Note that there is no mutual capacitance between the two pairs. We can find


the capacitance of the left-hand pair of plates to be 

d( - y2) Eod(' + y2)c = + (a)
2 h h


The current 12 can be found from 12 = dq2 /dt = d(VoC2)/dt = V dC2/dt, 

and upon substitution of C2 we obtain


i (E-E )Vdd]dy2 (b)2 


2 h dt 

If we solve for y2 in terms of vs our job will be done.


Define the y-axis from left to right with y = 0 at yl = 0. Assume all


constant forces (with v = 0) to be balanced and consider only the perturbations.
s 

If we assume for the rod 6(y,t) = Re[i(y)e j t ] then we can write 

6(y) = C1 sin By + C2 cos By (c) 

where = w/plE . (We have assumed that the electrical forces act only on the 

surfaces of the rod. This is evident from the form of the force density, Eq. 

8.5.45, if the effect of electrostriction can be ignored.) At y = 0 there is 

no perturbation force and for a.c. deflections we have a free end condition: 

A


d6 
0 = T(O,t) E - (y = 0) = 0 (d)

dy 

This forces C1 to be zero. At y = I we can write the boundary condition as 

0 = - hdT(t,t) + fe (t)a.c. 
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PROBLEM 9.12 (Continued)


Using the Maxwell stress tensor (or energy methods, as in Sec. 8.5.4)


fe~t ) (Ec-o)d
fe(t) = 2h (V + v )2 (e) 

Linearizing and ignoring the d.c. term we have 

(E-E )V d 
f 
e 

(t) = 
o o 

v .la.c. h s 

From the boundary condition for complex amplitudes we obtain


(Ec-Eo)V d

0 = - hdE T () + h v (f)

dy h f 

Substituting and solving for C2; 

-(E-E 
o)Vo ^ 

2 v . (g) 
S ksh2E sin 

Recognizing that Y2(t) = 6(0,t), we can now write 

h Eh8 sin f3, 

Since 2 = 
-(CE-cE)Vod 

h 
dY2 , we have 

h dt 22 

i2 = Re v e t (i)
2 Lh3 E sin t sv 

Finally, we can write


2 o22 
Y(jw) ^ - 3(j) 

v h ER sinr3 
s 

Part b 

The poles can be found from 

h 3 Ea sin Pt = 0 (k) 

where 8 = wp7iE. The lowest nonzero frequency can be found from 

sin(wlJpEj = 0 to be 

Note that the A)= 0 is a pole because the rod is free to translate slowly between 

the plates. 
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PROBLEM 9.13


Part a


The flux for the left-hand transducer is

2
poN

X = 2 2wR(a-6(0,t))i£
2, 

and for the right-hand one,

2
N

Xr = 2I7R(a+6(L t))i r 
(b) 

For this electrically linear situation we have W 
21 

2 Li  1 
Xi and f = 

awl 
m 

Hence we find, to linear terms 

f
f 

-
N2 

° 
g 

2 
rR(I 2 

o 
+ 21 i)

o 
(c) 

and, because ir = 	 I - out 

2 

f = N2 rR(I - 21 Gv ) 
r g 0 o out 

Part b


For the left-hand transducer, an acceptable stress-tensor surface is shown


below, 

T Ac eC­

and the mirror-image is acceptable for the right-hand transducer. Application 

of f = f Txjnda to the two surfaces yields the same result as in part (a). 

S 
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PROBLEM 9.13 (Continued)


Part c


The wave equation holds in the rod for 6(x,t). Assuming 6 = Re[6(x)eJWt], 

we have 6(x) = C1 sin B x + C2 cos 8x, where = w/pE. At x = 0, f= -T(0,t)(rrR) 

which yields 
N 2I 


211i0N 0 A1


T(0) = Rg = C I,

ci


which in turn implies C1 =E . At x = k, fr = T(L,t)(,R ), which will yield C2.

The only other relation we need is the electrical circuit equation, which


we can find from


out dt Eze;G


to be


IoL1 ji 6(L)

v (e)

out a(l+j GII1w)


where L1 = N2(27Ra)/g. 

Finally we can write G(w) as


S=out jIoL1CI 
= aE~sin8L(l+jGL1w)-jwGC IoLcosf( 

Part d

1


If G << so that the self inductance of the output transducer is negligible

1


and the system is matched so that a/iE = G C IoL 1 we have


Vout JIoILICI
,out=oa I C I(g)

I aJrE [sinSL-jcosBL]


and


Vout o L 1
 =0 a(h)


PROBLEM 9.14


Part a


With no perturbations and no volume force in the rod we know that the


stress, T(x1), will be constant. At x1 = 0, 

0 = - AT(x = 0) + fe 2 (a) 
SV A 

where, using the Maxwell stress tensor, fe = Hence, 
2
2d
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PROBLEM 9.14 (Continued)


C V2A


T(x1 21

2Ad 

Part b 

The velocity of the wave will be v = p-•and the transit time will be 

td = L/vp 

Using Table 9.1 we have 

t 1 = 1.96 x 10 - 4 sec.
d 5100


Part c


This part is similar to Prob. 9.11, where our condition for no reflection


fe (t) = - AA/ip-- (O,t)
a.c. at 

Using the Maxwell stress tensor 

A v2 cA V2 E AV 
fe Ao1 - olo 

+ ol o v'


2d 2d2 d2


where v = v' + V . Here, we ignore the effect on fe of the change in d resulting
o 

from the motion of the plate.


Writing the circuit equation we have


iR + v = V = R + v = R C dC 
o dt d-t dt 

The capacitance C is


ooA1o = 1 + oalo• 

d-6(0,t) d d2 6(0,t) 

Our equation becomes


0 = v' + R A1 d+RV E 
2 

1 6 ,t)

d dt o at


d 

and since 

SEoA1R dv'

d dt '


we have
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PROBLEM 9.14 (continued)


RV e 	A 

v' = 2
2 a t (0,t) (g)

d

Now we can use this result to write fe = EAV v'/d 2 , and the condition 
a.c. o o 

that this force take the form of (c) requires


A/p$E 	d = RV2 2A , (h)o o1 

or equivalently


R = 	A/CpSd4 (:i) 
E2A2V2 

PROBLEM 9.15


Part a


We have from the problem statement


ip(z+Az) - P(z) = 3TAz . 

If we take the limit Az + 0, then we obtain 

1 3IT =

a
3z 

Part b


We can write the equation of motion directly as


2

-
(JAz) 	• = T(z+Az,t) - T(z,t).

at


Dividing by Az we have


j aý = T(z+Az,t)-T(z,t)

2 Az
at


Taking the limit Az + 0 we obtain 

at2 	 az


Part 	c


Substituting the result of part (a) into the result of part (b) we get


9 	 2 

at2 	 az­
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PROBLEM 9.16 

Part a 

We seek to write Newton's law for motions in the z direction of a slice 

of the material having x thickness dx. In our situation the mass is 

?2 22 
padzdx, where the acceleration is a 6 /3t . The net force due to the stress is 

F = [Tx(x+dx) - T x()]a dz 	 (a) 

and

3-6

S z dx adz = [T (x+dx) - T (x)]a dz (b) 

2 zx zx 

Finally)in the limit dx + 0 we have 

32 6 3T 
Z ZX 	 C)p z = zx 	 (c)

t2 3x 

Part 	b


The shear strain, ezx , is defined so that it is proportional to 

6 (x+dx) - 6 (x) normalized to the distance between points dx. If T z=2G ezx 

then in the limit dx + 0 T = G 36 /3x if we define 
zx z


1 z

e 	 (d)

zx 	 2 ax 

The 1/2 is included to subtract out rigid body rotation, a point that is


important in dealing with three-dimensional motions (see Chap. 11, Sec.


11.2.la). 

Part 	c


From part (a),


a26 3T


P 2 z 3x zx 	 (e) 

Using the result of part (b) we have


p-
326 

= 
326 

; 	 Cf) 

3t 3x


the wave equation for shear waves with the propagational velocity


v = 	 ­
P P 
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PROBLEM 9.17 

Part a 

Conservation of mass implies: net mass out per unit time = time rate of 

decrease of stored mass 

[pv + a(pv) AxA - (pv)A = - [p(Ax)A] (a)
ax at 

As Ax - 0, we have 

a ap (b) 
a (pv) + 0 (b)jx at 

If we write p = p + p'(x,t) and v = v(x,t) then we obtain by substitution 

p av•+-a(pv) (c)
o ax ax at 

Retaining only first-order terms we have


pav ap (d)

o ax at


as desired.


Part b


Conservation of momentum implies:


time rate of increase of stored momentum = net momentum in 

per unit time + externally applied force


-C(pvAxA) = - [pv 2 + (v Ax]A +(pv2)A + pA - (p + ax A x)A (e)at ax 

as Ax + 0, we have 

2

a(pv) = a(pv 2) (f) 
at ax ax 

Expanding we have


p(a + v 2) + v (a(Pv) + ) () 

this term is zero 
by conservation of


mass
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PROBLIEM 9.17 (continued)


Finally we have


p ( 	 + vper = - (h) 

Substituting the perturbation quantities and retaining only the first order


terms we obtain


yv= _

0o •t ax 

Part c 

In terms of perturbation quantities we can write 

p' = a
2 0'


where


a ­

o 

Substitution for p' yields the two equations 

av ap' 
Po ax = t 

and 

-a 2 ' = ° 
avy* 

Combiningxweo obtaint 

Combining we obtain 

2 2 

at 

= a 
x 2 3x 

(scalar wave equation) 

Part 	d 

If we substitute v = Re[v(x)e j t ] in the above equation we obtain 

dv(x) 2 

d 2 +-•2 v(x) = 0dx a


which has solutions of the form 

v(x)=C sin(- x) + C2 cos(a x). 
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PROBLEM 9.17 (continued) 

A rigid wall at x = 0 imples that v(x=n) = 0. The drive at x = Z and the 

equations of part (c) imply that 

v (p) 

dx 2

a po 

at x = 2. 

