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PREFACE TO: SOLUTIONS MANUAL FOR
ELECTROMECHANICAL DYNAMICS, PART II:
FIELDS, FORCES, AND MOTION .

This manual presents in an informal format solutions to the problems
found at the ends of chapters in Part II of the book, Electromechanical

Dynamics. It is intended as an aid for instructors, and in special cir-
cumstances for use by students. We have included a sufficient amount of
explanatory material that solutions, together with problem statements, are
in themselves a teaching aid. They are substantially as found in our records
for the course 6.06, as taught at M.I.T. over a period of several years.

Typically, the solutions were originally written up by graduate student
tutors, whose responsibility it was to conduct one-hour tutorials once a
week with students in pairs. These futorials focused on the homework, with
the pfoblem solutions reproduced and given to the students upon receipt of
their own homework solutioms.

It is difficult to give proper credit to all of those who contributed
to these solutions, because the individuals involved range over teaching
assistants, instructors, and faculty, who have taught the material over a
period of more than four years. However, significant contributions were
made by D.S. Guttman, Dr. K.R. Edwards, M. Zahn, F.A. Centanni, and T.B.
Jones, Jr. The manuscript was typed by Mrs, Barbara Morton, whose patience

and expertise were invaluable.

H.H. Woodson

J.R. Melcher

Cambridge, Massachusetts

September, 1968






MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.1
It is the purpose of this problem

Le

to illustrate the limitations

inherent to common conductors in

achieving long magnetic time

constants. (Diffusion times.) For

convenience in making this point
consider the solenoid shown with iT

|

+A -

2 = length
A = cross-sectional dimensions of single layer of
wire (square-cross section).

radius (r >> A) but r << L.

r

Then there are /A turns, each having a length 27r, and the total d-c resistance
is directly proportional to the length and inversely proportional to the area
and electrical conductivity o. '

2nr 2
R = —5— ()
o(Az) A

The H field in the axial direction, by Ampere's law, is H = % and the flux
linked by one turn is uoH(sz) so that

2, .8 2, ¢
A=p BT (@) = v () A—z i
and it follows that
L
L = u () &5
A
Finally, the time constant is

L 1
R = 7 Worho

Thus, the diffusion time (see Eq. 7.1.28) is based on an equivalent length
VTA. Consider using copper with

G = 5.9 x 10’ mhos/m
A = 10m

and find A required to give L/R = 102

Ae=a2dy L. (200)

RO UTO  (4mx1077) (10) (5.9%10

7

= 2.7 x 10-1m or 27 em



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.1 (Continued)

Note that to satisfy the condition that £ >> r, the length must be greater
than 10 meters also. The coil is larger than the average class-room! Of
course, if magnetic materials are used, the dimensions of the coil can be
reduced considerably, but long L/R time constants are difficult to obtain on a

laboratory scale with ordinary conductors.

PROBLEM 7.2
Part a

Our solution will parallel the one in the text, only now the B field will
be trapped in the slab until it diffuses away. The fundamental equations are

VxB = uJ = wE; VxE = - %%
. S 2= . 3%
VxVxB = V(VeB) - V'B = uwoVxE = - 0 3¢
Because V+B = 0,
V2§=uc%%
4&3(%)
or in one dimension X
3%8_ 9B
1 X . X (a)
uoazz ot
at t = 0+ )hi
0 z<0 0 d
B = B ND<z<d
X o
0 z>d

This suggests that between 0 and d, we can write Bx(z) as
s m
nnz
= — <
Bx(z) Z a sin( 3 ) 0 z < d
n=1
To solve for the coefficients an, we take advantage of the orthogonal property

of the sine functions.

d [ d
J B_(z) sin(™2)4z = 2 J a sin(EEE)sin(EEE)dz
x d L . d 3
o n=1l ‘o
But - i
d mz ¢ mnz —2 moodd
I Bx(2)81n(“a—)dz = I Bo sin(—z—)dx = mT
o o
0 m even



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.2 (Continued)

Also ad n=nm
d nnz 2
a sin(-——)si (——)dz = | 2
o 0 n#m
Hence,
4B°
a-m = ;ﬂ_— m odd
0 m even
° 4 m
nnz
Bx(t=0,z) = z o Bo sin(—— ) 0<z<d
n=1
n odd
We assume that fort>0 0<z<d
-0t
= 4 21& n
B (t z) Z‘ o Bo sin(—e
n odd 2

2
Plugging into (a) we find that &.—_(%1) =a. Let's define T = uo(%)
as the fundamental diffusion time. Then

w 2
- 4 nmz, -n t/T
B (t,2) nzl — B sin(= e 0<z < d
t>0
n odd
Part b
7= UxB _ 1 an i = 48 (f os (ATZ) -nzt/'r_
u Moz 'y wud d i 0<z<d
o n=l >0
n odd
PROBLEM 7.3
Part a

If we neglect the capacitance of the block, the current we put in at t=0
will have to return by means of the block. This can be seen from the magnetic

field system equation

UxH = J (a)
which implies
VeI=0 (b)

r "what goes in must come out'.
+
1f the current penetrated the block at t=0 there would be a magnetic field
within the block at t:=0+, a situation we cannot allow since some time must

elapse (relative to the diffusion time) before the fields in the block can change
significantly.



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.3 (Continued)
We conclude that the source current returns as a surface current down the

left side of the block. This current must be

Ky = -IO/D (c)

where y is the upwards vertical direction. The current loop between x = - L
and x = 0 thus provides a magnetic field
-IO/D -L(x<0

H,(t=0") = (@
0 0<x

where z points out of sketch.
Part b
As t + = the system will reach a static state with input current IO/D per

unit length. The current will return uniformly through the block. Hence,

I
3,00 = - 53 (e)
i pu\s‘i :-[_2.-
arec Tio/f) od
- X ~ X
t=0" { —+o 4

Part c
As a diffusion problem this system is very much like the system of
Fig. 7.1.1 of the text except for the fact that here diffusion occurs on only
one side of the block instead of two. This suggests a fundamental diffusion
time constant of
uo(2d)?
T=—p— ()

2
m

where we have replaced the term d2 by (2d)2 in Eq. 7.1.28 of the text.

PROBLEM 7.4
Part a
This is a magnetic field system characterized by a diffusion equation.

With B =ReB (x)el“t,
Zz z



MAGNETIC DIFFUSION AND CHARGE RELAXATION

i

PROBLEM 7.4 (Continued)

ZA
1 d Bz

o dx2

= ijz
2 S ox
Let Bz(x) Boe , then

a? = jupo

1 2
a=+51+3),S8 =\|au—5

The boundary conditions are

or

B_(x=0) = -ui/D

ﬁz(x-m) >0

which means that we use only the (-) sign

X
Ez(x,t)=-Re B% e-x/G ej(wt 6)
Part b
VxB = u3
or
aBz
= - Wy
so that
- X X
Jy= -Re%li%til e- 8.e:‘(mt— 3)
Part c

(a)

(b)

()

(d)

(e)

(£)

(g)

(h)




MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.4 (Continued)

Part d
The electric field is given by
9E ~
E=1 ~L=- i
UxE Iz - juB 1 )
- -y 1
Ey(x=0) = 2D (1+P1 &)

Faraday's law (Eq. 1.1.23, Table 1.2, Appendix E) written for a counter-clockwise

contour through the source and left edge of the block, gives

o

A~ A Jou (Ld)

V+Ed=—p—1 (k)
where from (j)

o 1 4.1 A

Eyd =-2 @ 5 (N1 2)

I[R(w)+jwL(w)], (don't confuse the L's)

Hence, assuming that V

u Ld —

Thus, as w?» the inductance becomes just that due to the free~space portion
of the circuit between x=0 and x=-L. The resistance becomes infinite because
the currents crowd to the left edge of the block.

" In the opposite extreme, as w*0, the resistance approaches zero because
the currents have an infinite x-z area of the block through which to flow.
Similarly, the inductance becomes large because the x-y area enclosed by the
current paths increases without limit. At low frequencies it would be
necessary to include the finite extent of the block in the x direction in the

analysis to obtain a realistic estimate of the resistance and inductance.

PROBLEM 7.5

Part a
This is a magnetic field system characterized by a diffusion equation.

Place origin of coordinates at left edge of block, x to right and z out of paper.
With B = Reﬁ (x)ejwt
X X
228

1 z -~
———— = ij (a)
Lo axz z



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.5 (Continued)

Let %z(x) = Boeax, then
2
a” = jwuo ()
1 2
o=+ = (1+ = \|“-
is (1+3), 8 = \gi5 (c)

The boundary conditions are °

- 1

Bé(x=0) =-uy (d)

B,(x=1) = 0 (e)

because all of the current Io(t) is returned through the block. Thus the '

appropriate linear combination of solutions to satisfy the boundary conditions
is

o juwt
B_(x,t) = Re ML sinha(x-2)e” - (£)

D sinh (af)

where o is a complex quantity, (c). The current is related to ﬁz by
VxB=—~aTi =uJ = W i (g)

From (f) and (g),

; . ln coshla(x-2)]ed™® -

y D sinh af

Part b
The time average magnetic force on the block is given by
23 (0B *(x)dx
fx = Re[Dd Io —*Y———-————-—Z } 1)
where we have taken advantage of the identity

<Re Kejwt Reﬁejwt> = % Re Ki*

to integrate the force density (jxﬁ)x over the volume of the block. Note that

a detailed calculation is required to complete (i), because o in (f) and (h)

is complex.
This example is one where the total force is more easily computed using

the Maxwell stress tensor. See Probs. 8.16, 8.17 and 8.22 for this approach.
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.6
As an example of electromagnetic phenomena that occur in conductors at
rest we consider the system of Fig. 7.1.1 with the constant-current source

and switch replaced by an alternating current source.

i(t) = I cos wt (a)
We make all of the assumptions of Sec. 7.1.1 and adopt the coordinate system
of Fig. 7.1.2. Interest is now confined.to a steady-state problem,
The equation that describes the behavior of the flux density in this
system is Eq. 7.1.15

3%8_ 3B
1 X _ X ®)
u o azz at
and the boundary conditions are now, at z = 0 and z =d,
B =B cos wt =E§e B ejw{' (e)
x o o
where
M NI
()
B = W (d)

The boundary condition of (c¢) coupled with the linearity of (b) lead us to

assume a solution

B, = Re [ﬁ(z)ejwt] (e)

We substitute this form of solution into (b), cancel the exponential factor,
and drop the Re to obtain

2 ~
B ~

d 7 =JuoB ()

dz
Solutions to this equation are of the form

B(z) = e'? (2)
where substitution shows that

wh O
r=1+ Jjwmo =+ \[5— (1+) (h)

It is convenient to define the skin depth § as (see Sec. 7.1.3a)

l 2
6§ = e 1)

We use this definition and write the solution, (g) as
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MAGNETIC DIFFUSION' AND CHARGE RELAXATION

PROBLEM 7.6 (Continued)
g -(DF .
18 + cye &)

The boundary conditions at z = 0 and z = d (¢) require that

ﬁ(z) = ¢

Bo=cl+c2

B = e e(1+j)d/6+ e e—(1+j)d/6
o 1 2

Solution of these equations for ¢y and <, yields

[ -(1+j>§]
Bl{l-e
[+]

c1 = > (k)

[ <1+j>§]
-B |l -e
0

c, = = ®)

where D = 2(cos 'g— sinh -g—+ j sin % cosh %)

We now substitute (k) and (2) into (j); and, after manipulation, obtain

B(z) = B_[£(2) + 1 8(2)] (m)
~ where

f(z) = % cos % sinh g—+ % sin % cosh %

g(z) = % cos % sinh % - % sin % cosh -g—

M = cos —g- sinh %+ cos (gg—z-) sinh (——

N = gin -;— cosh -§-+ sin (—d—gi) cosh (igﬁ)

2 d 2d 2d

2 d
F cos B-Sinh 3 + sin 3 cosh 3

Substitution of (m) into (e) yields

Bx = Bm(z) cos[wt + 6(z)] (n)
where

3 () = 3, \1£@12 + [0 ©)

0(z) = tan L B2 ()

£(2)
It is clear from the form of (n) that both the amplitude and phase of the
flux density vary as functions of z.

To illustrate the nature of the distribution of flux density predicted

-9-
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.6 (Continued)

by this set of equations the maximum flux density is plotted as a function of
position for several values of d/§ in the figure. Recalling the definition

of the skin depth § in (i), we realize that for a system of fixed geometry

and fixed properties %1/5; thus, as g-increases, the frequency of the excitation_
increases. From the curves of the figure we see that as the frequency increases
the flux density penetrates less and less into the specimen until at high
frequencies (—->> 1) the flux density is completely excluded from the conductor.
At very low frequencies (—-<< 1) the flux density penetrates completely and is
essentially unaffected by the presence of the conducting material.

It is clear that at high frequencies (§->> 1) when the flux penetrates
very little into the slab, the induced (eddy) currents flow near the surfaces.

In this case it is often convenient, when considering electromagnetic phenomena
external to the slab, to assume 0+ and treat the induced currents as surface
currents.

It is informative to compare the flux distribution of the figure for a
steady-state a-c problem with the distribution of Fig. 7.1.4 for a transient
problem. We made the statement in Sec. 7.1.1 that when we deal with phenomena
having characteristic times that are short compared to the diffusion time constant,
the flux will not pemetrate appreciably into the slab. We can make this statement
" quantitative for the steady-state a-c problem by defining a characteristic time

as

T =
[+

€ |-

We now take the ratio of the diffusion time constant given by Eq. 7.1.28 to this
characteristic time and use the definition of skin depth in (1).

_ 2 (%) (9)

Thus, for our steady-state a-c problem, this statement that the diffusion time
constant is long compared to a characteristic time is the same as saying that
the significant dimension d is much greater than the skin depth 8.

The current distribution follows from the magnetic flux density by using
Ampere's law;

1 an
Iy Tu, % N

-10-
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MAGNETIC DIFFUSIQF AND CHARGE RELAXATION

PROBLEM 7.6 (Continued)
Thus the distribution of IJyl is somewhat as shown in the figure for B.

The instantaneous Jy has odd symmetry about z = 0.5 d.

d.
5 =5
J 1
0.4 0.6 0.8 Lo
/4.

DISTRIBUTION OF FIUX DENSITY WITH SKIN EFFECT

.~11-



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.7
Part a
Assume the resistors in the circuit model each have approximately their

D.C. resistance

a
R Ry ¢c. = oAd (a)

The inductance is the "loop'" .of metal

4
Y
Le o
H,al " 4 L
L= ()
Hence the time constant involved is
S A e )
2R 2

The equivalent length in the diffusion time is VAR >> A.

Part b

By adding the vacuum space of region 2 we have increased the amount of
magnetic field that must be stored in the region before equilibrium is reached
while the dissipation is confined to the two slabs. In the problem of Fig.
7.1.1, the slab stores a magnetic field only in a region of thickness A, the
same region occupied by the currents , while here the magnetic field region is
of thickness £.

Part c
‘t,cr«-pco
K@ f
a R O Ho(t) 2 (t)
" ¥ H=0
) + 1 g 2 o

~12-



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLFM 7.7 (Continued)

Since diffusion in the slabs takes negligible time compared to the main problem,

each slab could be modeled as a conducting sheet with

K = (oME (d)
In region 2 '

VxH =0 or H= Ho(t)iz = - Kz(t)iz (e)
From

- - d [= -

§E-dz = - [B n da (f)
we learn that

a d

SEL ¥ (B)-Ky(8)] = + o= [n al K, (t)] (g)
Since K (t) = K_(t) + K,(t) we know that

o 1 2
1 dKz(t)

K (t) = 5u_,(t) = 2K, () + o A —5= (h)

The solution is therefore
ou AL
I S -t/T Y -

and,because K2 = - Ho, the magnetic field fills region (2) with the time

constant T.