The solution for v is 

j~o sin( x) 
v() 0 (q) 

apo cos((
a 

) 

and we can now obtain v(x,t): for p real 
o 

p sin(01 x)

= v(x,t) a sin wt. (r) 

apo cos (- )
a 

PROBLEM 9.18


We can calculate the values of d6+/da and d6-/d8 for three regions of the


x-t plane as defined below. 

/ 

Referring to equations from text, 

Region A: 

d6+ 1 m d6­ S-= 0 
da 2 v ' d0 

and 
v 

T E m
2 v 

p 

9.1.23 and 9.1.24, 9.1.27 and 9.1.28: 

(a) 

(b) 

-102­



SIMPLE ELASTIC CONTINUA 

PROBLEM 9.18 (continued)


Region B:


d6+ d6- 1 Vm

d- d6 2 v 

E m 
T


2v

P 

Region C:


d6+ ds­
= 0 and T = 0. 

de dB


Plotting T(x,t) in the x-t plane we have 
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SIMPLE ELASTIC CONTINUA 

PROBLEM 9.19


We can find d6+/da and d6-/d3 for four regions of the x-t plane:


DD 

a 

-0 

<1D 

Referring to equations from the text 9.1.23, 9.1.24 and 9.1.27, 9.1.28 we have, 

Region A: 

d6+ 1 T(a) d6- 1 T(R) 
da 2 E ' dB 2 E (a) 

Region B: 

d6+ 1 T(a) d6­

da 2 E ' dB


Region C: 

d6+ d6- 1 T(a) 
da 0' df 2 E (c) 

Region D: 

d6+ d6­


da dB =•0 (d)


We can use these values in equation 9.1.23 and 9.1.24 from text and make the 

-104­



SIMPLE ELASTIC CONTINUA


PROBLEM 9.19 (continued)


'F'/~ E 

PROBLEM 9.20


Part a


The free end at x = 0 implies that T(0,t) = 0 and using equations 9.1.23


through 9.1.26 we can easily find that velocity pulses "bounce off" x = 0


boundary with the same sign and magnitude. For the x-t plane we can indicate


the values for v(x,t):


/P
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PROBLEM 9.20 (continued)


Part b


We can make use of part (a) if we use superposition. Consider the super­


position of boundary and initial conditions; a free end, T(O,t) = 0 with the


initial conditions in part (a) and the T(O,t) as shown in Fig. 9.P20b with


initial conditions on T and v zero. Since the system is linear, we can add


the velocities that result from the two situations and thus have the net


velocity. For the response to the second set of conditions we have


o0-/-VP 

Add this velocity set to the set in part (a) and we obtain:


vtY 
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PROBLEM 9.21


Part a 

With the current returned on the inside surface the field in the air gap, 

is H = I(t) 
z D 

/a 

/ ' 

and the force per unit area acting on the inside surface is 

2


Tx=2o-1 Ia2 , (a) 

The force is f =-T aD = I (t) and the boundary condition at x = - £ 
x x 2 D 

is 
326 1 oa 2 
S--

2 
(-£,t) = 2 D (t) + AT(-R,t) (b) 

at
Part b 

The current will flow on the surface when the time T is much shorter than 

the characteristic diffusion time Td over the length b:


Tdd 
> > T or oabo >> T (c) 

Part c 

In order to ignore the mass M, the inertial term must be small compared 

to AT(-£,t). For t < T, 6_ = 0 on the rod, and from Eqs. 9.1.23 and 9.1.24, 

E a6 
T(-Z,t) = - (-Y,t) (d) 

v Tt


Thus M26 

t 2p 

or 

M << AE T/v (f) 
p 

Our boundary condition In part (a) now becomes: 

a
0 = 1
2 D

o 2 (t)+ AT(-£,t) (g) 

Since there is a fixed end at x = 0 we know that a stress wave traveling 

in the +x direction will reflect at x = 0 with the same wave returning in the 

-x direction. To satisfy the condition v(O,t) = 0, Eq. 9.1.23 shows that 

d6 /da = d6 /dB at x = 0. Thus, from Eq. 9.1.24, the stress is twice that 
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PROBLE1I 9.21 (continued)


initiated at the left end


pa 
T -=oa 12 (h)

r DA o


PROBLFM 9.22 

Part a 

We have W = W' and U = C + U' where W' and U' are perturbations from 

equilibrium. Rewriting the equations we have 

3W' aw' aU' + K BU'
+ (-') W + _ = 0 (a)

(C+U')3 ax


and


+ aU'aw' aU'
- (C+U') -L + (W') - = 0 (b)
at ax ax 

Neglecting all second-order perturbation terms we have 

aW' K 3U'

+ (1 + -) • = o (c) 

-au' + ((C) w' = 0 (d)

at ax 

Part b


Multiplying the above two equations by and x' respectively, we have


329' K 2U'e) 
+ (1 + = 0 (e)


t2 C
3


and


a2 U' 32W ,


+ (C) 2-= o (f)

axat (C)


Eliminating U' we obtain


aw2' K a2 
2 
a'= c(1 + 

3
) 

2 (8) 
at C ax 

which is the familiar wave equation with wave velocity v = C(I + K)3 

We can write the solution as 14' = ReIW(x)ejt] where 

N(x) = C1 sin Ox + C2 cos Bx (h) 

with = wou/v 
p 

At x = 0, W = W' = 0 and hence C2 = 0. At x = - L, W =W' = Wo cos wt, or equiv­

alently t"(-L) = Wo, hence C =-Wo/sinpL. Upon substitution we find that 
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PROBLEM 9.22 (continued)


the solution is


W sin 3x 
W = W' = -

sin BL 
cos Wt . (i) 

PROBLEM 9.23 

Part a 

This part is similar to Prob. 9.24 with two simplifications:


V = 0 and 
o 

the mass is M/unit width (Mw) instead of 2M. The two separate relations yielding 

the natural frequencies are 

and sin (L ) = 0 (a) 

and 

m = tan (wL (b) 

(a) yields wL /~7/S = nir where n = 1, 2, ... and corresponds to solutions 
m 

which are "odd", or ý(x) = - F(-x). (b) can be solved graphically and corresponds 

to solutions which are "even", or ý(x) = F(-x). 

Part b 

The effect of raising M is to reduce the eigenfrequencies of the "even" 

modes. The "odd" solutions predicted by (a) are independent of the mass M. 

This is physically reasonable since there is a node at the mass,and since 

the mass doesn't move there is no inertial force. For the "even" solutions 

predicted by (b), we notice that if M = 0 we have essentially the natural 

frequencies of a membrane of length 2L. As M + -, the system responds like 

two different membranes of length L. The infinite mass acts like a 

rigid boundary. 

PROBLEM 9.24


Part a


We can use the Maxwell Stress Tensor to find the forces of electric


origin. If fe corresponds to the force due to the upper electrode and

u 

f corresponds to the force due to the lower electrode, then we have:


C V2AA 

f(t) 
u 

= oo 
2[d-_(O,t)]2 

i 
y 

(a) 
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PROBLEM 9.24 (Continued)


E V2A 
(t) = - 0 2 (b) 

2[d+ý(0,t)] 

2 2 32

Our equation for the membranes is a 22C/~t = S a and if we assume 

E=Re[Q(x)ejwt1, then we can write m ax2 

Z(x) = C1 sin 8x + C2 cos fx (c)


for x > 0 and


Z(x) = C3 sin ýx + C4 cos 8x (d) 

for x < 0 where 3 = wr7T7S. 
m


Our boundary condition will yield the four constants. We have


&(x = - L) = 0 

.(x = L) = 0 (e) 

(x = ) = (x= 0 ) 

and 

- (0-) + fe(t) + f(t) (f)
2M 

2 
2 
t2 

(0,t) = Sw 
xx 

(0+ ) 
u 

which reduces to 
2 2E0V2A 

-2Mw E(0) = Sw- (0) - (0) + 2+3 dA () (g)(g)(0) 
Idx dx d3 

after we linearize [fe(t) + ef(t)]. Substituting, we immediately find C2 = C4 . 

Writing the remaining equations we have 

0 = - C3 sin ýL + C2 cos fL (h) 

0 = C1 sin BL + C2 cos aL (i) 

0 = SwB C1 + - + 2Mw2 2 - Sw C3 ) 

If we eliminate the constants by setting the determinant of the coefficients


C1 , C2 , and C3 equal to zero, we obtain two separate relations:


SwI

sin 8L = 0 and S = tan BL. (k) 

E V2A 
o o + 2M


3


d 
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PROBLEM 9.24 (continued)


Substituting for a we have


SwW m-

sin(WL( = 0 and 2 = tan wL


E V2A

S+ M 2


d


The first relation implies that wLv/-7 = nfl where n = 1, 2, .... The second 
m 

relation can be solved graphically. 

Part b 

As V is increased from V = 0, the lowest natural frequency decreases. 
o o 

When V approaches the value

o 

CSSwd'


the lowest natural frequency approaches zero; as Vo is further increased, there


will be an imaginary solution for w and the system will be unstable.