PROBLEM 7.8

As in Prob. 7.7, the diffusion time associated with the thin conducting
shell is small compared to the time required for the field to £fill the region
r < R. Modeling the thin shell as having the property

K=A0 E (a)

and assuming that

n (1, = @ -xko]1, : (®b)

-13-
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.8 (Continued)

We can use the induction equation

= = d [= -
§Ed2=—EIBnda

to learn that,AbecauseHO = constant for t > 0

2mR - _ .2 dK(t)
K(t) = - 1R Mo ~ 4t

The solution to (d) is

—t/ U ORA

K(t) = He Tu_l(t); T =

and from (b), it follows that

t/

Hy(£) = H-K(t) = H_(1-e""'Du_, (£

(c)

(d)

(e)

(£)

The H field is finally distributed uniformly for r < a, with a diffusion time

based on the length /RA.

PROBLEM 7.9
Part a _
' =_ _ 238
VXXE-= 3t
Vv x B = WE
So _
5o 2B
VxVxB=-u "t
But
Vx(VxB) = V(V-B)- V2B = = V°B
So _
25 o 3B
V°B = wo 3t
Part b

Since B only has a z component
: 2 aBz
VB W
In cylindrical coordinates
2 2
(r 2) +_1_2.3__+3__
‘ r

302 322

Here Bz = Bz(r,t) so

(a)

(®b)

(c)

(d)

(e)

()



MAGNETIC DIFFUSION AND CHARGE RELAXATION
!

i
4

PROBLEM 7.9 (Continued)

i

A

:) + uoaB = 0 (2

’QJ

-
3 (r

|
(3]

Part ¢

We want the magnetic field to remain finite at r = 0, hence 02 = 0,

Part d

At r=a
B(a,t) = u H_ - ClJo(/uOOa a) =y H_ (h)
Hence if ¢, 40
3 (fuoa a) =0 (1)
Part e

Multiply both sides of expression for B(r,t=0) = 0 by rJo(ﬁj r/a) and
integrate from 0 to a. Then,

a 2
= a_
Jo MH T Jo(\’j r/a)dr M H, v, Jl(vj) 6))
a «® a2 2
f z CiJo(vi r/a)r Jo(\)j r/a)dr = Cj'E—-Jl(vj) (k)
o i=1
from which it follows that
2u H
o0
C,. =7~ (L)
v, J, (v
h| f 1( j) » .
The values of vj and Jl(vj) given in the table lead to the coefficients
C1 C2 Cc
———= . 802 = - ,535' -—=— = 0.425 (m)
ZuOHO 'Zuoﬂo ) ZuOHo
Part £
2
a, = L (L
1 uog a
U ca ’ .
1= 2 = 0,174 u oa2 (n)
1 v2 )
1
-7, 10* -4
T, = (0.174) (41x 10 ') 57— (25) x 10,
1 4
~ 4,35 x ~10—7 seconds (o)

-15-



MAGNETIC DIFFUSION AND CHARGE

PROBLEM 7.

Part a

Part b
At

at

Part ¢

Let

Using the

Note that

10
JFE
VsE=1 wL=-2-B1 =0
z 9x it z z
_ BBZ _ >
VxB = - iy e qu = uoo(Ey-UBz)iy
UxVxB = V(V-B) - V°B
2
3°B_ JE 3B_
= - z = Y _y-=Z
B 3 2 iz uoa( 9x v ox iz
X
0 from (a), so

2

9B BBz
2 - uoUU 9x
9x
x=0 Bz = - uoK
x=1L B =0

x, then

Bz(x) = C ea
a(a—uooU) =0

a=0,a-= uooU

boundary conditions

BZ(X) = - UK
as U»0

Bz(x) = uoK (Eifa

as expected.

-16-

RELAXATION

(a)

(b)

(c)

(d)

(e)
(£)

(g)

(h)

(1)

&)



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.11

Part a

FaJxB=-JB1
yxz

pi> R e™ ™ -1
o) m -
= - i (a)
wzz Rm 2 z
(e " -1)
Part b 2
uoI d
fz = J-Fz wd dz = - —= ()

This result can be found more simply by using the Maxwell Stress Tensor by methods
gsimilar to those used with Probs. 8.16 and 8.17.

Part c
The power supplied by the velocity source is

2
P =—fU=PiI_d_li=.I_29~R_m (C)
U z 2w owl 2

The electric field at the current source is

J (2z=2)
Ey(z=2) = 5 - UBx(z=2) ()
R
1 m
= oiw R (e)
(e ™ -1)
Power supplied by the current source is then
2 R
I°d m
—ng + EydI =+ S\ & (f)
e -1

Power dissipated in the moving conductor is then
R

2. R ™
- Id mlfe +1
Pa= Pyt V"o 2 \ X (8
m
e -1
which is just what is obtained from
L J2
Pd = wd I O'— dx (h)

o

-17-



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.12

If a point in the reference frame is outside the block it must satisfy

= 3B
VxE = - 3t (a)
J=0 and VxB=0 ()

Since the points outside the block have J=0, and uniform static fields (for
differential changes in time),(a) and (b) are satisfied.
Points inside the block must satisfy

1 an
K ———az = Jy (C)
, B 9B 2B

"o Z T TV ()

Since these points see
9B B 2
X o 3B

Jy OVBO, 3% -~ 1 ;;E =0 (e)

an Bo

F—=—V-2— and Vu°02= 1

these conditions are satisfied.
Points on the block boundaries are satisfied because the field quantities

E and B are continuous.

PROBLEM 7.13
Part a

Because VeB=0 the magnetic flux lines run in closed loops. The field
lines prefer to run through the high u material near the source, hence very
few lines will close beyond the edge of the material at z=0, Currents in

the slab will tend to remain between the pole pieces.

Part b
2
Ly
w2z Tat % (a)
j(we-kz)
Let By(z,t) =C e , then
2 - juoVk + juow = 03 (b)

A quadratic equation with roots

~18-



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.13 (Continued)

2
k=u0[:|%11 \l(%) +J‘f,’;] (©

or in terms of R = YoVL and § =¢—2—
m wuo

+ R R 2 1 2
EIL=3 2+ \G) +2 G (@)
From Fig. 7.1.16 of the text we see that

+ _ .+ + - - -
KW=+ kg, ko= k+ gk

where
-_ .+ - +
-k =k >0 and kg >-k; >0 (e)
To meet the boundary condition of part (a) we must have
+ -
B (z,t) = C[e'jk e z}ewt ()
Using the boundary condition at z = - L
B + -
By(z,t) =____f;2___1:__ e jk z -e Jjk Z)ejwt (g)
(ejk L_ejk L)
Part ¢
T o,
B 2 - 3 = i h
VxB ix 3% JXiX/&Qo (h)
iB ot e
3= - 0/76- (k+ R LA T ik z)ejwt ()
(ejk L_ejk L)
Part d R
zart ¢ + _ -
As w=+0 k +0, k +ji—
B R /L)z
B =—2—— (1-e™ ) 4)
y -R
(1-e )
B /L (R /L) z
J =—2% _Rr e ™ (k)
x —Rm m
(1-e 7)

=19~



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.13 (Continued)

Afsn‘ 4

B, R
— TR
L{j-e ™)

e 270

As the sketch Fig. 7.1.9 of the text suggests, we could realize this problem by

placing a current sheet source

across the end z = - L and providing perfect conductors to slide against the
slab at x = 0,D. The top view of the slab then appears as shown in the
figure.

Cv r‘Y‘tn*
sheet

YQ(‘& (C\ \‘t cCo \,\A,u o‘ hnci

Q\Qc\’fOA¢5

Note from (j) and (k) that as Rm+0, the current density Jx is uniform and By is
a linear function of z. This limiting case is as would be obtained with the

given driving arrangement.

PROBLEM 7.14
Part a
Since J' = J
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.14 (Continued)
K = szocos(kUt-kx) : (a)

= izKOcos(wt-kx); w = kU

Part b
The track can be taken as large in the y direction when it is many skin

depths thick

2 2
L = track thickness >> § = \ = (b)
Wy o \kUu )
o o

In the track we have the diffusion equation

- 1 2= 3B
ho v B=3e ()
o ~
or, with B = Re B exp j(wt-kx),
24
"B
1 x 24 -
e (5= - k"B)) = juB_ (d)
.o 9y
Let ﬁx(y) = C eay’ then
2
1 2 k
———a” = ju+ — (e)
Ho? ¥o?
wu O Uuoo
a=kvYI +§ ; s = 7 T Tk (£)
k
Since the track is modeled as infinitely thick
B =C e ej(wt-kx) ‘ (g)
The gap between track and train is very thin; thus,
- i -E— = X = j(wt-kx) ry
1y x 3 K=K e i, (h)
[o]
which yields
o wt-k
B (x,y,t) = K, e oI Wk )
We must also have VB = an/ax + aBy/By =0 or
k
B, = 5 (x,y,0 €))

=21~



MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.14 (Continued)

To compute the current in the track we note that

_ _ (BB 3B _
VxB = iz (ax T3y T Mo
B
= S .2y x -
T=- GgE) g 0l

Part ¢

(k)

(2)

The time average force density in the track is (see footnote, page 368)

1
> = = *
<Fy 2 Re(Jsz)

Hence the time average lifting force per unit x-z area on the train is

o o,
<T>=—[<F>dy=—Re[ 5 J_B%* dy
y Y = 2 Tz7x
_Ll, 2 L+s2-1 >0

4 "oo q;i:—gf

See Fig. 7.1.21 of the text for a plot of this lifting force.

Part d

The time average force density in the track in the x direction is

1
>D = - = *
<Fx 5 Re(Jsz)

The force on the train in the x direction is then

py ° 1 o %

< = - = =

\Tx> J <Fx>dy 5 Re J Jsz dy
-00 =00

p K

2
oo
4

v

<0

1452 ReV1#ys

The problem is that this force drags the train instead of propelling it in
x direction. (See Fig. 7.1.20 of the text for a plot of the magnitude of

this drag force). To make matters worse, if the train stops, the magnetic

levitation force becomes zero.

-22-
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.15
Part a ;
Let the current sheet lie in the plane y = - 8. In the region -s<y<0

we have the "diffusion equation"

Vsz =0 (a)
If Bz(x,y,t) = Bz(y)ej(wt_kx) this equation yields
3232 2
5 = k"B M)
z
ay

Hence we can conclude that
B, = [A cosh K(y+s) + B sinh k(y+s)]ej(wt-kz) ©

At y = - 8 we have the boundary condition

iy X Bz = uoKo cos(wt-kz)ix (d)
Thus

B, = [uK_ cosh k(yts) + B sinh k(y+s) Jed (WE7K2) (e)
Since V<B = SBy/By + aleaz,= 0 we must have

By = [j(uOKo sinh k(y+s) + B cosh k(y+s))]ej(wt_kz) (£)
In the conductor the diffusion equation is

1 2= _ 3B, . 3B '

i:O'VB -a—E+VE (g)
Then

2?8 \

2= Quolekv) + kB, ®)
3y
which suggests a solution
o (w-kV)
B(y) = C e™, a= WS, 5= 05— (1)
k

Since V*B = 0 in the conductor too, we must have

By = - j E'Bé 6}
As the boundary y = 0 we must have

B, =B H.=H (k)

yl y2° zl 22
Note that.
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.15 (Continued)

cosh ks B22 + j sinh ks By2

2 2, '
= uOKO(cosh ks - sinh“ks) = uoKo Q)

Then we must also have

uoKo = cosh ks le + j sinh ks B

vl
= C (cosh ks + %-sinh ks) (m)
It follows that the B field for y>0 is
- u K - -y - -
B = 00 (-3 % 1 +1)e™™ oJ (Wt-kz) (n)
cosh ks + o sinh ks y

Comparing with Eq. 7.1.91 of Sec. 7.1.4 of the text we see that it is only

necessary to replace

K
o)

cosh ks + % sinh ks

Ko by
starting with Eq. 7.1.90. The average forces depend on the magnitude, not the
phase, of Ko’ which i1s reduced by this substitution.

Part b
We note that 1f ks << 1

K
° n K (o)
cosh ks +-a sinh ks

which shows that the results of Sec. 7.1.4 are valid when ks << 1,
Part c
- When ks -+ «

K
o

K — 0
cosh ks + E-sinh ks

No fields will then be present in the conductor.
PROBLEM 7.16
Part a
Because the charge needs time to move through the conductor, at t=0+ there
is only free charge on the plates. The electric fields are directed in the

negative vertical direction and satisfy
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.16 (Continued)

Ep + Ea =V, (a)
at the interface at t=0+
€E, = eoEg ()

E=-——-—’E = —— (c)

Part b
As t»o the charge on the interface excludes the fields from the conducting
liquid, hence

<

o -
El 0 Eg a (£f)

Part c

The charge on the interface at any time is

Op = sEz - eoEg (g)
Conservation of charge requires

dog ,

T - OER. ¢(h)

The voltage across the plates is Vo for t>0

Vo = Elb + Ega 1)

Solving g, h, 1 we find that the charge obeys

ff_t_fg_gﬁfl ESE +0,=- Eg-V )

o] de f a o ‘
e+€o b/a
Let'r=———0—,then
R
-t/T

of=-~:—°(1-e’),t30 (k)
€ AV

4= -2 -, k20 W
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.17 ;
Part a

In the inner sphere

g ap
i f .
t Petae =0 (a)
o .
So we find that
-g /e° t
pf(r,t) = po(r)e s £ 2> 0 r< Ri ()

A similar equation holds for the charge in the outer sphere, but it has no initial
charge distribution at t = 0, so

pf(r,t) =0, t>0 Ri<r<Ro (c)
Part b
Let R
1
Qo = f 4mr po(t)dr (d)
()

Also define

o, = the surface charge density at r = R1

A
OB = the surface charge density at r = Ro
The field at R: is, by Gauss' law

Q

+ [+
E(R ) = (e)
° 4Te R2
o0

Then, conservation of charge requires that the electric field at r = R; obey

- 9E -
o, E(Ro) + € 5t (R) =0 (£)
Q le )t
ER) = — e-p° o , 20 (2)
° 4we°R°

We can thus conclude that
0 Qa

Q P /e )t
7 - e

o, = %y t>0 (h)
4ﬂR°

B

Since charge is conserved we now know that

Qo ( -{’o/eo)t -éi/eo\t
e -e )

4nRi

g =

A , t>0 (1)
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.17 (Continued)

Part ¢

| 4R G"B/Q
e e e — — =
'\“f = So /0"'°
L A
<
4 2 A 4R SR /Q,
A“KCGK/QO ’
To <G;
“—a 7 G‘; \r: &/G;
\ T=E/q;
PROBLEM 7.18
Part a
At the radius b
e[E®Y) - E®D)] = o, (a)
30
OlEGH-EGT) 1= - 5t = - € 3 [E6H-ERD)] ®)
For t < 0 when the system has come to rest
- - 3P,
Vel = (0/e)VE=-5==10 (c)
For cylindrical geometry this has the solution
= A - b
E = +-; ir; Vo = + Ia Erdr = A In(b/a) (d)
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.18 (Continued)

then
Vo 1

E(r=b ) = + —-ln(b/a) T)-
E(r=b+) =
Since E(b+) -E® ) = Of/E it cannot change instantaneously, so

v
° bl 5o (£)

E(b+) - E(b-) = - FT(b/_a)_ e , 2>

Because there is no initial charge between the shells, there will be no charge

between the shells for t > 0, thus

Cl(t)
+ a<r<b
r
E. = C,(t) t>0 ()
+ - b<r<e

The battery adds the constraint
Vo = Clln(b/a) + C21n(c/b) . ¢h)
while (f) becomes

~6/é)t
C;-C = ln(b/a) 1)

Solving (h) and (1) for C,, C

1 2
V
4b/é t
¢ * 1 c/a a- ) (&)
v
- o In(c/b) 4b/€)t
S R ey Q-+ In(b/a) © (k)
Part b
op = EEGD) - E67) = - pyteray Vo € OO @
Part ¢
o lne/b 2me
(:1/////,/’ Rb "m0 cb In c/b
— _ In(b/a) o _2me
1) Rb T Cb R mo* Ca " Tn b/a

*
s
|
|
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.19
While the potential v is applied the system reaches an equilibrium. During
this time . apf
M-S I T (@)

in the bulk of the liquid. If the potential V is applied for many time constants
(t=c/0) any.charge in the fluid decays away. For t>0 if the fluid is
incompressible (Vev = 0) and J = OF + pf; we know that

- i, 30

Vel =(o/€)pf + veVpe = = o= ®)
But in a frame moving with the particles of fluid

d 3

TP 56 VIeg = ~(0/e)pg (e)

pg(t) = p (t=0)e®/ s (@
where pf(t) is the local charge seen by a moving particle. But for all fluid
particles

pg(t = 0) = 0 (e)

Hence the charge remains zero everywhere for t > O.
Now draw a volume around the upper sphere big enough to enclose it for a

few seconds even though it is moving.

§3-a§=-%;fpf av ()

Now because Pe = 0 in the fluid

3 = of, § Jeda =(o/e)5£ eE+da = (0/e)Q(t) ®
S S
Then
d d
(OIE)Q(t) = -4 f pg AV = - Fr Q(t) (h)
v

which has solution

Q(t) = Q e_t/T;T = g/o
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.20
Part a
We can use Gauss' law
§ eoi-dZ = J pe AV (a)
S v
to determine the electric field if we note that there is no net charge in the

system, which means that

E = E I =0 x<0 and x>3d ®)
X 0<x<d

ety = [ Loane G ©
o D°d D t=20

There 18 no charge in the middle region so

E =3 dex<2d; t = 0 (d)
x 2
D’e_

In the region 2d<x<3d

X
- (x-2d)
€ (E. (x) - E (2d)} = f dx = - 9 (x2d) (e)
o\Fx ¥ X ) 2d D2d D2 d
2d<d<3d
Q  (3d-x)
E (x) = 45— 5+ (£)
x Dze d {t =0
o
—+ —+ — P> X
4 2.4 3d

As too all the charge on the lower plate relaxes t® the surface x = d, while the
charge on the upper plate relaxes to the surface x = 2d. The electric field then
looks 1like

4

 Ex

D€,
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.20 (Continued)
Part b
Each charge distribution can be thought of as made up of many thin charges

sheets; any two such sheets,

— - Aa®,

— 1’602

one located somewhere in the top conductor, one located somewhere in the bottom
conductor, attract each other with a force
AQ, AQ
1 "2
AF = ——5= (g)
2¢ D
o
which is independent of their separation, hence the net attractive force between

plates does not change with time. At t» there is a surface charge
O = = L x = 2d

T 2
D (h)

c + Q x=4d
B D2

and the force per unit area Tx is simply that found for a pair of capacitor plates
having separation d and supporting surface charge densities + Q. (See Sec. 3.1.2b).

T =2~ £>0 (1)

X 9¢ 2 -
o
This force can be easily seen to be constant from the viewpoint taken in Chapter 8,
where the force on the lower plate can be found from the Maxwell Stress Tensor.
1

The only contribution comes from Txx =3 soEi evaluated at x = d, and thus

Txx(x =d) = Tx as given by (i) regardless of t. Problem 8.23 is worked out

following the stress-tensor approach.
PROBLEM 7.21
Part a
If the electric field beyond the plates is zero the conservation of charge

equation

- - 3 _ 9 ==
§ Jeda = - T3 f Pe dav = - T3 § €Eeda (a)

S \Y

-31-



MAGNETIC DIFFUSION OF CHARGE RELAXATION

PROBLEM 7.21 (Continued)

becomes

A II\ ~
cEx(x) -5 = - Jue E_(x) (b)
That is, the equation for Ex is as given by (f) of Example 7.2.3, with € now

a function of x.

a 1 _ 1/A
E () = A(o+jue) o € (c)
2 2
[01 + T x+jw(€1 + T x) ]
From Coulomb's law

A (1o dE 4 d0y G e

Pe = qx' % A (jue + c)2 A(juweto)
€ € o €
~ 2 2 2 2
peA (e + g7 X)(Ju =+ 97) T
—_=- 7 + (e)
I o € o €

[0, + 320 + Jule, + 201 [0+ 75 D+ + £ 0]

Part b

Consider the effect of a small change in £ alone
= °
0, = 03€,/e) << 1

then ~

o.,e, I

172
ppx ———s (£)
Al(jw€1+01)

It is seen from (f) that in the presence of conduction the gradient of € causes
free charge to be stored in the bulk of the fluid. This effect is highly
dependent on frequency, being greatest at zero frequency and disappearing when

the cycle time is short compared to the relaxation time of the material.

PROBLEM 7.22
Part a
In the fluid the consitutive law for conduction is

J = oF + pf; (a)

Since the given velocity distribution has the property
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.22 (Continued)

Vev=0 )
ap
.- - g L] _. [—3 -q_ a— E— J— -—_f_
VeJ e U+ (€E) + vV Pe = ¢ pf +U 3% Ps T (c)
or
9 9 ag
e+ Usdee = - ¢ P (@)

The charge is relaxing in the frame of the moving fluid. The solution has the

form

m|Q

X X
Pe = Re S e U ejw(t UZ - A-< < A te)
£ o s " 2°Y %3

= 0 elsewhere in the channel
where y = 0 is the channel center. Note that (e) satisfies the boundary condition
at x = 0 and states that a charge at x at time t has been decaying %-seconds
(since 1t left the source) and was dumped in the channel at time

[ _Xx
t t U

Substitution of (e) into (d) verifies that it 1s a solution.
Part b

From (e) it is clear that the wave length of the sinusoidally (and decaying)
charge stream is 2mU/w. Thus, the wave length can be altered simply by changing
w. One technique for measuring the flow velocity would consist in measuring
the voltage induced across the resistance R (as shown in the figure) as a function
of the frequency. With the distance between electrode centers d equal to 1/2 wave
length, a peak in the output signal would be expected. If we call the frequency

'

at which this peak occurs wp, then

+ 4+ 4 - = T+t
- 4 +4::41
ANV
5 R |
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MAGNETIC DIFFUSION AND ‘CHARGE RELAXATION

PROBLEM 7.22 (Continued)

or

Thus, a determination of wp gives U. There are, of course, problems with this
approach. For example, there would be lesser peaks in the output at harmonic
frequencies that could be mistaken for the desired peak. Alternatives are to use
the decay rate, but such techniques are vulnerable to conductivity variations

which are likely to be large.

PROBLEM 7.23
Part a

Current is carried by the conductor because of normal conduction and also

because of convection of a net charge.

J = 0E + pfv
Also _ .
- (J-pfv)
VeE = pf/E: = V--——o—
But
. g
Vel = - Frale 0 in steady state
Vev = ¥.(U Ex) = 0 also, so that
p.le = - ﬂp_f. = - 1) E)E
£ g g 9x

The solution to this last equation is

o, ,x
-(E)(ﬁ)
p= po e

is a measure of how long

=1ES

i.e., the charge relaxes in the conductor; the time T =

since the charge left the source at the first screen.

Part b
Let
Ex(x=0) = Eo
g, X
Fy o P TOW
ox € €
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.23 (Continued)

.9 x
"Df(x) PU e U
Ex(x) = Eo + Io dx = Eo + e (1-e )
- =V
Note that»since Jx(x=0) = GEO + poU RA
g X
oy~
E (x) = -0 - 2 ¢
x RAC g
We must finish the problem to know V
. Part ¢ ' _(g_a &
2 Ve U 2 € U
Vs=- Jo Ex(x)dx = - RAg + OOEO(E) (1-e )
, S
1 U
Ve e @ e
14 o
RAC
PROBLEM 7.24
Part a

The model for this problem is similar to that used in Example 7.2.6 of the
text. Each ring induces a charge on the stream having opposite polarity to its
potential. Thus, conservation of charge for the can at potential va (under

the ring at potential vl) is

dv3 v,
€y =Cx% tvo (a)
Similarly, for the other two cans,
dv v
1 1
G =l ty ®)
dv v
A B ]
~Cy nvy = C =+ 3 ()
To solve these three equations, we assume solutions of the form
v, = v eSt (d)

i i

and the complex amplitudes v, are governed by the conditions that follow from

i
substitution of (d) into (a)-(c)

r--c 0 (Cs + l)_1
in .S R
s + 3 C.n 0 =0 (e)
R 1
1
B 0 (Cs + 0 Cin |




MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.24 (Continued)

The solution for s is

Lot
c

®
]
1
3+

ij_;j’ -] (f)

hohdl

Part b
Thus, the system is unstable 1if

C,n
1 i .
Part c

In particular, from (g), the system is self-excited as

C.n
i
== (h)

=

Part d
The frequency of oscillation under condition (h) follows from (f) and (h)

as
_ Cin V3 /3

W= —5=— == 65}

PROBLEM 7.25

The crucial quantities in the respective systems are the magnetic diffusion
time (Eq. 7.1.28) and the charge relaxation time (Fq. 7.2.11) relative to the
period of excitation T = 1/f. The conductivities required to make these

respective times equal to the excitation period T are

v T/u, o @)

a

g =¢/T (b)

In terms of the given numbers,

o = (3.16)2(107%)/(4) (3.14 x 10~ 7y 10~%

7 (e)
7.85 x 10° mhos/m

and
-12 -5 -5
(81)(8.85 x 10 Y/10 © = 7.16 x 10 ~ mhos/m (d)

8]

For the change in depth to have a large effect on the inductance, the
conductivity must be greater than that given by (c¢). Thus, the magnetic device
would not be satisfactory. By contrast, (d) indicates that the conductivity

of the electric apparatus is more than sufficient to make a change in
capacitance with 1liquid depth apparent even if €=€ . Both devices would be
attractive for this application only if the conductivity exceeded that given
by (c).
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.26

This problem depends on the same physical reasoning as used in connection
with Prob. 7.25. There are two modes in which either device can operate.

Consider configuration (a): the inductance can change either because of the
magnetization of the water, or because of currents induced in the water. However,
water is on}y weakly magnetic and so the first mode of operation is not attractive.
Moreover, the frequency is too low to induce appreciable currents, as can be seen
by comparing the magnetic diffusion time to the period of excitation. Hence,
configuration (a) does not represent an attractive approach to the engineering
problem.

On the other hand, configuration (b) can operate either because of a change
in capacitance between the eléctrodes due to the change in position of the
polarized liquid (at high frequencies) or due to a change in position of a
perfectly conducting liquid (low frequencies). As the calculations of Prob.

7.26 show, it is this last mode of operation that is appropriate in this case.

PROBLEM 7,27
Part a
Because we have changed only a boundary condition,the potentials in regions

(a) and (b) are still of the general form

~

¢a = A sinh kx + B cosh kx

$b = C sinh kx + D cosh kx (a)
There are now four boundary conditions:
9,(@ = ¥ ®)
$,00) = @, (0) ©
00 . 26,000 3¢, (0)
~oa— = Ge*t V)l ey 5% te oy ) (d)
b (-5 = 0 (e)

Only boundary condition (e) is new; it has replaced the assumption that
¢b must go to zero as x * - o,
Solving for A, B, C and D we find that
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MAGNFTIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.27 (Continued)

~

(wt-kz)

¢a = Re %[(l+js Eleo)sinh kx + jS tanh kf cosh kx]ej (f)
¢b = Re %[jS~sinh kx + jS tanh kf cosh kx]ej(mt-kz) (g)
where A = (1+jS e/so)sinh kd + jS tanh kf cosh kd.
Part b
If
Itk >> 1
tanh kf » 1 (h)
A comparison shows that in this limit the results agree with Sec. 7.2.4 if
we note that
ekx = cosh kx + sinh kx (i)

PROBLEM 7.28
Part a
The regions between the traveling wave electrodes and the moving sheet are

free space, and therefore the fields are governed by
v24 = 0 (a)

where

E=-V (b)
Moreover, solutions that have the same (z-t) dependence as the imposed
traveling wave potentials, and that satisfy (a) are

p (wt-kx) (c)

a

Re[Alcosh kx + Azsinh kx]ej

¢, = Re[B,cosh kx + B,sinh kx]ed (WE7k2) @

2
The constants Al’AZ’Bl’BZ must be adjusted to make these solutions satisfy

the boundary conditions

¢a = Vo at x=c¢ (e)
b =V at x=-c (£)
¢a = ¢b at x=0 (g)
ar?
) 3 a b ‘z _
e+ Vs i - el + o5 57 = 0 )

Part b

The symmetry requires that
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.28 (Continued)

¢a(x,z,t) = ¢b(-xszyt) (1)
and this implies that A1 = Bl’ A2 = - BZ' The boundary conditions become

A, cosh ke + A, sinh ke = V_ 1)

is (2A2) = Al (k)
where

S = (wkU)e _/ko_ )
Thus,

A =B =2j s%o/(sinh ke + 2§ S cosh kc) (m)
and

Ay=-B,= ?/o/(sinh ke + 2§ S cosh ke) (n)
Part b

A section of the sheet can be enclosed by a thin volume of small area in

the y-z plane to give the force per unit area as

T =272
¥4 zZX

(x = 0) (o)
where the symmetry has been used to set

a b
sz - sz (»)
Thus, the time average force per unit area is
_ Aa nak
<T,> = Rele B (0)E) (0] (@)

and from (m) and (n),

= - * -
<T > = Rele (-$1)A% (-i)A, ] (r)
2 1°|v_{%s
= Re ) 732 (s)
sinh“ke+4S cosh ke
2 kz'v |Zs
0 o
= 2 732 (€
(sinh“"ke+4S"cosh“ke)
It follows from (t) that the maximum occurs as
s = % tanh ke (u)
or osk
o= kU + =— tanh ke 10D

2e
o
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MAGNETIC DIFFUSION AND CHARGE RELAXATION

PROBLEM 7.28 (Continued)

Part ¢
Note that if S is held fixed at the value given by (u), the force per unit
area remains fixed. Thus, as os + 0, the velocities of the potential wave and

the sheet must become equal to retaln the force at a constant value

w + kU (w)

—-40-



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.1

The identity to be verified is
Ve (YA) = YV-A + A VY (a)

First express the identity in index notation..
d9A
3 _ m oy
Ix [wAm] =V 3xm + Am axm (b)

The repeated subscript indicates summation. Thus, expanding the first term on
the left yields:
9A

_m Qg’_z «A e
\baxm-i-AmBXm_leA'i-AVlb (c)

PROBLEM 8.2
We wish to show that
BeV(yA) = YB-VA + ABVY (a)

First, the identity is expressed in index notation, considering the mth

component of this vector equation. Note that the equation relates two vectors.