PROBLEM 9.25


Part a 
m = W' =io 2

The force of the lower2 plunger is f - . By symmetry the upper 

i = (I + i ) = I + 21 i and i = (Io-il) = I1 - 21 i . Hence the total 
magnetic force isu o 1 o o 

magnetic force is 

2L I i 2L, G

= o1 oo 3(


a a ax 

Writing the force balance on the tip of the wire at x = - Z we have 

2L IG 
ff (-+,t) +X o o ag (o,t) = 0 
ax a x 

Part b 

Away from the ends 

M =2f 2

2 22 2
at x


and if E=Re[(x)ejm t] then


((x) = C1 sin Ox + C2 cos fx 

where = . = 0 implies that = 0. From part (a) we haveZw7/mT E(O,t) C2 
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PROBLEM 9.25 (continued)


d 2L I G 
f (-+) + d (o) =. (e)

dx a dx 

Upon 	substitution we obtain

2L I 

fB C cos 6k + ooa GBC = 0 	 f)
1 a '1 

Since C1 must be finite for a finite response, we have


2L I 
fB cos B + oo G = 0, (g)a 

or 
 - 2L IG 
f cos Wk - + 00 0 (h)

If a 

(We have ruled out one solution, because it is trivial.) A graphical solution 

of (h) is shown in the figure. 

Part 	c


If G = 0, then


S = (-n+l) 	 (i)
f 2 

with n = 0, 1, 2,... 

Part d 

From the figure, wl increases toward wl•7"/m/f = T and co2 decreases toward 

the same value. They come together at G = af/2LT I and seemingly disappear 

af 
if G 	 > ­

2L I 
0O
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PROBLEM q.25 (continued)


Part e


If JGI > 2L ' then (h) has imaginary solutions for w, hence the system
O2O

00


will be unstable: 

PROBLEM 9.26


Part a


First of all we. notice that y(t) = C(-L,t). For the membrane 

l t  
ma -- = _il and if F=Re[l(x)ejO then ,(x) = Clsinfx + C2 cos(x where m at 3x 

8 = Jo~m/S. At x = 0, ((x=O) = 0 and therefore C = 0. At x = - L, we can write 

the boundary condition 

M (-L,t) = SD - (-L,t) + fm(t) (a) 
at 2 ýx y 

We can find fe(t) using Ampere's Law and the Maxwell stress tensor 

1 AN2 ( + I(t))2 (I- (t)) 2 

fe(t) o0 o_ - o (h) 
t) 2 d-D- (-L,Qt)) (d-D+C(-L,t)) 

Since I >> I(t) and (d-D) >> ,(-L,t) then we can linearize:

SI 12I


fe (t) 2N22A I(t) + U-Lt) (c) 

y (d-D (d-D)3 2N2A 
2N2A oI o


Substitution of (c) into (a) and definition of C E 2 and 

2NA•I 2 (d-D) 

C E gives


Y (d-D)) 

M2 (-SD,t)) (-L) t)+ Clt) + C -l) (e)= 

Cx 
or in complex form,= SD ax (-L) + CII + C •(-L) (e)-Mw C(-L) 
After solving for C1 , we can write 

CI sin 8x I 

((x) = (f) 
(Mw 2 +C )sin(L-SD( cos 8L 

or finally
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PROBLEM 9.26 (continued)


C sin BL IT 
Sf~osf~. (ttC si 3


SDB cos T.- (MW +C )sin BL


= where y(t) Ie[y ejwt]. 

Part b 

To find the resonance frequencies we look at the poles of y/I. This amounts 

to finding the zeros of the denominator of y/I. We have 

SD C w,. - [MW2 C ]sinb L 	 (h)cos 	 + 

is-

USDmWV.m ­
= tan(wL V)


MW +C


We can represent the solution graphically:


I 

I 

PROBLEM 9.27


Part 	a 

The boundary condition may be obtained by applying force equilibrium using 

the following diagram, 	 s 3C 
slope 

slope ax 
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PROBLEM 9.27 (continued)


thus


F(t) =f (0-) - r+( 

Part b


For the odd solution, EQ(x,t) = - r(-X,t) and it follows that 

a5, agr 
= 0. This implies that the odd solution is not excited by the force F(t). 

ax ax 

Part c ag a r 

For the even solution, Q(x,t) = Fr(-x,t), we have - = - and the boundary 

condition (a) from part (a) becomes


F(t) = - 2f -x at x = 0 

For O<x<£ we have


m = f • 

at2 ax 2


with E(x,t) = 0 at x = k. 

For t < 0, this reducss to


2

a2 = 0
2

ax


and we obtain


F0

o x 

((x) = 2f (1 - ) for O<x<£ 

Part d


We now have a combined transient and driven response, as discussed in Sec. 9.2.1.


By contrast with the developments of that section, we now have a boundary condition


at x = 0 on the slope 3&r/ax (see (b) of part (c)). Our program is: (E5Hr in the


following)


i. Find the driven sinusoidal steady-state response, This satisfies the boun­


dary conditions: 

F cos wt = - 2f (O,t) (f) 
o ax 

((£,t) = 0 

ii. Find normal modes, which satisfy homogeneous boundary conditions;


T- (0,t) = 0 
ax


E((,t) =o 
The sum of these modes takes the form of a Fourier series.
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PROBLEM 9.27 (continued)


iii. Superimpose (i) and (ii) and use the initial conditions found in


parts (a)-(c) to evaluate the arbitrary coefficients.


The driven response is of the form


S=Re(C1 sin Bx + C2 cos Bx)eJJt; = (j) 

a linear combination which satisfies (g)


= ReC 3 sin ý(x-2 )e
jWt (k) 

while (f) evaluates C3 and the driven response is


F sin 8(x-k)ejWt

5 = - Re 0(2
2fM cos B (


The normal modes are in this lossless case the resonances of the driven 

response and occur as cos ýZ = 0. Thus 

Sk = (2n+)r, n = 0, 1, 2, 3... (m) 

and the total solution for O<x<R is


F sinO(x-) + jWnt -jn t 
2onf= cos +

0 os t + [A e + A e ]sin[(-2 - (x-)] (n) 

n=0 

The coefficients An and A- are evaluated by requiring that
n n


o(xo F o sinS(x-.)_+_o + 2n+lF 2, 2n+1 
(x,0) • - 2f cos + (An + A )sin[ 2( ) (x-k)] (o) 

n=O 

and


__ S + 2n+l 7(x,) = 0 = jw nAnA j- An]sin[.(-)T (x-2)] (p) 
n=O 

This last condition is satisfied if A+ = A-. The A+'s follow from (o) by using
n n n 
the orthogonality of the functions sin[(2n+1/2)j (x-Z)] and sin[(2m+l /2) (x-Z), 

m # n, over the interval R. 
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PROBLEM 10.1 

Part a 

At x = 0, the net force on an incremental length of the string has to be zero. 

-2B - f n = 0 
at ax 

This is the required boundary condition at x = 0. 

Part b


The power absorbed by the dashpots is the product of force 2B C/a3t and the


velocity 3&/3t. T us


P = 2B (Q


If we solve Eq. 10.1.6 for


E(x,t) = Re[( ej(w t-k x )


and assume that w < we we get


ý(x,t) = Re {[A I sinhlklx + A2 coshlklx]ejWt} 

where k L 1/2 
We can calculate A1 and A2 using the boundary condition of part (a) and the


boundaiy condition at x = 

= Re E ejwt
k(-Z,t) 


We then get j2o2• 
j0 2Bw


Al [f k cosh k Z + jw2B sinh kjkj


A2 [flklcoshlkl1 + jw2B sinh kI]1


If we plug these values into the expression for power,.and then time average,


we have


B(f kljom)2


<P> = 

[(ffklcoshjkflZ)2 + (2Bw sinhj)kJi) 2]


where it is convenient to use the identity


<Re Aejwt ReBejt> = 1 AB* 
2 
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PROBLEM 10.2


Part a


We use Eq. (10.1.6)


a• v2 32a 2 2 Ib


t2 s x2 c c m
at2 s ax2 

Assume solutions ( = Ref(Ae- j kx + Bejkx)ejtt]. The dispersion equation is:

2 2


k2 = c
k2 = d 

2 

v 
S 

Now use the boundary conditions, which require


A ejk + Be- j k  =


-jk[A - B] = 0


(i) Wd < Wc (below cutoff) 

=d cosh eax

= cos wdt


cosh atd


a 2 v 

(ii) Wd > Wc (above cutoff) 

Fsd cos x

((x,t) = os t cos Wdt


ý 2 cos 82d 

Part b L 
ti 

CL)d =0 

WI I 

x 
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DYNAMICS OF ELECTROMECITANICAL CONTINUA


PROBLEM 10.2 (continued)


i 

e 
Sd < Wc 

,( 

Cd > 
•c 

d e i 

Part c


The string might be attached to a massless (friction ess) slider at


x = 0, so that the end would be free to move in the transverse direction.


in 
Force e0uilibrium for the increment or length at x U LI•en requ•L• 

E/3ax = 0 at x = 0. 

PROBLEM 10.3


Part a


From Eq. 10.1.10 we have


2k 21/2 

k 2v


s


with our solution of the form


E(x,t) = Re(A 1 e j(t-kx) + A2 e J(wt+kx) 

We have the boundary conditions
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DYNAMICS OF ELECTROMECHANICAL CONTINUA


PROBLEM 10.3(continued)


-x (O,t) = 0ax


and


x-(-Z,t) = 0. 
ax


From the first boundary condition, we obtain


Al = A2 ; E(x,t) = Re A3 cos kx e j wt 

From the second boundary condition, we obtain


sin kZ = 0


This implies that


nIT

k = ; n = 0,1,2,3... 