(B-[V(YA)Y]) = (VB*[VA]) + A BTy (®)
Now, consider each term separately
@ (V@B D, = B, g—xk Wa) = A_ B %ﬁk— + yB, Z% e
3A
(YB[VA]), = VB, a—xf (d)
Amﬁ'Vw = A B [Vp], = AB %‘x"; (e)

The sum of (d) and (e) give (c) so that the identity is verified.
PROBLEM 8.3

. Part a
a5 is the cosine of the angle between the xi axis and the % axis
(see page 435). Thus for our geometry

1A

2 2

i o1

4% 172 2 0 (a)

0 0 1
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.3 (Continued)

Now, we may apply the transformation law for vectors (Eq. 8.2.10)

]
Ay = and

where the components of A in the (xl,xz,x3) system are given as

Ap =13 4,225 A=~ 1
Thus:
'= =
Ap = apdy = aphy ety tagghy
Ai = 1/2 + /3
V3
v _ = _ Y3
Ay = agy 7 + 1
'= = -
Ay = ag 1
Using matrix alegbra, we can write a more concise solution. That is:
1
1 —
A a); 315 340 A G+
V3
! = = - —
) 31 3 33 M -=+D
' —
A3 a3) 83, a33] |A4 D

Part b

The tensor a,, 1s associated with coordinate transforms involving the

ik

direction of force while the tensor ajl

forms involving the direction of the area normal vectors. The tensor

transformation is (Eq. 8.2.17), page 437;

' =
Tiy = 3k 250Tkg

For example,

' ==
Ti1 = 2n10 T = 211211711 212211721 t 213211Tn

+

+ a. ,a,T + a,.a

a11312T12 12712 22 13 12T32

+

71313713 + 31531973 + 3143;4T454

L L1,603
Ti=3%7

42—

(b)

(c)

(d)
(e)

(£)
(g)

(h)

is associated with coordinate trans-

(1)

1)

(k)



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.3 (Continued)

Similarly
3
] = - =
T2 2 t
1] —
Ty, = 0
; 3
! = o e
T 5+
v 3 _ 33
T22 =%~ 73
' =
T), = 0
' =
Ty, = 0
v =
T}, = 0
-
), = 1

=&

RIS

Written in matrix algebra, the problem is solved below:

1 1 ] 1]
T1r T2 Ty
] 1] ]
To1 Taz2 T4

] 1 1 B
T3y T3z Tag

Note that the third matrix on the right is the
multiplication of (t) gives

7

PROBLEM 8.4

el

3
Gr=7)

o

A X

b

13] {211 %21 23
Tosl 212 322 232
Tazl (213 223 233
transpose of aij' Matrix

The mth component of the force density at a point is (Eq. 8.1.10)

aT
I U1
i axj

-

Thus in the 11 direction,

)
(m)
(n)
(o)
(»
()
(r)
(s)

(t)

(uv)

(a)



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.4 (Continued)

2 2
T aT aT P P
_ 11 12 13y _ (o __o -
Fl= Gt v, ) gy -gxt0)=o0 ()
1 2 3 a a
-> >
Similarly in the 12 and 13 directions we find
v - (ZTzl . szz . :Tza] “ o ©)
*1 *2 X3
aT aT 3T
F 31 32 33) =0 (@)

= ( + +
3 Bxl sz 8x3
Hence, the total volume force density resulting from the given stress tensor is
zero.
PROBLEM 8.5

A%
2

3

[(\\) _ 3 N
__ -t _ - in region (1) E=E°(§ Il + 12)

in region (2) E=0

14—
(b)
X;. z ~5-x‘-+ 3
i N 2 -
(.-‘ A LW
Xs n’.\ xl
814
Tij = eEiEj - 5 €B R (a)
Thus in region (2)
T,, = [0] (b)

i3
in region (1)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.5 (Continued)

5 2 32
8% 7 o 0
- 3 2 _3 2
Tij - 2 €oFo 8 €oF0 0 (e)
13
i 0 0 -3 eoEod

The total contribution to the forces found by integrating the stress tensor
over surface (c) is zero, because surface (c¢) lies in region (2) where the
stress tensor is zero. By symmetry the sum of contributions to the force
resulting from integrations over the two surfaces perpendicular to the Xq axis
is zero. '

Now let us note the fact that:

area (a) = 2 (d)
area (b) = 3 (e)
Thus: .
£, = §T1j n, da (£)
f1 = ITllda + [leda + le3da
(b) (a)
5 2 3 2
=3 €°E°(3) + 3 EOEO(Z) (g)
i le g2
£, = 45 €.E, (h)
f2 = ITZIda + ITZZda + IT23da
(b) (a)
3 2 5 2
=3 eoEo(3) - §-€°EO(2) 1)
1 2
f,=3 % €% &)
f3 = IT31da + IT32da + [T33da

Hence, the total force is:

= 7 2 > 1 2 >
f=14 B eoEo 11 + 3 % eoEo 12 )
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.6

Part a

At point A, the electric field intensity is a superposition of the imposed
field and the field due to the surface charges; E = (of/EO)Iv. Thus at A,

g

= _ =z z £
E=1(E)+ iy(Eo + E;) (a)
while at B,
=1 (Eo) + 1y(no) )
Thus, from Eq. 8.3.10, at A,
N o, 2 o ]
< |1 2 _ _f _£
Tij T2 Eo[Eo (Eo + € )] eoEo(Eo + € ) 0
o (o]
g o, 2
f 1 f 2
EOEO(E0+ eo) 3 eo[ (Eo+ = ) - Eol 0 (c)
o, 2
. 1 2 £
0 0 - E—eo[Eo+(Eo+ eo) ]

while at B the components are given by (c) with Gf »> 0.

Part b

In the x direction, because the fields are independent of x and z,

£ = (b-a)[(rxy) 'A —(Txy)‘B]D = (b-a)DE o, ()

or simply the area multiplied by the surface charge density and x component
of electric field intensity.

In the y direction
%
£, = (b-a) (Tyyl - Tyy‘ )D = (b-a)D[E 0, + 5~ (e)
A B o
Note that both (d) and (e) could be found by multiplying the surface
charge density by the average electric field intensity and the area, as

shown by Eq. 8.4.8.
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FIELD DESCRIPTION OF MAGNETIC AND ELECT IC FORCES

PROBLEM 8.7
A S S A S S S S S A el
| (2) t
1
al 1 x
i j : ¢3)l b
v/ / / / VA 1
e VR
[ 7 7 v/ P2 7 7 /7 V7 7
| *3 x‘
W= L
I_.____-_____'______v
(a)
Before finding the force, we must calculate the il field at X = L. To find
this field let us use
§ Benda = 0 (a)
over the dotted surface. At X = + L,

H(x1=L) = Hoi (b)
over surface (4) H = 0, and over surface (2), H is in the 1.1 direction, where
n = Iz. Thus over surface (2) Ben = 0.

Hence, the integral in (a) reduces to
- uoﬂoda + J uOH(x1 =4+ L)da = 0
1) (3)
- uoﬂoa + uOHb =0 per unit depth (d)
Thus:
H(x:l =+ L) =ga/b)Hoil (e)
§
= .5
Tij uoHiHj 2 uoH'ka (f)
Hence, the stress tensor over surfaces (1), (2) and (3) is:
= ]
u
o .2
5 Hl 0 0
u
o .2
'1'ij 0 — Hy 0 ()
!
o .2
L 0 0 - —2- H].-_
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.7 (Continued)

over surface (4)

TiJ = [0] (h)
Thus the force in the 1 direction is
fl = J Tij njda (i)
£, = - j T, da + f T,,da + I T,,da €))
(€)) 3 (2)
Thus, since the last integral makes no contribution,
u u 2 u
S o2 @y =242 .02
f,=- 5 H (@ +—FH () b= ZHOa{b 1} (k)

Since Tij = 0 over surface (4) there is no contribution to the force from
this surface. and by symmetry, there is no contribution to the force from the
surfaces perpendicular to the Xq axis. Thus, the force per unit depth in

1 direction is (k).

PROBLEM 8.8

The appropriate surface of integration is shown in the figure

i !

i A

I @ 1T L

I i : - = o _—\—“l *—!—\rt (3 y - '-;b‘. - ) 4 - i —i —
e 1 e _::'i_”) 3 ;T?_:c |y 20
‘—r‘":CI T i \‘4".-_.. A e e e - e -t

! T }

: —‘-.z-'o :_“ Vi

L - === -

The stresses acting in the x direction on the respective surfaces are as
shown. Because the plates are perfectly conducting, all shear stresses
required to complete the integration of Eq. 8.1.17 vanish. The only
contributions are from surfaces (1), (ii), (iii) and (iv), where the fields
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.8 (Continued)

are known to be

_ v, _ v, .
E=-a-1y 1) ;E=-riy (111)
i v ) v (a)
E = e iy (ii) ; E = 5 iy (iv)
Thus,
£, = (T,,) ad + (T,,) ad - (T,,) bd - (T,.) bd (b)
1 17y 17,y 17441 1y,
2 1 1
dvoeo['l; - a] (c)

The plate tends to be drawn to the right, where the fields are greater.

PROBLEM 8.9

Ve ' 3} o
v I i S S

\Cr > - = (iy)
~vv ‘TI..:-_L— T _—LA— T _L T }(—TCQ—‘ -

< ol

a1

The volume enclosing the half of the plate is arbitrary so long as it is
defined so that it does not include additional charge. Thus the volume shown
in the figure encloses no more than the desired distribution of charge. More-
over, surfaces (i) and (i{if) pass through the fringing fields half way
between the plates where by symmetry there is no X,y component of E. Thus surfaces
(1) and (iii) support no shear stress T21. There is no field at surface (iv)
and hence the only contribution is from surface (1), where the square of the

field is known to be
E =—7° (a)

and it follows that because T22 on (i) is --% EoEi and the normal vector is

negative

o %
£, = -5 (b)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.9 (Continued)

The fringing field tends to pull the end of the plate in the + X,

direction.

PROBLEM 8.10

iﬁ Q

1 = S =

[
A S =

S a@_

4
F 0 5 [VE i 1
Part a

Consider the surface shown in Figure 1. The total force in the x

direction is:
f = f T _da - J T _ da + f T _ da - I T _ da + j T _ da
X Xy Xy XX XX XX
1,3 5,7 4 8 2,6
The first four integrals disappear because:

T =¢EE =0on1l, 3, 5 and 7 because we are next
xy Xy

to the conducting plates (Ex = 0)

Txx = 0 an 4 and 8 because the E field = 0 there

Hence
f = I T _da = [ -1 E2 da
X XX 2 'y
2,6 2,6
where Tij is evaluated wusing Eq. 8.3.10.
E =2
y s

and hence:

...50_
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.10 (Continued)

2
E vV _ _£gd 2
£ f-2(3> da= -y @
2,6 :
Part b
The coenergy of the system is

W' = -;_—"C(x)v2 (e)

where C(x) = 215:5225 (£)

Thus, (see Sec. 3.1.2b)

aW'_ 1 3C(x) 2 de v2

T T2 Y T s (@)
which is the same value determined in part (a).
Part c
The equation of motion of the plate is:
2
Mg—-’%+l((x—a)=f = - de 2 (h)
X s o
de
When the system reaches equilibrium with the switch closed,
__de 2
K(Xo—a) = - Vo (1)
thus
de 2
xo a- sK Vo @
After the switch is opened,
2
M LE 4 k(x-a) = - & GPee) ()
s
dt
The electrical circuit is like an R-C circuit with time varying elements
+
\_r‘[ R(x)
v + R(x)1i(t) = 0O )
d ,
v+ R(x) g7 [C(x)v] =0 (m)
dv dC(x) dx _ _
v f R(x)C(x%) it + R(x) = acV 0 ) (n)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.10 (Continued)

where:
. - 2d(a-x)e
R(x) = 35d(a-x) and C(x) S
Hence
e dv [e 1 dx
v"-CJdt:m[(!(a—x) d;lv—O
Part d

Dropping the inertial term from (h) leaves:

de 2

K(x-a) = - sV (t) from (k)

But we may write the identity

1 dx___ 1 4 _
" (ax) dt - R(xa) at ‘(-2
and then, from (q)
o1 dx_ __ s g_.[_gs:_ z(t)]
(a-x) dt de 2(t) dt s

1 d 2 2 dv

= Vv (t) == —

vz(t) dt v dt

Substituting back into (p) we have

€ dv 2€ dv

+
V¥oa ¥ o d

Solving we find
v=yv e (9/3€)t
o

and substituting back into (q),

Along relaxation time is consistent with neglecting the inertial terms, as

then x(t) varies slowly.

Part e

(o)

(p)

(9)

(r)

(s)

(t)

(u)

)

Proceed as in (c), and record the time constant T of a-x(t) by measuring

the mechanical displacement. Then,

€ 2
= = £ 1
ag 3

~52-
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.10 (Continued)

This problem should raise questions as to the appropriate form Of.Tij
used in (b). Note that the surface of integration encloses liquid as well
as the plate. We want only the force on the plate, so our calculation is
correct only if there is no net force on the enclosed liquid. The electrical
force dens{ty in the liquid is given by Eq. 8.5.45. There is no free charge
or gradient of permittivity in the bulk of the 1iquid and hence the first
two of the three contributions to this force density vanish in the liquid.
However, there remains the electrostriction force density. Note that it is
ignored in our calculation because the electrostriction term was not included
in the stress tensor (we used Fq. 8.3.10 rather than 8.5.46). Our reason for
ignoring the electrostriction is this: it gives rise to a force density that
takes the form of the gradient of a pressure. Hence, it simply alters the
distribution of 1iquid pressure around the plate. Because each element of the
liquid is in static equilibrium and can give way to motions of the plate without
changing its volume, the '"hydrostatic pressure" of the liquid is altered by
the electric field so as to exactly cancel the effect of the electrostriction force
density. Hence, to correctly include the effect of electrostriction in integrat-
ing the stresses over the surface, we must also include the hydrostatic pressure
of the liquid. If this is done, the effect of the electrostriction will cancel
out, leaving the force on the plate we have derived by two alternative methods

here.

PROBLEM 8.11

depth ©
A F .
= v

a | a-b
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FIELD DESCRIPTION OF MAGNETIC AND FLECTRIC FORCES

PROBLEM 8.11 (Continued)

First, let us note the F fields on each of the surfaces of the figure
over surfaces (1), (3), (5) and (7), El = ()
over surface v
o
(6) E2 2 El 0
vo
(4) E2=r E1=0
vo
2) E2=—c—' El’—'O
From Eq. 8.3.10,
)
T,,'= € E,E 43

13 - %ot T 73 Sl

Hence, over surfaces (1), (3), (5) and (7)

le =0
and over surfaces
e v 2
© T, -7 G
e v 2
@ 1y = -5 G
e Vv 2
@ 1= -7

Now;
f1 = ITijnjda = lelnlda + [lenzda + fT13n3da

[T13n3da = 0 because the problem is two dimensional.