Note that by contrast with the case where the ends are fixed, n = 0 is a valid 

(nontrivial) and crucial solution. It corresponds to an eigenmode which is 

simply a rigid body translation. 

From Eq. 10.1.7 

2 2 2 2 
S=-k v + 00 

s c 

Therefore, the eigenfrequencies are 

'22 1/2 
-- c + vs 

For the n = 0 mode, w = + ) . 
-- c 

Part b 

With I as in Fig. 10.1.q, we have the same equations as in part (a) if we 

replace w 
2 

by -0 2 . Therefore, for this case, the eigenfrequencies are 
c c 

_ 2 2 1/2
W = VS) - 11/ 

Part c 

With I as in Fig. 10.1.9, the IxB force is destabilizing, as a small 

perturbation from x = 0 tends to increase this force. If w in part (b) became 

imaginary, the equilibrium 1,= 0 would become unstable as the solutions are 

unbounded in time. This will happen as


2

S v W < 0


Ss C 
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DYNAMICS OF ELECTROMECHANICAL CONTINUA 

PROBLEM 10.3 (continued) 

or in terms of the current 

n11 I )2 

b (T vs 

Note 	that any finite current makes the n = 0 mode unstable, since for this mode 

there is no elastic restoring force.


PROBLEM 10.4


Multiply the system equation by ,


ma - a2f• _ Ib * + * F(x,t) 
at 2 at 2 at atat ax 

Proper substitution of partial differential identities yields:


a m • 2 4f o2 + Ib 2] f , F(x,t)


-t •2t 2•x 3x 2 x x• t at


PROBLEM 10.5


We have that


F(x,t) = Re ( e( x) + e 

Part 	a


For k real, we might write this in the form


1 j1at-kx) e- j (wt-kx)
5(x,t) = 2 + e+* 	 e 

+ 	 e (tkx) + * e-j (wt+kx) 

From 	Prob. 10.4 we have that the power carried by the string is


P = - f a a 
ax at 

If we do the indicated differentiations, then substitute into this expression,


and then time averagewe will obtain


<> = fwk ^ ^ ^ ^ 

-<P>= [5+ * - 5_ _*] 

Part 	b 

For k purely imaginary


k = j5 

with 	3 real, we can write F(x,t) in the form
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DYNAMICS IN ELECTROMECHANICAL CONTINUA 

PROBLEM 10.5 (continued)


1 ^t eJO t+x + e-Jwt+Bx + ejwt-8x + _,e-jt-8x
5(x,t) = ( et + * e + ( e + * 1 

If we again substitute into our expression for power and average over time


we obtain


<P> =- +* _ - + E_*l 
2 + + 

From (b), we see that it is possible to have a net power flow from two evanescent


waves, but not from a single evanescent wave. Suppose that a single evanescent


wave did carry power away from the driving source. This would correspond physicall,


to a string driven at the left and infinite to the right. With Wd< c, the


response as x *o becomes vanishingly small; clearly there can be no power flow at


x + oo. Yet, there is no mechanism for power absorption by the string and so there 

can be no power flow into the string from the drive. With a dissipative load, a 

second evanescent wave is established, decaying to the left, and the conditions 

for power flow are met. 

PROBLEM 10.6 

From the dispersion relation, we calculate: 

r[ w2 1/2
V - = v 1


g ak s 2


Now, assuming a single forward traveling wave:


S= E+ cos[wt - k(w)x] 

Then: 2 2

(m0 fk2 Ibn 2


<W> = + 4 +


<P> = E 

Thus, substitution gives


<P> fkw/2

<W> 


2 2 

2-1/2 
= vs - =Vg 

which is the desired relation. This result is of some general significance, but


has been shown here for a particular case.
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DYNAMICS OF ELECTROMECIANICAL CONTINUA 

PROBLEM 10.7 

Part a 
The equations of motion for the membranes are 

2 1 

a = S + T 
m ýt2 2 1 

gm 2Fx =S 2 F2 + T 2 

where T1 and T 2 are the transverse magnetic forces/area. If the membranes extend 

a distance w into the paper, and if we define regions 1, 2, and 3 as the top, 

middle, and bottom regions respectively in Fig. 10P.7, the flux in each region is 

11 o 1 w(d- 1) 

= 2 PoHl2 w(d+ý1 - 2 ) 

3 = l o113 w(d+E2 ) 

where ll, H2, and H3 are the magnetic field intensities within each region. Since 

the flux is conservedwhen E1 = '2 = 0 we have 

A = =- plio wd A = + lH wd 

Therefore, I d 

1 od-•q ixHod i+ 

1 d+E- 2 x 

and 
1 2and


H do i

3 d+F, x 

We will use the Maxwell stress tensor to calculate T1 and T2 , using a pill-box


volume enclosing a section of surface on each membrane.


We then obtain 

TI o° 2 2


T= 2 [11 - H ]


and 

T2= 2 23
2 2 2[ - H3 

Substituting the expression for the H fields, and realizing that (1 < < d and 

E2 < < d, we finally obtain for the forces 
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PROBLEM 10.7 (continued)


T 1 
P~
o
H 2 (2 C11 - F)2

T d
1 d 

and PIt12 (2 ,2­

T2 00 0 2 
2 

Our equations of motion are then

2 

a 
m 

1 E 
=2 -- S 

2 
1 

2 

~ 12 
o o 

d 
(2Fi-F2

1 2 

and 2 
32 32 0 10 

m t2 x2 d 2 1 

Part b


We assume that 

F = Re F1 eJ(rlt-kx) 

and 

= Re F2 
e j (tAt-kx)

F2 


We can substitute these functions into the equations of motion from part (a),


and solve for the relation between w and k such that the 2 equations of motion


are consistent. This dispersion relation is


2'),10 p H22 2 0 01oo
-( + Sk + = + 

m d - d 

We see that the dispersion equation factors into two dispersion relations. If we


substitute this relation back into the equations of motion from part (a), we see


that we obtain even and odd solutions.


The dispersion relation


9 

22 Sk' li ~Sk 0 0 
a + 

a ad

m m


yields


F• =F1. 

The dispersion relation


2 Sk'+ 0 0
h) +
0 Oad 

m m


yields FL = - E12 
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PROBLEM 10.7 (continued)


Plotting w versus k, we obtain


k real 

- - - - k imaginery 

From the plot we see that the lowest frequency for which we have propagation 

(k real) for the even mode is 

ce ad 

For the odd mode, the cut off frequency is


= 
 /
Wco -(md 1


oad 

Part d 

We are given the boundary conditions that at x = 0 

i= 0 2 = 0 

and at x = ­

= - F = Re o ejt
1 '2 o
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PROBLEM 10.7 (continued)


From the boundary condition, we see that our solution is purely odd. Therefore


2 1/2

m 0o


k= mk S Sd 

We assume a solution of the form 

Sl(x,t) = - C2 (x,t) = Re{A 1 ej ( w t- kx) + A2 e j(wftkx)} 

Evaluating A1 and A2 through the boundary conditions,we obtain


'o

A = - A = -Jk


1 2 jk2_ -jk2


Therefore 0[e -jkx _ e+jkxlejt 

(x,t)=-2(x,t)= Re [ejk _ e--jk I
Jk k 


For w = 0, k 	 is pure imaginary. We define k = j3, with 8 real with value(OO2 1/2 
Sd


Therefore


Y1 (xt) 	 0- 0inhWfx


sinh 8£


A sketch appears below.
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PROBLEM 10.8


Part a


The given equations follow by writing out Maxwell's equations and assuming


E and H have the given directions and dependences.


Part 	b


The force equation for an incremental volume element is


ýv

F i mn - (a)


x e ýt 

where F is the force density due to electrical forces on the electrons 

F = - i en E 	 (b) 
x ex


Thus, 
 3v 

-en E = mn (c) 
ex e at 

Part 	c


As the electrons move, they give rise to the current density


J - en v (linearized) 	 (d)

x e x 

Part 	d 

Assume e
j (wt-kx) dependence and (c) and (d) require

2 
en 

J =-jj eE (e) 
x - m X° 

o[W2 x 

where = e2n /me is called the plasma frequency. (See page 600) 
p e o 

=k	c22 - 2 ; c = i1 (g) 
c ACoIýo 

Part 	e


We have a dispersion which yields evanescent waves below the plasma (cutoff)


frequency. Below this frequency, the electrons respond to the electric field


associated with theuave in such a way as to reflect rather than transmit


an incident electromagnetic wave.


Part 	f


Waves impinging upon a boundary between free space and plasma will be totally


reflected if the wave frequency w < wP . The plasma frequency for the ionosphere 
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DYNAMICS OF ELECTROMECHANICAL CONTINUA 

PROBLEM 10.8 (continued) 

is typically


f % 10 MH

p z


This result explains why AM broadcasts (500 KH! < f < 1500 KH ) can commonly be z z 

monitored all over the world, whereas FM (88 MH < f < 108 MH ) has a range 

limited to "line-of-sight". 