Let us consider each of the other integrals:

Ilenzda =0
because the surfaces which have normal n, are (1), (3), (5) and (7) and by
(f) we have shown that T,, = 0 over these surfaces. Also, we get no

12
contribution to the force over surface (8), because E + 0 faster than the

area *» <,

Hence the calculation of the force reduces tc

~54-

(a)

(b)
(c)

(d)

(e)

(f)

(g)

(h)

(1)

&)

(k)

€3]



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.11 (Continued)

- (6) 4) (2)
fl = [ T11 d36 - J T11 dah - I T11 d32 (m)
(6) ) (4) (2)
€ DV
1 1 1
£ == {g-grdd (n)

Note: by symmetry, there is no contribution to the force from the surfaces

perpendicular to the X4 axis.

PROBLEM 8.12

Part a

—t
Q= fosinBrs
Q

tﬁ
o L T T T e e T T T S S TS m e =m ==
v L L s 7T L L L L < L4
X, N )
X3
From elementary field theory, we find that

™ - ﬂxlla

¢ = ¢° sin e (a)

satisfies V2¢ = 0 in the region between the plates and the required boundary
conditions. The distribution of E follows from

E=-Y (b)
Hence,
T - mx,/a T ™
Fae 0 1 _2 3 _ 273
E= ol ':sin . 11 cos — iz:l (e)

The sketch of the E field is obtained by recognizing that E is directed

perpendicular to contours of constant ¢.
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.12 (Continued)

Part b

To find the force as the bottom plate, we use surface (2). E=0 every-

where except on the upper side where the normal n = IZ (d)
and the field is
™ - 7mx,/a
- o 1 -
E= - ol 12 (e)
Hence,
fl=f'rij n, da=0 ()
f2 = szj nj da = JTZZ n, da2 (g)
per unit Xq5 this reduces to
£, = r T,,dx; yru (h)
° 2.2 1
1 1 T ¢o T Ta
but, 'I'22 =3 EOE2E2 =3 Eo az e (i)
and thus - anl
Eo" ¢o T a
f2 = 7 Jm e dx1 ()
2a o
2
€
£, = -2 (k)
4a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.12 (Continued)

Part ¢
On the top plate, use surface (1). Only the sign of the normal changes,

and the result is

f.1 =0 ®)

f. = -

2 4a (m)

or the force is equal and opposite to that on the bottom plate.

PROBLEM 8.13

Part a
8
= S | —
‘1‘1j eEiEj 5 EEkEk (a)
Hence: 2
2v
_1 "o 2 _ 2
Ty =3 & (% - %) (®)
3a
v 2
Ty = SoFaF = = & (3) %%, (e)
3a
Part b
Consider the surface of integration shown in the figure.
R Tt R B EERERRLE RN Q!
| |
! |
' |
A\ |
|
3
AN\ © .
all
¢]
f2 = Isznjda = I T21n1da + J T22n2da + J/}ggi;da (d)
(2)(3) (1) (4) by symmetry
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued) ‘
Let us look at each of these integrals separately

T22n2da = I Tzzda1 - I T22d34 (e)
(1) (4) (1) )]

over surface (1), E = 0 5 T22 = 0 and hence, the integral is merely:

£ o 2Vo ’ 2 2
—f T,,da, = - - ;—— (xz - xl) wdx1

22774 x.=—a 2 a2
(4) 1 R
x = ‘-a
2 9
eovow
44 (£)
= - — a
7
Thus, 2
T,,n,da = - 44 EOVOW (g)
22™2 27 a g
(1) (&)
Let us now evaluate:
I T21n1da
(2)(3)

Consider the surface shown.

in this region field = 0
\ __—~—t—" hence, no contribution to the

integral over this area.

X, TRA
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued)

Thus; -
x, a/5 zvo 2
f T, day = . ;23 - €, (;;5) awxzdx2
(3) 2
x,=a
. 2 eoviw
=797 a ®)
Over surface (2), we have essentially the same thing, except n=- 11
and X = - a. Hence:
2 Eoviw
Ty198 = -9 73 S
(2)
Therefore, the total force in the fz direction is
f = - ..5£ eovcz,w ( )
2 27 a 3
Part c
20
£, = I Tllnlda + Ilenzda + Jzzgﬁ:da (k)
(2)(3) (1) (4) by symmetry
lenzda = - J leda4 over (1) we get
(1) (4) 4) 0 as before
2Vo 2 a
=€, (——5) J xlxzwdx1 =0 Q)
3a -a
x2=2a
Now, over surfaces, 2 and 3
Tllnlda = - J Tllda2 + J Tllda3 =0 (m)
(2)(3) (2) (3)
because,
T =T
‘ 11'2 11|3
hence fl = 0. (n)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued)

Part d
O.=n¢*€F (o)

at the lower surface of the movable conductor. The functional relation,

f(xrgz), for the lower surface if the movable conductor is given as
f(xlxz) = v4a2 + xi - x, = 0 ()

the outward unit normal to this surface is

VE(x,x,) X
= L2 o rio-ffl—2——0 (@)
TVE(xx.) | x, 1~ "2 1
172 2 i ox, 2
1
— +1
*2
at x, = déaz + x2 R
2 1 - -
2 2 2112
ZVOEO ) ba” + X1
o, =€ [nE, +nE ] =—-2|—=+x —_— (r)
f o171 272 3a2 X, 2 4a2 + 2xi
The surface force density (see Eq. 8.4.8) is equal to:
=b  =-a
=_ _ E +FE
T=0, —5— (s)
where, Eb = field just below the charge sheet
E® = field just above the charge sheet
Since
=a = 1l =b
E =20, T—io'fE ()
thus - 1/2
_ & (ZVO)Z xi _ _ 4a2 + xi
T=— [—+ — + x x,1i,-x,1 — (u)
2 3a2 X, 2 171 272 4a2 + zxi

To find the total force, the surface force density must be integrated over the

surface. Hence, we find

vola L, U2, 172
£, = - 2 (;5) [a {2x] + 42"} {x] + 42"} dx; (v)

1f the student wishes, he may carry out this integral, but the complexity of

the integration shows the value of the stress tensor in calculating such a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued)

force. We realize

that by using the stress tensor, we have essentially

carried out this difficult integral by an integration by parts.

PROBLEM 8.14

Part a

hence, v

E=1
a

and, from Eq. 8.3.10

€
Tyq = €EsFy - 64y 7 BB

Thus, the stress tensor becomes:

Vv 2¢
) 5 &)
a
vO
Ty = (;27) €o(*1%;)
0
l

Part b

v
L Cax) i 5 x)
a

( 2] eo(xlx2 0
a
vo 2 so 2
() 5 &) 0
a
V 2¢
0 -9 S6deg)

Consider the surface shown, bounded by the line segment X, = 2a, X, =

and X, = a/2 and x, = a.

Xoh
./¢:v»
ga - - - N\
@ /©
ol — = @\
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLLEM 8.14 (Continued)

As before, because the geometry and fields are two-dimensional, the force in
the 33 direction is zero. Also, since along surface (1) ¢ = constant, then

the E field = 0, and hence T,, = 0 along this surface. Thus the calculation

ij
of the force on AB reduces to:
f£,=- J T,,da - I T,,da (£)
(2) (3)
f2 = - I T21da - J T22da (g)
2) 3
Vo 2 1 2a 2 a 2 a
£,=- () €D 5[ [x; - &) lax, +J x adx; (h)
a a a/?
and hence
v 2
- O 3.7
£=-¢, () pa’ (53 1)
a
Similarly:
v 2 2a a
- - (O a 1 2_,2
f2 = - ( 2) Dso J 3 xzdx2 + 2 J (x1 a )dxl )
a a a/?
and hence
v 2
- - 3 (9 (31
f,=-¢€Da (az) (73] (k)
Thus, vz
= ) = 17 = 31
f=—€o-a—D[ill—2+12m] ()

PROBLEM 8.15
Part a

The E field in the laboratory frame is zero since the two perfectly
conducting plates are shorted. This can be seen by integrating E around a
fixed contour through the block and short and recognizing that the enclosed

flux is constant. Hence,

+vxB, E=0 (a)

=

B -

and thus
= L= = _ -
E vxB Vuo}loi2 (b)

Therefore we may now calculate J in the moving block.
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PROBLEM 8.15 (Continued)

J OE ou, VH 1, (c)
Thus:

F=3xB=-op vi’l (d)

o o1l
E= | @ xBrav = - 12 ove?(abD)T (e)
(] [} 1
volume '

Part b

The closed surface of integration is shown in the figure below.

r

P
w
i %
»

Xy
Since the field is uniform everywhere, the only non-zero components of the stress

tensor are the diagonal elements

1 1, .2
T11=Typ = - i-uoﬂo T33 = 7 Mo, ()
Thus
£, 2] Tipday = | Tpqpdey
(3) 2)
u u
=9 p2 4 10 02
= — H_ bD - — HbD = 0 (g)
Similarly \
f2 = T22dal - I T22d84 =0 (h)
6V (4)
f3 = I T33da5 - I T33da6 =0 (i)
(5) (6)
Hence:
f=0 1)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.15 (Continued)
Part ¢

The magnetic field strength and the current density are inconsistant. The
quasi-static magnetic field cannot be uniform and irrotational in a region where
a finite current density exists. The Maxwell stress tensor was developed with
the aid of Ampere's Law (quasi-static) which relates current density and magnetic
field rotation.

J=VxH (k)

= uo J xH= uo(VxH)x H )

o]

For this case, we have assumed that

VxH=0 (m)
In the limit of small magnetic Reynold's number, (Rm << 1), the motion does not
appreciably affect the field, and the answer found in part a is a good
approximation. There are some problems more easily handled with the stress tensor.
This problem illustrates tﬁat in other cases it is easiest to use the force
density J x B directly. Note that we could compute the field induced by J and
then use the Maxwell stress tensor and the self-consistent fields to find the

same force as given by (e).

PROBLEM 8.16
To find the force on the block, we will use the stress tensor over the

surface shown in the figure. Note that the surface is just outside the block.
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PROBLEM 8.16 (Continued)
In the region to the left of the block

I
H=- D—° 13 , and to the right H=0
Thus:
fl = f Tllnlda + I lenzda + I T13n3da (a)
but, since
Hl = H2 = 0; T12 = Tl3 =0 (b)
hence,
f1 = - f Tllda5 + [ Tlldal (c)
(5) v
on surface (5), uo Ig
T,, = - &5 —& (d)
11 2 D2
on surface (1) .
Ty =0 (e)
therefore
gl
f =+ 3 D=t g )
D
Similarly, f2 reduces to
£y = I Typday = f Typdag (8)
2 6
But, since T22 is a function of Xy alone (i is a function of X alone) the

two surface integrals are identical, and hence f2 = 0. Similar reasoning
shows that f. = 0 and thus the total force is

3
u Izd
F-—2°21
2D 1
PROBLEM 8.17
Part a
2= oH
V°H BO A% (a)

Assume a solution of the form:

= R (H (0" ] (b)
3%H

— = Juog K, (e
9x
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PROBLEM 8.17 (Continued)

Try
_ Kx
H(x) =H e (d)
where
2
K™ = juou (e)
and hence )
wh O
K=+ 2 (1+3) (£)
Let us define the skin depth as:
2
§ = (g)
wH O
And
nd thus -3 HFa|
H= ﬂl e + 52 e e iz (h)

Because the skin depth § is assumed to be small, and the excitation 1s on the

left,

Hz(large x) +0 which implies H, =0
Hence, _Xx
fAi(x,t) = H, e 5(1+j)ej‘°ti (1)
—71 -1 z
But, our boundary condition at x = 0 is
- “jut 7 _ _ I jwt s
H(x=0,t) ReHle iz Re > e 12 1
and thus x
- 5(1+3)
= S § $ jut =
ﬂ(xlf) =-3ge e i, (k)
3 F(1+9)
- = zvy - _ 1 (1+)) 5 jot =
J=VxH vy iy 5 5 iy (2)
Part b
f=[3xB4V=IunHdV (m)
[ B [
£ = Re[—zo—_— dv] + Rel; > e2ut dV] (n)
Now, solving each of these integrals:
- = 2x
fun H* .2 - 2X
=" o~ 1 IV 1 § =
——2——— dv = 'i‘ uoaD(B) g (1+j) E e dx ix
ua
1 %o 2 -
5 i ()
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PROBLEM 8.17 (Continued)

- -~ 2%
[Ixu H 2 - 24
5 %y = 2y ap (D) %—(l+j)e2jwt r e ® dx I
o
u._a
1 "0 .2 2jwt -
= Z- ———D I e j ix (P)
Hence, taking the real part, the force as in equation (n) is:
u.a
= 1l 0o 2 -
f 7 D I"(1 + cos 2wt)ix (q)

Part ¢

Using the Maxwell stress tensor, we choose the surface shown in the

I

figure,

2
fx = [ijnjda = I Txxnxda + I Txynyda (r)
(1) (3) (2) (4)

Along surfaces (2) and (4), Hx = 0 along the interface between the perfect

conductors and the finite conductivity block. Thus,
Txy = uonHy =0 (s)
At surface (3), the field is zero since all current filaments complete a

closed loop circuit with the source through the block. Hence
Txx = 0 on surface (3) (t)

Therefore the calculation of the force reduces to

fx = - [ Txxda (u)
1
M

= .- _242
TxX = 7 Hz (v)
And thus,
abu

o .2

fx 2 Hz )
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PROBLEM 8.17 (Continued)
where the field Hz is evaluated on surface 1, i.e. x = Oland is simply given
by the boundary condition (j). Thus it follows

f= ;’% 12 {1 + cos 20t}1_ (x)
which checks with (q). Note that the distribution of J and H, as found in
part (a), are not required to find the total force in this problem. Even more,
(x) 1is not limited to § << x block dimension, while the detailed integration is.

Note: We have made use of the rule for products, namely of:

jwt, Aejwt + A*e-jwt

a(t) = Rel[Ae ] = 7
jwt " jut
b(t) = Re[Bejwt] - Be ; B*e
then
a(tyb(t) = ABX + A%B ABeZIVt | pxpxe2IWE

4 4

%
= Re[% ]+ Re[ﬁg— e2iuty

\—r—)\—”_\“—)
avg. value time varying part

PROBLEM 8.18

Choose the surface shown in the figure.

(5>
R | O T T A T T
, N R
X ) i@ ® N @
| | I i
I ! | 1
U — - = e e . )
@
%) ng\ Vi )‘a @ X;_
Si<&q V.Qw
X_; x\
fI =.JT1jnjda = J Tllnlda + I lenzda + J T13n3da (a)
3,4 5,6 1,2

Since the plates are perfectly conducting, E1 = 0 at surfaces (5) and (6)
and .hence T12 = 0 on surfaces (5) and (6). Surfaces (1), (2), (3) and (4)

are far from the body so
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PROBLEM 8.18 (Continued)
A

§=?°-iz (b)

at each of them, and thus, on surfaces (1) and (3), T13 = 0, Therefore,

f; = - J Tllda3 + I Tllda4 (c)
(3) 4)

3y . _ % Yo,2

=Ty =" @@ (d)

and a; = a, (areas). Hence,

f1 =0 (e)

PROBLEM 8.19
Part a

Since the system is electrically linear,

B =By + Br (a)
where 32 and Er are respectively the fields from the left and right wires.

The force on a unit length of the right wire is

fr = [Jr x B da = JJI b4 Bz da + IJr X Br da (b)
but,
er X Br da=0 (c)
ane hence,
fr = Jr x Bl da ’ (d)

Since, we don't need the fields near the wire,

r-— -
5 . ESE x211 - (xl+a)1;] ©
L 2m (x +a)2+ 2
L M1 *
-z T
= . BQE xzil + (x1 a)i2 -
r 2w (x -a)2+x2
71 2
Hence,
fr = Jr X Bzda = Ii3 x Bz (x1=a, x2=0) (g)
u 1% a)i u 12
F =-0° 1__o i (h)
r 2m 4ma "1

(2a)2
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PROBLEM 8.19 (Continued)
Part b

Along the symmetry plane of the surface shown in the figure

_ MI - -
B =5 § 2;) 1, 1)
(a +x2)
The terms of Tij go as B2, but B2a 15 and the surface area goes as 2TR on surface
(2), hence the contributions of theR stress tensor will vanish on surface (2) as

R*o; we need only compute the integral on surface (1). Because Hl = 0 in the

plane Xy =0
£, J_Tllda - Jt: 7 9%
o da)’ rﬂ . &)
2 . (az+x§)2
Solving this integral, we find
u 12
£, %ma (k)
also
f2 = f3 =0 L)
since
Tyy = T31 =0 (m)

and hence the total force is that of (k) and it agrees with that determined
in part (a).
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PROBLEM 8.20 X4
A
= <
lf“’
| AN
l oo \
\
< |
\®
4"3 © ! A+? { -
T A4 T I'X‘
h— o — o a —»
: /
@ /
| /
{ lo i
| -
v ’/’
Part a

Use the contour indicated in the figure. At infinity the fields will go
to zero, and hence there will be no contribution to the force from the semi-
circular part of the area, i.e. surface (2).

Along the line Xy = o, E2 = 0 by symmetry and

2 A

El = "E—o' (m)sine (a)
t2 = 82 + xi (b)

x X :
sing = = = —2L ()

r

az+x2
1
Hence x

A 1
B =t7 2,2 (d)

o a +x

1
£, = szjnjda = ITZInlda + ITzznzda + JT23n3da (e)
' (1) 1) (1)
first and last integrals = 0, El and 53 = 0 on surface 1
2
T =-f:gE2=-E.9.()‘2\ *1 (f)
22 21 2 V22 2..2.2
€T (a +x1)

-71-



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.20 (Continued)
Thus 2
£ -9 AZ fm x1 dx1
2 2¢ “2 o (a2+xi)2
A2
f, = —
2 4me a
0
Part b

From electrostatics,

f = AE
From the figure, we see that
E(x,=a) = 52— 1
2 Zneo(Za) 2
Hence,
= _ AZ I
4Te a "2
o

(2)

(h)

(1)

(3)

which is the same as we obtained using the stress tensor -~ (see equation (h)).

PROBLEM 8.21
Part a
From Eq. 8.1.11,

B B_B
21 (BZ-BZ) Xy
Uo Xy uo
B B
1 2 .2
T, =—% ——(-B°+B
ij ¥, 2“0( X y)
1
0 0
b zuo

where the components of B are given in the pr

Part b

oblem,

(a)

The appropriate surface of integration, which is fixed with respect to the

fixed frame, is shown in the figure.
We compute the time average force,
and hence contributions from surfaces
(1) and (3) cancel.

zero on surface (2), which is at

Fields go to

" y#o, Thus, there remains the stress

on surface (4). The time average

value of the surface force density T
-72-
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.21 (Continued)

is independent of x. Hence,
T = - <T =0)> b.
y y},(}' ) (b)

1 2 2
T = - — <-B° + B>
y 2 X y (e)

Observe that

-jkUt -ijt

<ReAe ReB E%Rexﬁ* (4

where B* is complex conjugate of B, and (c) becomes

Ty i l‘u Ref- (hoK ejkx) (uoKoe_jkx)+ ﬂ&ﬂ ejkx (jk::l(o—) e_ij}
et ;
4 ook
Finally, use the given definition of a to write (f) as
ung 1
RN (g)

Note that Ty is positive so that the train is supported by the magnetic field.

However, as U+*0 (the train 1is stopped) the levitation force goes to zero.
Part ¢

For the force per unit area in the x direction;

1
T = - 5;; <BxBy(y=0)> (h)
Jku
R Jkx (%) -jkx
= 2110 Re l:uol(oe (——-a * )Koe :} )
Thus
K U ou
T = - °0 Re § \|1 - 3(=2 1
X H,OU 2 1/2 ‘( )
2[1 + ( ]

As must be expected, the force on the train in the x directions vanishes as
U20. Note that in any case the force always tends to retard the motion and

hence could hardly be used to propel the train.

The identity sin(8/2) = + /(1 - cos8)/2 is helpful in reducing (j) to

the form
- uoKi u O'U 2
x (k)
uocU 241/2

2[1+(k

3
It
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.22
This problem makes the same point as Probs. 8.16 and 8.17, with the
additional effect of material motion included. Regardless of the motion,
with the current constrained as given, the magnetic field intensity is zero
to the right of the block and uniform into the paper (z direction) to the left

of the block, where
I

= _= o0

=1 - (a)
The only contribution to an integration of the stress tensor over a surface
enclosing the block is on the left surface. Thus

- 142
fx ds Txx = ds u Hz (b)

2 "o
2

ds Io
Tt Y% ) ()

The magnetic force is to the right and independent of the mégnetic Reynolds
number.

PROBLEM 8.23
In plane geometry, a knowledge of the charge on the upper plate is equivalent
to knowing the electric field intensity on the surface of the plate. Thus, the

surface charge density on the upper plate is

1 t Io
O =2 fo Io coswt dt = o sin wt (a)
and Of Io
Ex(x=a) = - =- Aeow sin wt )

Now, we enclose the upper plate with a surface just outside the electrode
surface. The only contribution to the integration of Eq. 8.1.17 using the

stress tensor 8.3.10 is

Aeo 2
fx = - ATxx(x=a) == Ex(x=a) : (e)
which we can evaluate from (b) as
Aeo Io 2 2
fx = - (Aeow)sin wt (d)

The force of attraction between the conducting slab and upper electrode is not

dependent on o, oro_.
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PROBLEM 8.24
The force on the lower electrode in the x direction is zero, as can be seen

by integrating the Maxwell stress tensor over the surface shown.

The fields are zero on surfaces (2), (3) and (4). Hence, the total force per

unit depth into the paper is

fx = E Txydx (a)

where contributions from surfaces in the plane of the paper cancel because the
problem is two-dimensional. Moreover, by symmetry the electric field intensity
on the surface (1), even in the fringing regions, 'is in the y direction only

and T = eoExEy in (a) is zero. Thus, the total x directed force 1is zero.

PROBLEM 8.25

The force density in the dielectric slab is Eq. 8.5.45. Not only is the
first term zero, but because the block moves as a rigid body (we are interested
only in the net force giving rise to a rigid body displacement) the last term,
which originates in changes in volume of the material, does not give a

contribution. Hence, the force density is

Fe=-21ae (a)
and the stress tensor is
8
= S §
'ri:l eEiEj 5>~ EBF (b)

Note that, from (a), the force density in the X3 direction is confined to the
right edge of the block, where it acts as a surface force. Thus, we obtain the

total force by simply integrating over a surface that encloses the right edge;
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PROBLEM 8.25 (Continued)

1 a2 1 b,2
where a and b are to the right and left of the right edge of the slab. Also
2 = Eb = - V /a. Hence (c) becomes
2 2 o v 2
= 3D oy (o

The force acts to the right, as could be computed by the energy method.

PROBLEM 8.26
Part a

The force density for polarizable materials is:

= _ 1== l =z 0€ ;
F = 2 E*E Ve + > V(E*E p ap) ! (a)
\
The second term on the right side represents electrogtriction. Note that

this is a case where the material volume must change, and Hgnce the effect of
electrostriction is important. Sinceé free space and the elastic bulk are homogeneous
changes in permittivity and de/dp occur only at the boundarvy where

the permittivity is discontinuous. The upper and lower elastic bulk surfaces

are constrained by the plates. Thus only the Xy component of force is pertinent.
Since the left-hand edge is fixed, any stress arising from the discontinuity in
permittivity at that boundary is counterbalanced Ey the rigidity of the wall,
Therefore, all of the force arises at the right-hand boundary which is free to

move.

The closed surface of integration is shown in the figure.

1= = =7
T
)

SAN N

® N
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PROBLEM 8.26 (Continued)

1 9€
'rij eEiEj -3 613 [e- p 5-5]Ekﬂk (b)
Since a/c << 1 and b %-a,the field at the dielectric interface is essentially
uniform. ) ) vo
E= -~ 12 -8—~ (C)
The relevant components of the stress tensor are:
=-E g2, 1 3.2 ~
Th=-28*+3°P5 5 ()
T,y = €E4E, =.o (e)
0
fl = I Tllnlda + [ T 5 2da (£)
(1) (3) (4)
Hence
f1° [Tuda:s g [Tlldal
(3) (1) .
€ VvV 2 €, V 2 v 2
e .0 (O S O ) p 3 (o
=-—= 3 @ {2 (a](an)+2.(,p(a)(an)] ()
Thus;
2 2
f,:(el_e)von_g_a_g(von) -
1 2a 2 p a ’
Part b

In order to use lumped parameter energy methods, the charge on the upper
plate will be found. The permittivity of the dielectric bulk is a junction of
the displacement of the right<hand edge. That is, if mass conservation is to
hold,

p, abD = (p, + Bp)aD(b+£) (1)
where
p=op,+ho, 8p=04f £=10 (&)
Thus, if Ap << Py and § << b, to first order
= -p &
Ap = Po i (k)

(see Eqs. 8.5.9 and 8.5.10)

Furthermore, to first order, using a Taylor serles,

-77-



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.26 (Continued)

ce Po 3¢
e=e +ybo=e -k ()

D‘IO

Also, the electric field will be assumed as uni form everywhere between the
plates. Hence; in the block

= - Vo 3€
D= - 12 {'2—— [S Ap]} (m)
to the right of the block
V
D=-1, = eo (n)

By employing Gauss's law, we find the charge on the upper plate as:
P
o
( ey -

_°
b
J dw' = Jqdv I (p)

integrating we find

9€ g}(b+g)u +¢e (——)(c-b -E)D (o)

wl

V2 p V2
v 21 (o _ 03¢ 1. 0 e
ve =5 (F]e) - 3 5 &|®HID + 5 5 (eb-E)D (a)
Thus,
ow' (e,-€ )VZD V2
f =_e_ =_.L_°__o__l _opD_a£ (t)
e 9§ v=V° 2a 2 a o 3p

Second order terms have been dropped in the co-energy expression (alternatively,
first order terms can be dropped in the force expression).
Part c
If the result of part (a) is written for p = 3 + Ap, where R >> Ap,
then the answers to part (a) and (b) are identical to first order. This
should be expected since the lumped parameter approach assumed a value for
permittivity which was correct only to first order.
PROBLEM 8.27

The surface force density is

a b
m [Tmn = Ton! (a)
For this problem, we require m = 1 and n = iz. Thus
a b
Ty = (Tp = Tpp) ()

From Eq. 8.5.46,
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PROBLEM 8.27 (Continued)

g2 b.b
T) = €,E1Ep - €EE, (0
Note that Eg E (see Eq. 6.2.31). Moreover, because there is no free charge
eoEl 2 (see Eq. 6.2.33). Thus, (c) becomes

T, = E;[E E2 - €E (d)

1 ol 1]
That the shear surface force density 1s zero in the Xq direction follows the

same reasoning.

PROBLEM 8.28
The force density, Eq. 8.5.45, written in component form, is
dcE
- j_1 €
Fg=F o, 2 ERRTH x1 & BB ap 5 °) (a)

The first term can be rewritten as two terms, one of which is in the

desired form

3E
F =-a—-(eEE)£E 1 1lpp 3

17 ax CFPPTER B T2 Bieaeg ax (ZEk‘kap) (b)

Because V x E = 0, BEiIBxj = 3K /Bxi, so that the second term can be rewritten

3
and combined with the third. (Note the j is a dummy summation varilable.)

d 195
Fy = ':E (€E;Fy) - 5 3%, (eE B + (2 Pk 3 p) ()
Finally, we introduce Gij (see Eq. 8.1.7) to write (c) in the required form
3T
x
h|
where
1 J€
Tyy = €BEy - 5 8RB (e-p 5p) (e)

This is identical to Fq. 8.5.46.
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SIMPLE ELASTIC CONTINUA

PROBLEM 9.1

The equation of motion for a static rod is

da%s
0 =E ——§-+ F_ where F_ = pg (a)
X x
dx
We can integrate this equation directly and get
x2
6(x)=—9-§-(—2—)+Cx+D, ®)
where C and D are arbitrary constants.
Part a
The stress function is T(x) = E %% , and therefore
T(x) = - pgx + CE. (c)
We have a free end at x = £ and this implies T(x=2)=0. Now we can write the
stress as
T(x) = - pgx + pgl. (d)

The maximum stress occurs at x = 0 and is Tmax = pgl. Equating this to the

maximum allowable stress, we have

2 x 109

(7.8 x 10°)(9.8)2
hence

2.6 x 104 meters.

»
1}

Part b
From part (a)
T(x) = - pgx + pgt A (e)
The fixed end at x = 0 implies that D = (0, so now we can write the displacement

2
2
s§(x) = - P& () + 2B () (£)
Part c
og 8% , ogt oge’
§Q) =~ 77 +F @) =T (8)

For 2 = 2.6 x 104 meters, 8(2) = 129 meters. This appears to be a large
displacement, but note that the total unstressed length is 26,000 meters.



SIMPLE ELASTIC CONTINUA

PROBLEM 9.2
Part a
The equation of motion for a static rod is

2
0=l 40 (a)
dx

If we define x' = x-Ll, we can write the solutions for § in rod 1 and in rod 2

as

0,8 2
= - (XD
8,(x) = o (2)+C1x+Dl (b)
and ' ng xl2 .
Gz(x)=——E—2(2—-—) + Cyx' + D, (c)

where C,,C,,D., and D, are arbitrary constants. Since T = E g%-we can also write

1°72°71° 2
the tensions,
Tl(x) = - p,BX + E1C1 (d)
and
" o~ o ]
TZ(x ) = p2 gx' + EZCZ (e)

We must have four boundary conditions to evaluate the constants and they are:

§,(x=0) = 0, (£)
'= =
§,(x'=0) = §, (x=L;) (8)
0= - AlTl(x=L1)+A2T2(x'=0) + mg, (h)
and
= - '= e
0 A2T2(x L2) + Mg + fx 1)
where f: is found using the Maxwell stress tensor
€ AMV2
=900 €))
X 2

24
where we assume d >> 6(2) (x'=L2).