PROBLEM 10.9 

In the regions


x < - 2 and x > 0 

the equation of motion for the string is 

2F, 2 a2

t2 s ýx


at ax~ 
In the region -Z < x < 0, this equation is modified due to the magnetic force to 

2 2 
2 v2 2(j 


at2 s x
2 c


If we assume


-F(x,t) = Re { e (w t kx) } 

and substitute back into the equations of motion we obtain the dispersion


relations


2 2W 1/2


k = + [W2 - < x < 0

v

V 

- v 

The boundary conditions are


at x=- = 

at x = 0 F and - must be continuous. ax 

lie assume that


(x,t) = Re {[A e- • x + B e+x] ejwt} for -£ < x < 0 
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PROBLEM 10.9 (continued) 

where = 1/2 
2C2 2 1/2 

for w < w 
= s c 

U(x,t) = Re b ee-jk b x e j 3t} for x > 0 

where 

bv 
s 

Using the above boundary conditions, we obtain 

0o(1 + jkb) 
- 0A =


2(1 cosh 1£ + jkb sinh 12) 

%o(1 - jk b ) 
2(1 cosh 3,+ jkh sinh 1R) 

But F = A + B 

Therefore 

co


[cosh 1£ + sinh 1S]
a 

Part b 

As 0


-b


As £-+k 

-+ 0


Eo 

PROBLEM 10.10


Part a


The equation of motion for the string is


2 2 
m 

t 
-;2E
2 

_f 2 + S - mg 

at ax 
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PROBLEM 10.10 (continued)


where, for small deflections F in the "l/r" field from Q,


S 	 qQ [1 + E1
2n7 	 d d 

O


In static equilibrium, 5 = 0 and from (a)


qQ= 	2Pdco'mg 

Part b 

The perturbation equation of motion remains; 

m 2 = f 
2 

+ ( 
2at ax 2 d­

0 

Assume ej (wt -k x) dependence and (c) requires (vs = /f7n) 

2 v2k2 qQ

s 2


2nTd e m
0 

or from (b), 

2 = v2k _ g 
7(ý1(11~e s d 

The boundary conditions require k = nw/9,, and for stability the most critical


mode 	 is n = 1; thus 

v2()2 > 

s d	 (e) 

m < g 
fd () 2(f)	

(f)8 

Part 	c


Increase f, d, or decrease R.


PROBLEM li.11 

m F f + S-mg

at ax


where S (IxB) and B = , r the radial distance from the fixed wire. 
r=o ad 2 r


Therefore S = 2or

2trr 

For 	static equilibrium
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PROBLEM 10.11 (continued)


oo 
S = mg = 

2rF,


Therefore


27rmg

o


I =

•olo


Note 	that I I > 0 for the required equilibrium.
o 

Part b


The force per unit length is linearized to obtain the perturbation equation.


O 10S27Therefore


Therefore


m 
S32 

= f 2 11oo I 

00 
St2 3x

2


Part 	c 

Assuming ej (wt-kx) solutions, the dispersion relation is


2 22 oo 
-m 	 = f k 

2 2o


Solving for w, we obtain 

w = k2 S1/2lIoJ 1/2	
X 'jjI + 

As long as I I > 0 the equilibrium will always he stable as w will always be 

real. Note that this condition is required for the desired static equilibrium


to exist.


PROBLEM 10.12


The equation of motion is given as


,2, ,2, 
m d_ = f d2L + p,


3t, 3x'


Part 	a 

Boundary conditions follow from force equilibrium for the ends of the wire 
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PROBLEM 10.12 (continued)


(i) 	 -2KE(O,t) + f (, = 0 (b)ax


(ii) 2 ((,t) + f (xt) = 0 	 (c) 

Part 	b


The dispersion relation follows from (a) as


w2 = 	 v2 k2 - ; v = V7TF (d)
s m s 

where solutions have been assumed of the following form:


E = Re[(A sin kx + B cos kx)ejO)t ]  (e) 

Application of the boundary conditions yields a transcendental equation for k: 

tan k = 4Kf(f) 

f2k2_4K2 

where, from (d), 

k = 1 a2 + P/m (g) 
s 

Thus, (f) is the desired equation for the natural frequencies.
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PROBLEM 10.12 (continued) 

Part c 

As K + 0, the lowest root of graphic solution goes to k + 0, for which 

stability criterion is: 

P 
0 >


m 

PROBLEM 10.13 

Part a 

This problem is very similar to that of problem 10.7. Using the same 

reasoning as in that problem, we obtain 

m 

a2 
1 

_2 = S 

a2I 

2 + 

E V
2 

0 (2tl-62) 
ax d 

2 2


2 
a 2 S 7+ (22 -_1)
m at ax2 Dxd•3 2 

Part b


Assuming sinusoidal solutions in time and space, the dispersion relation is


V2

2E V2 
2 2 o o oo 

-a(w + Sk 03 + 3 
m 3 -- d
d d 

We have a dispersion relation that factors into two parts. The odd mode, 

S= - 2 has the dispersion relation 

W 2 3E 2] 1/2 

m ad 

The even mode, E = E2 has the dispersion relation 

V2] 1/2


[Sk 
22


a 
m 

m


Part c 

A plot of the dispersion relation appears below.
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PROBLEM 10.13 (continued)


,-, I 

Coe 
cog 

Part d 

The lowest allowed value of k is k = since the membranes are fixed at 

x = 0 and x = L. Therefore the first mode to go unstable is the even mode. 

This happens as 

3C V2 
2 06D 

Sd L2 
7r 

J2 Sd 31/2 

0 L2 Eo0 
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PROBLEM 10.14


The equation of motion.is


a 
2
2 v2 a2 

2 
v Ca 

2 2 (a)

at s ax at 

Part a


The dispersion for this system is:


jv - v2k
W2 _ 2 2 = 0 (b)

s 

We may solve for w,


w = j () - v2k2 (c) 

JJ[a + Y 

We assume solutions of the form:


- (a+yn ) t - (a-Yn )t nt x 
E(x,t) Ref I [Ane + B e ]sin nx (d)


n odd


Now, we may use the initial condition on- to relate A and B . Thus we obtain: 

• U(x,t) = Re{( A [e - •(- e le sin (e) 
n odd a nn 

Now, we apply the initial condition on E(x,t = 0) to determine A . 

U(x,O) = d An sin (f) 
n odd LYn-aJ 

I iA' sin nl

n odd


The coefficient A' is determined from a Fourier analysis of the displacement:

n 

4E 
A' = --

o (g) 
n n•' 

So that: 
y -an 4E 

An n 0 (h) 
n 

Part b


There is one important difference between this problem and the magnetic


diffusion problems of Chap. VII. While magnetic diffusion is "true diffusion"


and satisfies the normal diffusion equation, the string equation is basically a


wave equation modified by viscosity. Hence, we note (c) that especially the
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DYNAMICS OF ELECTROMECHANICAL CONTINUA 

PROBLEM 10.14 (continued)


higher modes in the solution to this problem have sinusoidal time dependence as


well as decay. Magnetic diffusion as discussed in Chap. 7 exhibits no such


oscillation, because there is no mathematical analog to the inertia of the


string. If we had included the effects of electromagnetic wave propagation


(displacement current) the analogy would be more complete.


PROBLEM 10.15


From Chap. 10, page 588, Eqs. (e) and (f) we have


dE+ (vs-U) DE 1 @

da 2v ax 2v ;t


S S 

dE_ (v + U) _ 1 •

d--- 2v x + 2v- •


S S 

Since -C (x = 0) = 0, we have the following relations in the three regions.
axRegion 

Region 1 

d + + Vo0 d& 

da 2v ' d 

Region 2 

dF+ d_ V0 

d ' dB 2v 
s 

Region 3 

d+ Vo d_ V


da -v ' 2v

s s 

-136­




DYNAMICS OF ELECTROMECHANICAL CONTINUA


PROBLEM 10.15 (continued)


In the other regions, the derivatives are zero. From Eq. 10.2.10 on page 586,


d( dS


~x de+ d_


we have


V 

H- =- o-2 [u (B)-u 1 (B-b) - ul(a) + u_l(-b) 
ax 2v -1 ­

s 

Integrating with respect to x, we obtain


V 

F(x,t) = l[u-2(0) - u_(2 (-b) - u_2() + u- 2 ((-b)] 
s 

A sketch of this deflection is shown in the figure. 
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PROBLEM 10.16


Part a


The equation of motion is simply


2 2

m = f 2


2 ax
at


The dispersion equation follows as:


(m-kU) 
2 

= v2k
222 

s 

Where solutions are assumed of the form:


E(x,t) = Re{(E+e jix + ý_e-jýX)e j (wt-ax)} 

The boundary conditions are both applied at x = 0, because string is moving at 

a "supersonic" velocity. 

((x,t) = ol{cos 6x cos[wt-ax] - U sin ýx sin[wt-ax]}


Part b


AIP 

C 
• • I I • I \ .•


U1 Ix 

W/d
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DYNAMICS OF ELECTROMECHANICAL CONTINUA 

PROBLEM 10.17 

We use Eq. 10.2.9 

2 2 32E 
-t + U-) -v . 2 

Assuming sinusoidal solutiors in time and space we obtain the dispersion relation


2 22

(w-kU) = k v 

s 

Thus 

SW(U + v s ) 

U+v U2 2 
s 

We let 

wU 

U2 _ v 2

s 

Wv

U2 -vs2


s


Therefore, k = a + and 

E(x,t) = Re[A e- j ( a- 8 ) x + B e- j (a + a) x ] e j wt 

The boundary conditions are 

=(x 0) = 0 which implies A = - B= 


E(x = - 9) = Eo


Therefore


E(x,t) = Re A[e j(a 8 )x_ e-j(a++)x]eJwt 

= Re A2j sin Bx ej(wt-ax)

However, 

E(-t,t) = Re E ejwt 

Therefore 

U(x,t) = - si sin Bx cos[wt-a(x+t)] 

Part b 

For 5 = 0 at x = 0 and at x = - a we must have a = n7rw/ 

Wv 
s niT


U2_v22

U-v 

or
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PROBLEM 10.17 (continued)


(U2 - v )2

W= 


v 
s 

These are the natural frequencies of the wire.