Equations (f), (g), (h) and (1) serve to define the constants of integration.
Substitution of (b)-(e) shows that

D, = 0 ' (k)
2
p,g L
1 1

- —-}-5-1- (—2-—] +CL +D -D,=0 (L)
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PROBLEM 9.2 (Continued)

—Al[_plgL1'+ E1C1] + A2[E2C2] +mg =0 (m)
oy
—A2[—p2gL2 + E2C2] + Mg + 5 = 0 (n)
2d
Solution of these expressions, beginning with (n), gives
2
€ AV ]
1
C, = Mg+ 252+ p gL A | (o)
2 [ 2d2 2 22— A2E2
and hence
11
€ = E“g 018l T ARG KIE]
€oAMvi 1
= {[0t#m) + p LA + p LA g + —5—) 15 (»)
2d 171
2
L p,L,A € AMV
- 1 1711 o 0
Dy = TE {tosm) + —5—=+ 0, LA lg + —— } (q)
171 2d
D1 =0 (x)
Thus, (b) and (c¢) are determined.
PROBLEM 9.3
Part a
Longitudinal displacements on the rod satisfy the wave equation
2 .2
o] §—§-= E 33 and the stress T = E 33 . (a)
2 2 9x
ot ax

We can write §(x,t) = Re[G(x)ejwt] for sinusoidal excitationms. 8(x) can be

written as g(x) = C,sin Bx + Czcos B8x where B = w/p/E. The two constants are

1
found from the boundary conditions
>
326
M= (2,t) = - AT(L,t) + £(t) (b)
ot
§(0,t) = 0. : (c)
These conditions become A
2%, ds .
-Mw“ (L) = - AE i o) + £, (d)
and
§(0) = 0 (e)
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PROBLEM 9.3 (Continued)

for sinusoidal excitations.

Now we find 02 = 0 and
fo .
c, = 7 . (f)
AEBcosBR- Mw sinBL
Hence,
§(x,t) = SInBx  Reff eVt (g)
AEBcosB-Mw sinBl
and
T(x,t) = E —g% = -EBcosBx 5 Rel £ eJ¥t) (h)
_ AFBcosB2-MwsinB °
Part b
At x = 2,
§(L,¢t) = L Relf 3¥f) 1)
AEBcotBi-Mw
where BcotBL = w/p/E cot (wi/p/E).
For small w, cot(w/p/E) -+ and
b
wl E
§(2,t) + ——— £(t) )
’ AE 2
5 Mw

This equation 138 as used to describe a mass on the end of a massless spring:

2

d"x
M — = - Kx + £f(¢) k)
° dt2 K,Qc
£
and M,
X = Re[iejwt],
~MwR = - xR+ £ )
ol ¥ X o’
or
1
X = 5 f(t) (m)
K—Mow
Comparing (j) and () we note that
= AE -
K=y and 20 L. (n)

Our comparison is complete and since M >> pAfL we can use the massless spring model

with a mass Mo = M on the end.

-83-



SIMPLE ELASTIC CONTINUA

PROBLEM 9.4
A response that can be represented purely as a wave traveling in the negative

x direction implies that there be no wave reflection at the left-hand boundary.
We must have
v(0,t) + ——T(0,t) = 0 (a)
vPE
as seen in Sec. 9.1.1b.

This condition can be satisfied by a viscous damper alone:

AT(0,t) + Bv(0,t) = 0 ()
Hence, we can write
B = A/pE
M=0 (c)
K = 0.
PROBLEM 9.5

Part a

At x = % the boundary condition is

0 = - AT(Z,t) - B % (L,t) + £(t) (a)

Part b

We can write the solution as

8(x) = C, sin Bx + C, cos Bx, (b)

1 2

where B = m-l% . At x = 0 there 1is a fixed end, hence §(x=0) = 0 and C2 = 0.

At x = % our boundary condition becomes

~ a8
Fo = jwBS (x=L) + AE I (x=2), (c)
or in terms of Cl;
F, = jwBC, sin BL + AEBC, cos BX (d)
After solving for Cl’ we can write our solution as
A Fosian
§(x) = AERcosB+jwBsinfL (e)

Part ¢
For w real and B>0, § cannot be infinite with a finite-applied force, because
the denominator of §(x) can never be zero.

Physically, B>0 implies that the system is damped and energy would be
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PROBLEM 9.5 (Continued)
dissipated for each cycle of operation, hence a perfect resonance cannot occur.

However, there will be frequencles which will maximize the amplitude.

PROBLEM 9.6

First, we can calculate the force of magnetic origin, fx’ on the rod. If
we define §(%,t) to be the a.c. deflection of the rod at x = £, then using
Ampere's law and the Maxwell stress tensor (Eq. 8.5.41 with magnetostriction
ignored) we find

quNZIZ
= (a)
z[d-s(l,t)‘] .

This result can also be obtained using the energy methods of Chap. 3 (See
Appendix E, Table 3.1). Since d >> §(%,t), we may linearize fx:

H;ANZIz LIOANZI2
£ = 5 + 3 §(2,t) (b)
2d d "

The first term represents a constant force which 1s balanced by a static deflection
on the rod. If we assume that this static deflection is included in the
equilibrium length £, then we need only use the last term of fx to compute the
dynamic deflection §(2,t). In the bulk of the rod we have the wave equation;

for sinusoidal variations
§(x,t) = Re[3(x)ed""] (c)

"we can write the complex amplitude 8(x) as

i

1 sin Bx + C, cqfﬁ?x (d)

where B = mlE. At x = 0 we have a fixed end, so 8§(0) = 0 and C2 =0, At x= 1%
the boundary condition is

5(x) = C

_ /38

0=f, - AE7, (L), (e)
or quN212 o dS

0= ——;E—T- §(x=) - AE ax (x=2) (£)
Substituting we obtain

quN212 ,

————§—-C1 sin B = Cl AEB cos B _ (g)

d ) ’ '

Our solution is 8(x) = c1 sin Bx and for a non-trivial solution we must have

¢, # 0. So, divide (g) by ¢y and obtain the resonance condition:
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PROBLEM 9.6 (Continued)
UOANZIZ
G——————J sin BL = AEBR cos B% (h)

d3

Substituting B = w\l% and rearranging, we have

3
Ed
—57; @) = ran@{D @
u NI e
o
which, when solved for w, yields the eigenfrequencies. Graphically, the first

two eigenfrequencies are found from the sketch.

R/

— — — —

' +—
- ca,QV/E j /2

LTI T =

- — — — - —— =

|

WefNeie

<

3T/2 cox r-_{O/E.

Notice that as the current I is increased, the slope of the straight line decreases
and the first eigenfrequency (denoted by wl) goes to zero and then seemingly
disappears for still higher currents. Actually w, now becomes imaginary and can

be found from the equation
3
gé p p
>3 (lellJ;; = tanh (]wlll\E; )
u N1I°%
o
Just as there are negative solutions to (1), “Wys Twg oo etc., so there are now

solutions + J|w1|- Thus, because w, is imaginary, the system is unstable,

1
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PROBLEM 9.6 (Continued)
(amplitude of one solution growing in time).
Hence when the slope of the straight line becomes less than unity, the system

is unstable. This condition can be stated as:

3
STABLE > Eg 7= > 1 (k)
u N1
o
or
Ed>
UNSTABLE ——3 —p—— < 1 . ®)
N212x
uo
PROBLEM 9.7
Part a

§(x,t) satisfies the wave equation

. 2
_ %
pP—5=E—5 (a)

325
3t2 ox

and the stress is T = E %%. We can write

8§(x,t) = Re[8(x)el"t} , (b)

and substitution into the wave equation gives

5 = 0. (c)

= ‘IE
B=w E
For x > 0 we have,

Sa(x) = 61 sin Bx + ?:2 cos Bx (d)

and ~ N ~
Ta(x) = ClEB cos Bx - CZEB sin Bx (e)

and for x < 0 we have,

gb(x) = 63 sin Bx + 64 cos Bx (£)

and

-3
~
kel
<~
H

= E3EB cos Bx - EAEB sin Bx (g)

Part b ‘
There are four constants to be determined; thus we need four boundary

conditions. At the right end (x=L), we have

Sa(x=L) =0 (h)
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PROBLEM 9.7 (Contiqued)
and the left end,

R -1
Gb(x=-L) = Goe (1)
There are two conditions at the middle (x=0),
A + A p—
Ga(x=0 ) = 6°(x=0 ) (1)
and
A A + A - ~
~Muw Ga(x=0) = ATa(x=0 ) - ATb(x=O ) - 4KGa(x=0) (k)
Part c
Solving for 61,62,83, and 64 we obtain
T
_j —_
. -5 AEBe 2 cotBL
C1 = 5 2)
sinBL (4K+2AERcotBRL-Mw")
T
n GOAEBe 2
Cy = 3 (m)
sinBL(4K+2AEBcotBL-Mw™)
1 51
n § AERe cotBL § e
Cy=— 7 " “eIAL (n)
s1nBL (4K+2AEBcotBL-Mu") n
c, =C, (o)

Thus, (b), (e), and (g) with these constants give the desired stress distribution.

PROBLEM 9.8
In terms of the complex amplitudes, (%) and (r) become
T'(0) = —L—‘ii (2) - text (a)
ahA i
and . LI,
T'(R) = -1 (r) - text (b)
where 1' = - GGO .

Equation (t) without the approximation becomes
GL (u+ LI
:] =_jw_9..(i_l‘_lg_?.; +ij8 (C)
) w-u o a o
Using the steady-state solutions for the rod, we can solve for T(x) in terms of

the boundary values %(0) and %(2):
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PROBLEM 9.8 (Continued)

~ - a sin[k(2-x)] |, & sinf[kx]
T(x) = T(0) sin[k2] + T(R) sin(kg] (@
then
o1 4a cos[k(%-x)] _ =~ cos[kx]
§ /oE [%(0) sinfkQ) T(L) sin[kl] (e)
From (a) and (b), this becomes
8(2) -5 =L 523 1 1 + Lyt 5 cosl[k?] (£)
o w/oE aA i sin[kR] . aA o sin[kR)
Thus, in view of (c) solved for go’ we obtain the system function
: 1
H(w) = 7\—9' = G
i 2 wGL_ (u+u ) 2
i A a 0 o A a
cos[kﬂ,]+j/p_—E_ (—é) (—]':;f) sin[kL]- [Qj———_ﬁj{l‘/ﬁ (E) (fo—f) sin[k2]
(g)
PROBLEM 9.9
Part a

First of all, y(t) = 8§(-L,t) where §(x,t) = Re[G(x)ejwt]. We can write the
lsian + CzcosBx, where 8 = w/p/E. The C2 is zero
because of the fixed end at x = 0(8(0) = 0). At the other end we have

2

solution for 3 as g(x) = C

M 3—% (-L,t) = AE %S— (-L,t) + £5(¢) (a)
at X
Using the Maxwell stress tensor, (or the energy method of Chap. 3) we find
. a1 1012 [1, + 1())?
£(e) = —; - (®)

[d-DHS(-L,t)1%  [d-D-§(-L,t)1?

which when linearized becomes,

£€(t) = - cI(e) - ¢ §(-L,t), (c)
where
2 2 .2
. - 2N quIo . } 2N quIo
I (d-D)2 1y (d—D)3

Our boundary condition (a) becomes

Mo Sy = a1y -cT- c, §(-L) (d)

27 dx 1

Solving for C1 we obtain
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PROBLEM 9.9 (Continued)

~

C.I
I
C = ' (e)

1 AZEBcosBL - (sz—Cy)sinBL

and we can write our solution as

y(t) = Re[-ClsinBL ejwt]. (£f)

Part b

The transducer is itself made from solid materials having characteristics
that do not differ greatly from those of the rod. Thus, there is the question
of whether the elastic response of the transducer materials 1s of importance.
Under the assumption that the rod and transducer are constructed from materials
having essentially the same elastic properties, the assumption that the yoke
and plunger are rigid, but that the rod supports acoustic waves, is justified
provided the rod is long compared to the largest dimension of the transducer,
and that an acoustic wavelength is long compared to the largest transducer

dimension. (See Sec. 9.1.3).

PROBLEM 9.10
Part a

At the outset, we can write the equation of motion for the massless plate:
2

—aT(2,e) + £5() =M 28 (,e) T 0 (a)
at
Using the Maxwell stress tensor we find the force of electrical origin fe(t)
to be
2 2
e EOA (Vo + v(t)) (Vo - v(t))
(d-8(2,t)) (d48 (8, t))

Since v(t) << Vo and §(2,t) << d, we can linearize fe(t):

. ZeoAVi 2 AV_
f(t) = —3 S§(R,t) + 7 v(t) (c)
d d

Recognizing that T(2,t) = E %% (2,t) we can write our boundary condition at

x = £ in the desired form:
2

38 ZEOAV0 ZEOAVo
akE ™ 2,t) = ——— §(L,t) + v(t) (d)
x d3 d2
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PROBLEM 9.10 (Continued)

Longitudinal displacements in the rod obey the wave equation and for an
assumed form of §(x,t) = Re[g(x)ejwt] we can write g(f) = Clsian + CzcosBx,
where B = w/p/E. At x = 0 we have a fixed end, thus §(x=0) = 0 and C, = 0.
From part (a) and assuming sinusoidal time dependence,we can write our boundary

condition at x = £ as

dG ZeoAvi “ ZeoAV6 ~
aE — (R) = s() + \ (e)
3 2
d d
Solving
ZCOAVo v
c, = 3 (f)
9 2¢e AV°
aEd"BcosBL - g sin BL
Finally, we can write our solution as
2e AV in@X
n
G(x,t) = L . 2 Re[Vejwt] ( )
) 2¢ AVS &
aEd BcosBL - ——1ET——— sinfL

PROBLEM 9.11
Part a
For no elastic wave reflection at the right-hand boundary we must have a

boundary condition of the form

v(0,t) + 2 T(0,t) = 0 (a)

PE

(from Sec. 9.1.1b). Since v(0,t) = %%-(O,t), we can write

- /oE 22 (0,8) = T(0,¢) ()
If we write the boundary condition at x = 0 for our example we obtain
0 = - ST(0,t) + £(t), (e)
or for perturbations
- - e
0 = - ST(0,t) + £ (t) (d)

Combining (b) and (d)

(t) = - s/p8 2 3‘3 ,t) (e)

a C.
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PROBLEM 9.11 (Continued)
and since 96/3t (0,t) = dys/dt,

e dyS
fac. (0 = = SHE ®

The perturbation electric force can be found using the Maxwell stress tensor

(using a surface of integration similar to that illustrated by Prob. 8.10):

e eosz eovgn ZeovoDvS
fx(t) =7a “Ta + a (g)
e 2e VODv
where we associate f (t) = o
. a.c. a
Equation (f) now becomes
ZEOVODVS dys
a R (h)

Now that we have dealt with the force balance we can write the circuit equations.
——4-1 The capacitance of the

! +

¢ V device 1is found to be

v
- 1 2e yD
R oo %o

a

Note that q = Cv and 1:%2. The basic circuit equation is

-V = dq _ dv dc
v + iR Vo v+Rdt V+R|Edt+vdt (i)

Substituting, we obtain

v ZEODRQX
Vo= v+ RC g+ —— Gt 1

and for perturbation quantities,

dv 2¢ DV R dy
o o s

s
0 VS + RCO —-dt + —a it (k)
Since w << —1—, v_ >> RC_ dv_/dt and now we have
RCo s o s
2€ DV R dy_
0= vy + i )
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PROBLEM 9.11 (Con;inued)
Equations (h) and (%) must be satisfied simultaneously and this can occur
only 1if

ZSODVOR _ as/-FTE-

a 2 VD (m)
oo
Finally from (m) we have the condition on the d.c. voltage;
1/2
- _Aa S/EE
Yo 2€ D [R ] (n)

PROBLEM 9.12
Part a
Note that there is no mutual capacitance between the two pajrs. We can find

the capacitance of the left-hand pair of plates to be

ed(% -y,)) € d(% +y,)
C, = ‘ + -2 (a)
2 h h
The current 12 can be found from 12 = dqz/dt = d(VOCZ)/dt = Vo dC2/dt,
and upon substitution of C2 we obtain
L - —(e-eo)vod dy2 ®)
2 h de

If we solve for Yy in terms of v, our job will be done.
Define the y-axis from left to right with y = 0 at Y, = 0. Assume all

constant forces (with v, = 0) to be balanced and consider only the perturbations.