Part 	c 

The results are meaningful only for IUI < Ivs . If this inequality were not 

true, we would not be able to use a downstream boundary condition to determine


upstream behavior and arrive at a result that would be obtained by "turning the driv


on". That is, if U 	> vs the predictions are not consistent with causality.


PROBLEM 10.18 

Part a 

In the limit of wavelength short compared to the radius, we may "unwrap" the 

system: 

2 2 
m + U 	 a) (a) 

az 

Now let z + RO, U -	RQ. Then, it follows that 

a + 0 a 2 f a 	 (b) 

where Q = f/( R 2) 

Part b


The initial conditions are


ac/at(e,t = 0) = 0 (c) 

(,t = 0) = 0 < e < d/4o - --	 (d) 
, elsewhere


Solutions take the form


S= +(a) + S_() 	 (e) 

where
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PROBLEM 10.18 (continued)


a= - t 
s 

= 
8 O -30 t

s 

Because aE/at (t = 0) = 0, 

d+ d­

= - s -3sd (f)
s dc s dB 

Also, 
dE+ dý


= 
- (t=0) = da_ +-d0 (
0 
[u (0) - uo(/4)]

0 
(g) 

Thus, from (f) and (g),


dE+ 
 3

da 5o[u (0) - Uo(O/4)]; on a (h) 

dSE- 1

= -aT o[uo(0) - u (7/4)]; on B


The solution in the 0-t plane follows from


dE+ + dE_
a -+ -d (J)
(j) 

and an integration at constant t on e. The result is shown in the figure. Note that 

the characteristicsthat leave the interval 0 < 0 < 27W atO= 27r reappear at e = 0 to 

account for the reentrant nature of the rotating wire. 
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PROBLEM 10.19


In the moving frame we can write


at 2 fa2 + F(x',t') (a) 
at,2 ax,2 

and so from Prob. 10.4, we can write 

= aw' aP'

n -" + -­Pin at' ax' () 

where 

P' == F (c)in at

2 2


W' = m (,) 1 f ( 2 (d)


' 
P = - f (e)ax' at' 

But a a d a a U a+ 
ax ax at at ax 

Therefore (c)-(e) become 

a a 
P'in = F( + U ý-)) (f) 

W'= m(- + U ~ )+ 2 (g) 

P' = - f (a + U ) (h)-ax at ax 
The conservation of energy equation, in terms of fixed frame coordinates,


becomes


p aW' aW' P'

P -- +U - + (i--)
in at ax ax 

at 
S+ 

ax 
(P + W'U) (j) 

If we let 

P P' 
in in 

W = W' (k) 

P = P' + W'U 

we can write

=
P. aw + a 

in at ax


which is the required form.
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PROBLEM 10.20


The equation of motion is given by Eq. 10.2.33, and hence the dispersion


equation is 10.2.36;


k = n + jy (a) 

where 
= n WdU/(U 2-v 

y = v (U2_ 2 )k2 2 /(U 2 - 2 ) 

Solutions are assumed of the form


= Re[A sinh yx + B cosh yx]ei(0t-nx) (b) 

Boundary conditions require; 

B = 0o 	 (c) 

A = jnEo/y (d) 

Thus 

= Re Eo[y sinh yx + cosh yx]e j (t-nx) (e) 

The deflection has an envelope with an essentially exponentially increasing 

dependence on x, with the instantaneous deflection traveling in the + x 

direction. 

PROBLEM 10.21 f
.' s.ouL6B e 6•' " 7NrH606//#j 7 peRO•fL•L 

Part a 

The equation of motion is 

a a 2 2 
am t + U x) = S 2 mg + T (a) 

ax 

E V2 

with T --o o -o V2 [1+ 2 
2 (d-_)2 2 o d2 +3 

For equilibrium, E = 0 and from (a)


2

SV


o 
S= mg (b) 

2d 
or


Vo 	 [ /J2 
(c) 

L 0 
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PROBLEM 10.21 (continued) 

Part b 

With solutions of the form ej(w t- k x) 

E V2­
2 S 2 oo 

(w-kU) k 0d) 
om a d 3 

m 

the dispersion relation is 

(d) 

Solving for k, we obtain 

For U > 

k = wU 

S/a• , 
m 

S 2 U2 S o 
+ - U - ( ) 

m 

2 S(U2 _ ) 

m 

and not to have spatially growing waves 

--

(e) 

S 
a 

m 

-2_(U2 S> 
a 

m 

,e V2 
o
3 

a d 3 
m 

> 0 (f) 

or 

w > (U- i-) 3 (g) 

POOBLEM 10.22 

Part a 

Neglecting the curvature of the system, as in Prob. 10.18, we write: 

a m 
a 

( t 
R

P( •-
R a 

2 
= SR2 

2 
82 + T 

r 
(a) 

where the linearized perturbation force/unit area is 

2e V2 

Tr (----
a 

Therefore, the equation of motion is 

(b) 

+ 0 a 2 2n 2 + m2 () (c) 

s 

2 
m c = 

2 

aR 
m 

2E V2 

oo 
3 

a 

2 

R 
S 
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PROBLEM 10.22 

Part b 

(W-)22 2 (m2m2) (d) 

ioW + = 2 + ( 2 Q2 ) 2m2 
( mi)m = - (f)


n2 _ 2 
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PROBLEM 10.22


Part c


Because the membrane closes on itself it can be absolutely unstable 

regardless of 0 relative to s. Allowed values of m are determined by the 

requirement that the deflections be periodic in 6; m = 0, 1,2,3,... Thus, 

from (e) any finite me will lead to instability in the m = 0 mode. Note 

however that this mode does not meet the requirement that wavelengths be 

*short compared to R.


PROBLEM 10.23 

We may take the results of Prob. 10.13, replacingiI-by a + U andat ax

replacing w by w-kU.


Part a


The equations of motion


2 a2 E V
2


a mm + U x ) = S --2 o3 (2 1 -2)
ax d


a2E E V2


a a S

am it + U -x)ý2= S ax 

'2 + 0
d 

(22 1
1

Part b 

The dispersion relation is biquadratic, and'factors into 

2e V2 e V2 

-a (w-ldM) + Sk2 + 03 (c) 
d d 

The (+) signs correspond to the cases 1 E2 and 1l= ý2 respectively, as will 

be seen in part (d). 

Part c 

The dispersion relations are plotted in the figure for U > S-/jm.m
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PROBLEM 10.23 (continued)


A· U 

and 

1% ý 0;.. 

z 
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PROBLEM 10.23 (continued)

Part d


Let =1 2. Then (a) and (b) become


2 825 E V2 
= a(-

a 
+ U -

a ) S 
1 

+ 
oo 

1E 
ax d


S+ 2 2 
2 oo

V2 

2 (e)ax 33 2 ax d


These equations are identical for 5i = 2; the dispersion equation is (c) with 

the minus sign. Now let 1 = - E2 and (a) and (b) require 

a2 I 3E V2 

a 
m (-a +U a ) 2 E = S ax2 3 (f) 

ax d 

amt 2 
a22 3E V2 

2+ 00

m(- + 3x E2 = S ax ax2 d3 2


These equations are identical for = - 2; the dispersion equation is (c) 

with the + sign.


Part e

#%A ,­


E (0,t) = Re E ejWL = - )(0,t)
A1


ac 1 a12= = 0 at x = 0 
ax ax


The odd mode is excited. Hencei, we u,se the + sign in (c) 

38 V2


-am(w-kU) 2 + Sk2 S =0
-
d3


Z

3E V


k2 (S-0mU2) + 20 m 
WkU - a 

m 
w2 d

d
o0 
3 
3 O 0


Solving for k, we obtain


wU 
where a = 

U2_v2 
s 3 2 2 2 1/2


3E V (U -V )[v22 oo s

d 3s a

ad

8= 2 

m
2


U - v

s 
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PROBLEM 10.23 (continued) 

2with v = S/a m . s m 

Therefore 

E1 = Re {[A e-J(a+a)x + B e-j(a-8)x ]ejWt 

Applying the boundary conditions, we obtain 

A = 2(-)28 

(c±+B)•
B = W

21 

Therefore, if • is real 

(o) 

(p) 

(q)
(q) 

S (x,t) x = cos 8x cos(wt-ax)- sin Ox sin(wt-ax) 

Part f 

We can see that 8 can be imaginary, for which we will have spatially 

growing curves. This can happen when 

3E V2 

22 oo 2 2 
w s2 d 3 (U2 v ) < 0 

m 
or d3 2 v2 

v2 m s 
0 v 

Part g 

With V = 0 and v > v ;
o s 

(r) 

(s) 

(t) 

% f- F A I A I 

• J 

-149­




DYNAMICS OF ELECTROMECHANICAL CONTINUA 

PROBLEM 10.23 (continued)


Amplifying waves are obtained as (t) is satisfied;


PROBLEM 10.24


Part a


The equation of motion for the membrane is:


at 2 =S Fx2 21 +T 

where 

T =T = 2E V2 E/S 3 

z zz


The equation may be rewritten as follows:
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PROBLEM 10.24 (continued)


A2 = 2 (c)22 


at2 ax2 ay2


where 2E V2


2 _ oo

c 3


Ss


Assume solutions of the following form:


j(wt-k x-k .y) 
E(x,y,t) = Re[E e ] (d) 

The dispersion is:


w2 = v2[k2 + k 2 - k2 (e)

s x y c 

The mode which goes unstable first is the lowest spatial mode: 

k k 'T (f) 
x a- y b


Instability occurs at


2 2


k = ar + (b (g)

k2c a) 

or, 
3 2 2 1/2 

Vo = [2(a[ +()] (h) 

o 
Part b 

The natural frequencies follow from Eq. (e) as 

2 2 1/2 
mn ( + _ k2 ] (i) 

sns b+
V[a c 

Part c


We superimpose eigensolutions to obtain the membrane motion for t > 0.


The solution that already satisfies the initial condition on velocity is


E(x,y,t) = Emn sin marx sin nb- cos mnt ()

mn


where m and n are odd only, since the initial condition on ((x,y,t=0) requires


no even modes. Now use the principle of orthogonality of modes. Multiply


(j)by sin(pwx/a) sin(qfy/b) and integrate over the area of the membrane.


The left hand side becomes
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PROBLEM 10.24 (continued


fb fa 
1b f:[(x,y,t=o)sin pIx sin dx dy (k) 

0b 0a 
= ba J u (x- a) o( b)sin plx sin dx dy

ooJ o 2 a b 
0 o 

Thus, (j) reducesto


J ) (pq(0)


which makes it possible to evaluate the Fourier amplitudes


4J

(m)mn a 

The desired response is (j) with Emn given by (m).


4J

(x,y,t) = (o) sin sin n cos

'ab' sin-si b mn 
mn

(odd)


Note that the analysis is valid even if the lowest mode(s) is (are) unstable,


for which case:


cos w t + cosh a t 
pq pq 

PROBLEM 10.25 

The equation of motion is (see Table 9.2, page 535): 

2 
a 

m 
322 

t 2 S ( 2 
x2 y2 

(a) 

j(wt-k x-k y) 
With solutions of the form 5 = Re C e x yy, the dispersion equation is 

W +v k2 + k 2 (b)
-- s x y 

A particular superposition of these solutions that satisfies the boundary


conditions along three of the four edges is


ff A sin nry sink (x-b) cos w t (c)
a x o 

where in view of (b),


w2 2 2 n(i)2 (d)

o s x a 

Thus, there is a solution for each value of n, and
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PROBLEM 10.25 (continued)


I==A sin k (x-b)cos w t sin nay (e)

n= 1 n n o a
n=1 

where, from (d) 

k 2 2 1/2 

kn - (f) 

At x = 0, (e) takes the form of a Fourier series 

(y=0O) = I -A sin k b cos w t sin ng) 
n=1 

This function of (y,t) has the correct dependence on t. The dependence on y 

is made that of Fig. 10P.25 by adjusting the coefficients An as is usual 

in a Fourier series. Note that because of the symmetry of the excitation about 

y = a/2, only odd values of n give finite A . Thus n


12 - y sin y dy + a/2 a (a-y)sin n- y dy (h) 
a a/2 

= - A sin knb sin n•y sin 'Y dy 
o


Evaluation of the integrals gives


4E a A a sin k b

Ssin ()= - n n (i)


(mW) 2 2


Hence, the required function is (e) with k given by (f) and A given by

n n 

solving (i)


A = sin (')/sin k b (1)
n m2 2 n 

PROBLEM 10.26 

The force per unit length is#o0 x H, where H is the magnetic field intensity 

evaluated at the position of the wire. That is, 

S = p1I[H iy - H i ]. (a) 

To evaluate H and H at ui + vi note that H(0,0) = 0. By symmetry
x y x y 

H (0O,y) = 0 and therefore aH /ay (0,0) = 0. Then, V*B = 0 requires that 
y y 

aH /Dx(0,0) = 0. Thus, an expansion of (a) about the origin gives 
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PROBLEM 10.26 (continued) 

EaH aH i 
I vi - -- ui (b)
0 ay y ax x 

Note that because Vx H = 0 at the origin, aHx/ y = a~ /lx. Thus, (b) 

becomes 

aH 

S oI a [-ui + vi ] (c) 

and 3H /lx(0,0) is easily computed because

y 

(x,)I o 1 1 
I 
o2x

H 
y 

(x,O) = 
2w 

[ 
a-x a+x 

] 2w 
[ 2 ] (d) 

Thus, 

S 2 [-ui x + vii y (e) 

Ira 

It is the fact that V x H = 0 in the neighborhood of the origin that requires 

that the contributions to (e) be negatives.


Part b


(i) Assume u = Re[u e ( t - k z )  (f) 

Then


2 2k2 2 2 f 2 Ib

tVs=Vp,k + =-m 

(g) 
The w-k plots are sketched in the figure


M 

)(~~e~~oh 

&, 
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PROBLEM 10.26 (continued) 

Y, 
Coý%?ýeAX C-) 

40'r 'rec,9t 

-------- civ 

Then 

v = Re[v ej(t-kz)] 

2 22 2 
2 = v2k2 -

(h) 

and the w-k plots are as shown 

LtAee6A-ZOL^S 
ýor VQcj. 
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PR
 COrP\P) Cj 

o r·ec 

21 04 6j, 

direction, it must destabilize motions in the other direction. 

Part c 

Driven response is found in a manner similar to that for Prob. 10.2. 

Thus for 

w < 4b (cutoff) 

u(z,t) =-
u sinh a x 

sinh ct 
cos o t 

o (j) 

v(z,t) = -
v sin k x 

r
sin k t 

V 

sin w t 
o (k) 

u(z,t) 

v(z,t) 

= 

= 

-

-

u sin k x 
isin k • 

u 

v sin k x 
sink 

v 

cos wuto 

sin t 

() 

(m) 

where Vs 211/2 

k 
U k=[w; 

2 
o -

2 

2 1/2 
Wb 

~l/ 
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PROBLEM 10.26 (continued)


k= 2 +21/2 

Part d


We must suppress instability of lowest natural mode in v.


2
2 T > 2


2 2

II <


for evanescent waves 

2 2 
3o % 

Thus, from (n) and (p), 
2 < v 2 (w/9) 2 . 
o 

Part e


U4 

if 

'p. 

-2 

64 

< 00</1o, 

I~fl 
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PROBLEM 10.26 (continued)
 L, 

z 
0
o


b/m 

The effect of raising the current is summarized by the W-k plot, with 

complex k plotted for real w. 

As I is raised the hyperbola moves 

outward. Thus, k increases and k

v u 

decreases to zero and becomes imaginary.


Thus, wavelengths for the v deflection


shorten while those for u lengthen to


infinity and then deflections decay.


Note that v waves shorter than A=2k


will not be observed because of


instability.


PROBLEM 10.27


Part a 

We may take the results of problem 10.26 and replace -by + U ýz in the


differential equations, and w by w-kU in the dispersion equations.


Therefore, the equations of motion are


2 2u 
m(- + U ) 2 u = f- 2 - Ibu (a)

at az a 

m( + U ) v = f az2 + Ibv (b) 

Part b


For the x motions, the dispersion relation is


-m(w-k 2 = - fk 2 - Ib (c) 

We let 
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PROBLEM 10.27 (continued)


Ib 2


-f = V 2

m s


Therefore w=kU + 2v + 2


or solving for k


wU + 
2 
v + 

22 (U 
2
-V 2

2
)


k=

k - )2
(U v 


The w-k plot for x motions is sketched as


-W'0 

For real w, we have only k real. For real k, we have only real w.


For the y motions, we obtain


222 2 22 2 2
WU + V v v

2 -ss 

Tksl f r 


Thus for real w, the sketch is
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PROBLEM 10.27 (continued) 

Tj Ul S 

/p 

(Ar (01 23­

while for real k, the w-k plot is 
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PROBLEM 10.27 (continued)


Part c


Since the wire is traveling at a "supersonic" velocity, we cannot impose


a downstream boundary condition to determine upstream behavior.


We are given


u(O,t)i + 	v(O,t)i = u cosw t i + v sinw t i (h) 

and the boundary conditions


(o,t) = o0 (o,t) = 0 	 (i) 

We let 

WU 
2 2 

s 
2 2 2_ 

+A+, (U v)b 

U2_v2 
s 

(U2_v )
s 

(j) 
2

w2v 
2 
-c 

(2
(U 

2 
- v) 

(u2 
(U 

2v) 
- v )s 

For the x 	motions, the allowed values of k are 

kI = a + 8 with w = wo 

k2 = - (k) 

Therefore 

u = Re Al e- k z + A2 e- Jk2]ejo () 

Applying the boundary conditions and simplying, we obtain 

u = u Re[(C1 sin ýz + cos ýz) ej ( t-Z ) ]  (m) 
o0 

For the y 	motions, the allowed values of k are


k3 = a + y (n) 

k4 = a - y 

Therefore


v = -v
0 
Re[(-

y 
- sin yz + j cos yz)e (wt-az) ] 	 (o) 
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PROBLEM 10.27 (continued)


Part d


~•N000 

I - "I(- - 'I 

what 
As long as U > vs this is the form of u, no matter/the value of I (as long 

as I > 0). As the magnitude of I increases, B increases but a remains 

unchanged. 
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PROBLEM 10.27 (continued)


This is the form of v, as long as


2 2 2 2 _p2 
-Svs - (U ) > 0 (p) 

As I is increased, we reach a value whereby this inequality no longer holds. At


this point y becomes imaginary and we have spatial growth.


,· 

- ~ ~7N 

As I is increased beyond the critical value, v will begin to grow exponentially


with z.


Part e


To simulate the moving wire, we could use a moving stream of a conducting


liquid such as mercury. We would introduce current onto the stream at the


nozzle and complete the circuit by having the stream strike a metal plate at


some downstream postion.


PROBLEM 10.28


Part a


A simple static argument establishes the required pressure difference.


The pressure, as a mechanical stress that occurs in'a fluid, always acts 

on a surface in the normal direction. The figure shows a section of length 

Az from the membrane. Since the volume which encloses this section must be 

in force equilibrium, we can write 
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PROBLEM 10.28 (continued)


2R(Az)[pi - po] = 2S(Az) (a) 

C 
L 

I 

ltp 

. .•4--­
P

1< 

where we have summed the forces acting on the surfaces. It follows that the


required pressure difference is


P - p = R (b) 

Part b


To answer this question, and other questions concerning the dynamics of


the circular membrane, we must include in our description a perturbation


displacement from the equilibrium at r = R. Hence, we define the membrane 

surface by the relation


r = R + E(e,z,t) (c) 

The pressure difference p -po is a force per unit area acting on the membrane 

in the normal direction. It is the surface force density necessary to counter­

act a mechanical force per unit area T


m 
T = - S (d)

m R 
which acts on each section of the membrane in the radial direction. We wish


now to determine the mechanical force acting on each section, when the surface 

is perturbed to the position given by (c). We can do this in steps. First, 

consider the case where 5 is independent of 6 and z, as shown in the figure. 

Then from (d) 

T 
m R +

S S-1
RR 2 

(e) 

where we have kept only the linear term in the expansion of T about r = R. 

When the perturbation ý depends on 6, the surface has a tilt, as shown.


We can sum the components to S acting on the section in the radial direction


as
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PROBLEM 10.28 (continued) 

lim S 1 3 - 1 (f),
AORARm 6 G 0+ A R 

2 

Similarly, a dependence on z gives rise to a radial force on the section due to


the mechanical tension S,


S 3z2 
lim ­

Ale-0 Az 2 

In general, the force per unit area exerted on a small section of membrane under


the constant tension S from the adjacent material is the sum of the forces given


by (e), (f) and (g), 

T = S(- 1 + + + 2)2 (h)
Tm = ( +2 R 2 


It is now possible to write the dynamic force equation for radial motions.


In addition to the pressure difference pi-Po acting in the radial direction,


we will include the inertial force density om/( 2ý/at
2) and a surface force


density Tr due to electric or magnetic fields. Hence,


2 1 1 a)2 (i
2•2 S(- - + + 2 -+ 2 ) + T + p ()-P 

m at R 2 2 z r io 

Consider now the case where there is no electromechanical interaction.


Then Tr = 0, and static equilibrium requires that (b) hold. Hence, the constant 

terms in (i) cancel, leaving the perturbation equation 

326 ( 1__2 2_ 


m2 2 2 2 
at R R ae2 z 
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PROBLEM 10.28 (continued)

Parts c & d


This equation is formally the same as those that we have encountered


previously (see Sec. 10.1.3). However, the cylindrical geometry imposes


additional requirements on the solutions. That is, if we assume solutions


having the form,


((wt+ me)

( = Re (z()e jRe 

(k) 

the assumed dependence on 0 is a linear combination of sin me and cos me. 

If the displacement is to be single valued, m must have integer values. Other­

wise we would not have E((,z,t) = C(B + 27,z,t). 

With the assumed dependence on 6 and t, (j) becomes, 

2"

d E + k2 ==() 

dz


where 2a 

2 1 (-m2) m 
2 SR


= The membrane is attached to the rigid tubes at z 0 and z = R. The 

solution to (Z) which satisfies this condition is


= A sink x (m)n 

where

nW


k = -- , n = 1,2,3,...
n P, 

The eigenvalue kn determines the eigenfrequency, because of (Z).


2 n 2 (m 2 - 1) S 
n R2 a
R m


To obtain a picture of how these modes appear, consider the case where A is


real, and (m) and (k) become


C((,z,t) = A sin Tx cos mO cos wt (o) 

The instantaneous displacements for the first four modes are shown in the


figure.


There is the possibility that the m = 0 mode is unstable, as can be seen 

from (n), where if 

2 1 )
n7 2 (P) 

(i) <R 2 

we find that the time dependence has the form exp + Iwit. The first mode to 

meet this condition for instability is the n = 1 mode. Hence, it is not possible 
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Mv' 

m=1 
Vi = i 

k=2. 
tj = 
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PROBLEM 10.28 (continued)


to maintain the uniform cylindrical shape of the static equilibrium if


R7t/£ 	< 1 (q) 

This 	condition for static instability is easily understood if we remember


that in the m = 0, n = 1 mode, there are two perturbation surface forces on a 

small section of the membrane surface. One of these is the perturbation part 

of (e) and arises because of the curvature in static equilibrium. This force 

acts in the same direction as the displacement, and hence tends to produce 

static instability. It is counteracted by a restoring force proportional to 

the second derivative in the z direction, as given by (g). Condition (q) is 

satisfied when the effect of the initial curvature predominates the stiffness 

from the boundaries.


Part e


With 	rotation, the dispersion becomes:


(w-mp)
2 = [M 

s 
12_-m2 ] 

c 

with 
2 S 

oR 2 

aR 
m 

2E V 2 
2 oo R


m = 3c S 
a 

Because there is no z dependence (no surface curvature in the z direction) the 

equilibrium is unstable in the m = 0 mode even in the absence of an applied 

voltage. 

PROBLEM 10.29 

The solution is of the form 

= (a) + (_(8) (a) 

where 

= x + y 

We are given that at x = 0 

• 	 dl+ dl 
d-_ + d A[U-(y)-U- (y-a)] (b) 

and that
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PROBLEM 10.29 (continued) 

which implies that 

d+ 
--r = 0 = 
ay do 

We therefore have 

d+ A 
d =2 [u(-a) 

and 

d_ A 
d 2 [U-0() 

dE 
+ 

d0 

- u l(-C-a)] 

- U 1(8-a)] 

(c) 

(e) 

Then = - + _ _(Y-X)- u (y-x-a)
Ty do dR 2 -1 -1 

Integrating with respect to y, we obtain 

+ U-l(x+y)-ul(x+y-a)}
1 

(f) 

where u_2 is 

( {-u 2 (Y-x) + u_2(y-x-a) + u2(Y+X) 

a ramp function; that is u_2(y-b) is 

- u_2(y+x-a) 

defined as 

(g) 

m 
aJ


Part b


The constraint represented by Fig. 10P.29 could be obtained'by ejecting


the membrane from a slit at x = 0 that is planar, but tilted over the range


0 < y < a. Thus, the membrane would have no deflection ý at x = 0, but would


have the required constant slope A over the range 0 < y < a, and zero slope


elsewhere.
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PROBLEM 10.29 (continued)
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PROBLEM 10.30


For this situation, the governing equation is (10.4.15) of the text.


(M -1)
2 a22 a 

2
2


ax2 ay2


2 
Here M = 2; so we have the equation:


2 2

2 = (b) 

ax av 

The characteristics are determined from equations (10.4.17) and (10.4.18) to be:


a= x-y


B= x+y


The x-y plane divides into regions A...F, as shown in the sketch. Tracing


back on the characteristics from points in regions A, D, F... shows that in


these regions C = 0; the characteristics originate on "zero" boundary conditions.


At points in region B, only the C+ characteristic originates on finite data;


+(a) = o' _(B) = 0 and hence 

E = co in region B 
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PROBLEM 10.30 (continued) 

In C, deflections are determined by waves, both originating from the initial


data. Hence E+(a) = o,' but E_(() is determined by the reflection of an incident 

wave on the boundary at y = THence = 5o and d. - 0_() 

S= 0 in region C 

In region E only the _((3) wave is finite because the +(a) wave originates


on zero conditions and


E = - 0oin region E


The deflection has the stationary appearance shown in the figure.


PROBLEM 10.31


From equation 10.4.30, we have


kB I

2 k2v2 o

S=k ­S- m 

We define


IB

o 

2mv

s 

BI \2 2


2my
S 

v
S 
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PROBLEM 10.31 (continued)


The four allowed branches of k as a function of w are therefore k = + kl,


and + k2, where


k = a + (d) 

k, = - a + B (e) 

The sketch shows complex w for real k. Note however, that only real values of


k are given if w is real and hence the solid lines represent the plot of complex


k for real w.


C3, 

C3; 
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PROBLEM 10.32


The effect of the longitudinal convection is accounted for by replacing w


in Eq. 10.4.3 by w-kU (see for example page 594). Thus,


o(w-kU)
2 = k2 

2 kB I


s)- m (a)


This expression can be solved to give


BI B IBI B 1B2 
(2wU +---) + 40U ++ 

k = - s2 2 m (b) 
2(U - v2) 

The sketch of complex k for real oiis made with the help of the following


observations: 
 Consider the modes that are represented by -Bo

1) Asymptotes for branches are k = w/(U + vs) as w + 
 o.


2) As w is lowered, the (-B ) branches become complex as


4v2-2 + 4BU I+ 0


or at the frequencies


BI


2v22m -- --Vs


Thus, for U > vs there is a lower as well as an upper positive frequency at


which k switches from real to complex values.


In this range of complex k, real k is


BI

k = (2wU - )/2(1I2 - v2)


or a straight line intercepting the k = 0 axis at 

BI 
o 

2Um


3) as w + 0,


2 2
k + 0 and k - + B I/m(U2 _ v)

-o 5 

where the - sign goes with the unstable branches.


4) As w + - m the values of k are real and approach the asymptotes 

k = W/(U + vs). 
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PROBLEM 10.32 (continued)


Similar reasoning gives the modes represented in (b) by +B . Note that these


modes have a plot obtained by replacing w + - w and k - - k in the figure.
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