I1f we assume for the rod §(y,t) = Re[g(y)ejmt] then we can write

3(?) = C, sin By + C, cos By (c)

where B = w/p/E . (We have assumed that the electrical forces act only on the
surfaces of the rod. This is evident from the form of the force demsity, Eq.
8.5.45, if the effect of electrostriction can be ignored.) At y = 0 there is

no perturbation force and for a.c. deflections we have a free end condition:

N
0 =T(,t) 9E %% (g=0) =0 (@
This forces C, to be zero. At y = % we can write the boundary condition as

1

- e
0 = - haT(2,t) + £5 _ (t)

-93-



SIMPLE ELASTIC CONTINUA

PROBLEM 9.12 (Continued)

Using the Maxwell stress tensor (or energy methods, as in Sec. 8.54)
(e—eo)d
2h

Linearizing and ignoring the d.c. term we have

£2(e) = w_ + vs)2 (e)

(e—eo)vod

& == V%

e

fla.c.

From the boundary condition for complex amplitudes we obtain

(E-Eo)Vod

dé .
0=—th_c—l;(9')+_—~F_—VS A _ ()

Substituting and solving for CZ;

-(e-€ IV
€y =3 Vg (e)
h“EBsin B4
Recognizing that yz(t) = §(0,t), we can now write
-(e-€ )V v ‘
yz(t)=Re -jr——il—il-ii edUt (h)
h™ TR sin %
-(e-€ )V d dy
N = __—.___9.—&____2.
Since 12 h i Ve have
2.2 7
jw(e-e ) Vd
12 = Re —§~—-"£L——ll— vy ejwt (1)
h~ Ff sin R2 A
Finallv, we can write
i jm(e—e°)2vid
Y(jw) = =~ = Y 16}
v h~ EB sin B2
Part b
The poles can be found from
h3 EB sin BL = 0 (k)
where B = w/p/E. The lowest nonzero frequency can be found from
sin(wi&p/E = 0 to be
w=—" )

W /E

Note that the w = 0 is a pole because the rod is free to translate slowly between

the plates.
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PROBLEM 9.13
Part a

The flux for the left-hand transducer 1s

2
u,N

A, =

. 2mR(a-§ (O,t))il (a)

and for the right-hand one,

2
UON
Ar = ZTTR(a+5(L1’t))1r (b)
1..2 1 e
For this electrically linear situation we have W; =5 i = E-Xi and f = EEE
Hence we find, to linear terms
2
uoN 2
fl = - 1TR(I° + 2101) (c)
and, because i_ =1 - Gv
r o out
uoN2 2
fr = e 'rrR(Io - 21o Gvout) (d)

Part b

For the left-hand transducer, an acceptable stress—tensor surface is shown

below,
/J = 0! no shear
"ﬂlkidn"-sl 5*\’(_ a5

:.—‘—)\(‘A\- e~

|

]

| . YAy

. R 5“"("‘);}1‘
[}

|

éAre:»'—‘-_’ g(aﬂq«)l R

—P

and the mirror-image is acceptable for the right-hand transducer. Application

of fx = § Tx n.da to the two surfaces yields the same result as in part (a).

33
S

i
-
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PROBLEM 9.13 (Continued)
Part ¢
The wave equation holds in the rod for 8(x,t). Assuming & = Re[g(x)ejwt],
we have g(x) =C, sin B x + C, cos Bx, where 8 = w/577. At x =0, f2= —T(O,t)(nRz)

1 2
which yields 9. A
2UuN"T I A
° =c¢.1
Rg | S
c,? 2 ~
which in turn implies C1 = At x = &, fr = T(L,t) (MR"), which will yield C2.

T(0) =

The only other relation we need is the electrical circuilt equation, which

we can find from

= — = Cos, +
Vout at 2 E,@:m,@l, RC G 'Vour )
to be
I s
v = _QE!~EELE£11 (e)
out a(l+j GLlw)
where L, = u NZ(ZnRa)/g.
1 o
Finally we can write G(w) as
A S
clwy = out o __ VoL (£)
i aRBsinBL(1+jGLlw)—ijCII°L1cosBl

Part d
If G << —};-so that the self inductance of the output transducer is negligible

and the systemlis matched so that avEp = G CI IOL1 we have

~

Vout onLch
~ = (g)
I avEp [sinBL-jcosBL]
and
v I L,C
Sut o 171 (h)
I avEp
PROBLEM 9.14
Part a
With no perturbations and no volume force in the rod we know that the
stress, T(xl), will be constant. At Xy = 0,
0= - AT(x, = 0) + £° ' ) (a)
e eovo A1
where, using the Maxwell stress tensor, f = > . Hence,
2d
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PROBLEM 9.14 (Continued)

eoviAl
T(xl) = - (b)
2Ad
Part b
The velocity of the wave will be vp = /E/p and the transit time will be
ty = L/vp.

Using Table 9.1 we have

N

_ -4
4 5700 ~ 1.96 x 10 sec.

Part ¢
This part is similar to Prob., 9.11, where our condition for no reflection

is

e 1)
fa.c.(t) = - A/SE.EF 0,t) (e)

Using the Maxwell stress tensor

where v = v' + Vo. Here, we ignore the effect on £€ of the change in d resulting
from the motion of the plate.

Writing the circuilt equation we have

- - p da dv dc
R+v=V REE+V=R(C-d—E+vE) (@)
The capacitance C is
€ A €A € A
ol . 01 ol
Y (S N R 2 §(0,t) (e)
Our equation becomes
£ A € A
I o1l dv' o138
0=v'+R 1 dt +RVO BT (0,t) (f)
and since
. eoAlR av'
d dt °’
we have
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PROBLEM 9.14 (continued)

RV € A
o]

' o __0013§
v 5 3¢ (M0 ()
d
Now we can use this result to write fz c. = eoAlvo v'/dz, and the condition

that this force take the form of (c) requires

A/pE a* = Rvi E(Z)Ai , (h)
or equivalently
4
- A
€AV
olo

PROBLEM 9.15
Part a

We have from the problem statement

v(z+Az) -~ Y(z) = BTAz .
If we take the limit Az - 0, then we obtain

-
fl
O ot
Q1°)
N &

Part b

We can write the equation of motion directly as

2
(hz) ;’—% = T(z¥hz,t) - T(z,0).
t

Dividing by Az we have

5 3% _ 1(zthz,0)-T(z,t)
8t2 Az

Taking the limit Az + 0 we obtain
2

2 z
ot

Part c¢
' Substituting the result of part (a) into the result of part (b) we get

2 2
I AP _ 3Ty
H 2 2 .
ot d9z”
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PROBLEM 9.16
Part a

We seek to write Newton's law for motions in the z direction of a slice
of the material having x thickness dx. In our situation the mass is

2
padzdx, where the acceleration is a’az/ac". The net force due to the stress is

Fz = [sz(x+dx) - sz(x)]a dz (a)

and ”
3“62
o] atz dx adz = [sz (x+dx) - sz(x)]a dz )

Finally, in the limit dx =+ 0 we have

E

0 z _ __2x (c)

Part b

The shear strain, e’ is defined so that it is proportional to
Gz(x+dx) - Gz(x) normalized to the distance between points dx. If sz=2G e x
then in the limit dx - 0 T7x =G aaz/ax if wve define

38
1 z
€2x T 2 9x (d)

The 1/2 is included to subtract out rigid body rotation, a point that is
important in dealing with three-dimensional motions (see Chap. 11, Sec.
11.2.1a).

Part c

From part (a),

o’ or
o ) = 3% (e)
Using the result of part (b) we have
S
o 525— =G S;E_ 5 (£

the wave equation for shear waves with the propagational velocity
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PROBLEM 9.17
Part a

Conservation of mass implies: net mass out per unit time = time rate of

decrease of stored mass

lov + 2% axja - (owia = - £ [oanA] (a)
As Ax + 0, we have

If we write p = (N + p'(x,t) and v = v(x,t) then we obtain by substitution

v, 3(p'v) _ _ 3p'
Po 3x T 3x TS (c)

Retaining only first-order terms we have

dv _ _ 9dp'
Po Ix ot (d)

as desired.

Part b

Conservation of momentum implies:

time rate of increase of stored momentum = net momentum in

per unit time + externally applied force
3 2, apv 2 3
—(ovhxn) = - [ov” + 5;&)— BxIA +(pvDA + pA = (p + 22 A WA (e)

as Ax + 0, we have

3ov) _ _ a(pv>) _ 3p

3t % % (£)

Expanding we have

9 3 3 3 3
oGt v +v G g = - R (x)
e

-

4
this term is zero
by conservation of
mass
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PROBLEM 9.17 (continued)
Finally we have

p@r+viy -2 h)

Substituting the perturbation quantities and retaining only the first order

terms we obtain

v _ _3p
Po Bt % e

Part c
In terms of perturbation quantities we can write
2
p' =a p' &)

where

2 )
a = (5%)p .
[o]

Substitution for p' yields the two equations

v _ _ 30’
%0 3x ° T Bt (k)
and
A
2 9p'_ v )

@ %x - Po Bt
Combining we obtain

3%y 2 3%y

“— = a° == (scalar wave equation) (m)
2 2

at 9%

Part d

If we substitute v = Re[a(x)ejwt] in the above equation we obtain

2~ 2
d—‘2’9‘1+-‘°—2$(x) =0 (n)
dx a :

which has solutions of the form

/\;(x)=C1 sin(% x) + C cos(%—x). (o)

2
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PROBLFM 9.17 (continued)
A rigid wall at x = 0 imples that $(x=ﬂ) = (0. The drive at x = £ and the

equations of part (c¢) imply that

@ 2% »)
dx a2 P
o
at x = L.

The solution for 3 is
. 3B, sin(g %
v(x) = - FrITI (@)
o cos(— 2)
a
and we can now obtain v(x,t): for 60 real

3 sin(® x)
v(x,t) = L 2 sin wt. (r)
ap
o cos(z-l)

PROBLEM 9.18
We can calculate the values of dd+/do and d6-/dB for three regions of the

x-t plane as defined helow.

A

C

‘\\1:§\\\\ o4
c “Vp

Referring to equations from text, 9.1.23 and 9.1.24, 9.1.27 and 9.1.28:

Region A:
s+ 1 'm dé- _ ,
@ - "2v o w O (a)
P
and
v
r1=-E m ®)
2 v
p
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PROBLEM 9.18 (continued)

Region B:
s+ _ o ds- _1'm
do > dB 2 v
P
and v
r=E_m
2 v
p
Region C:
dé+ _ dé- _ _
'aa——dB =0 and T = 0.

Plotting T(x,t) in the x~t plane we have

(c)

(d)

(e)
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SIMPLE ELASTIC CONTINUA

PROBLEM 9.19

We can find d6+/do and d§-/dB for four regions of the x-t plane:
L X
D

~ 0
C
D

Referring to equations from the text 9.1.23, 9.1.24 and 9.1.27, 9.1.28 we have,
Region A:

dé+ _ 1 T(a) dé- _ 1 T(B) (a)

do " 2E '3 2°E a
Region B:

dé+ 1 T(a) dé- _

@ ~2F > - ° ®)
Region C:

dé+ _ dé- _ 1 T(a)

a - ® T E (c)
Region D:

dé+ _ dS- _

o ~a@ " ° (d)

We can use these values in equation 9.1.23 and 9.1.24 from text -and make the

NV
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PROBLFM 9.19 (continued)

B peags o v'p/'RE

N,

PROBLEM 9,20
Part a

The free end at x = 0 implies that T(0,t) = 0 and using equations 9.1.23
through 9.1.26 we can easily find that velocity pulses "bounce off" x = 0
boundary with the same sign and magnitude. For the x-t plane we can indicate

the values for v(x,t):
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PROBLEM 9,20 (continued)

Part b

We can make use of part (a) if we use superposition. Consider the super-
position of boundary and initial conditions; a free end, T(0,t) = O with the
initial conditions in part (a) and the T(0,t) as shown in Fig. 9.P20b with
initial conditions on T and v zero. Since the system is linear, we can add
the velocities that result from the two situations and thus have the net
velocity. For the response to the second set of conditions we have

Ax

$=0

#= Tl /E ¥=0

2 0.11}',

Add this velocity set to the set in part (a) and we obtain:

X

y=0
K= U/
2a
) 4=0
a Sz & :‘-,,TJP/E
U
o<y T JE V»=0
4 -
S ], [ e, >t
= “Tah/E

UIU'Tko/E
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PROBLEM 9.21

Part a
With the current returned on the inside surface the field in the air gap
is H = - lﬁﬁl %
z D
2
7 X
£ /
‘ 1 —t 4
T(e) 4 /
—— /
xz -4 ‘wK=0
and the force per unit area actinpg on the inside surface is
2
-1 I
Ty =7 Y% 57 (a)
1 M? 2
The force is fx =-Tx an = 3D 1°(t) and the boundary condition at x = - £
is
2 U .a
M8 Coey = 120 120y & AT(-1,¢) ®)
at2 20D
Part b

The current will flow on the surface when the time T is much shorter than
the characteristic diffusion time T4 over the length b:
2
Ty >> T or puob” >t (e)

Part ¢
In order to ignore the mass M, the inertial term must be small compared

to AT(-%,t). For t < 1, §_ = 0 on the rod, and from Eqs. 9.1.23 and 9.1.24,

E 3§

T(-2,8) = - == 52 (-2,8) @
P
Thus 9
w2 ca,e) <« (AR (e)
2 v_ dt
ot P
or
M << AE ‘r/vp (€3]
Our boundary condition in part (a) now becomes:
U a
0 =12 1(t) + aT(-2,0) (®

Since there is a fixed end at x = 0 we know that a stress wave traveling
in the +x direction will reflect at x = 0 with the same wave returning in the
-x direction. To satisfy the condition v(0,t) = 0, Eq. 9.1.23 shows that
d6+/da = d6_/dB at x = 0. Thus, from Eq. 9.1.24, the stress is twice that
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PROBLFM 9.21 (continued)

initiated at the left end
U a
=9 12
Te=ma Lo (h)

PROBLEM 9,22
Part a
We have W = W' and U = C + U' where W' and U' are perturhations from

equilibrium. Rewriting the equations we have

W' W' ou' K u’
— +W)+— +— +———m— — =0 (a)
at ax ax (C+U')3 9x
and \
_E)_U_' ' g_vg' ' 3_U' =
T + (C+U'") % + (W") . 0 (b)

Neglecting all second-order perturbation terms we have

' K . ou' _ :

—3T+(l+?)§'—0 (c)
au" W'

5c T (O 3¢ =0 @

Part b
Multiplying the ahove two equations by %E-and %; , respectively, we have

2 2
W' K 3 u'
L+ 4+ f=r =0 (e)
3t2 C3 oxot
and
2 2
"' W' -
%ﬁ-+(c>——2=o (£)
Ix
Eliminating U' we obtain
2, 20
AW sca+XH 2 ()
ot ¢’ 9x

which is the familiar wave equation with wave velocity vp = V(?(l + 53).

~ 'w
We can write the solution as W' = Re[w(x)eJ t] where

W(x) = ¢, sin Rx + C, cos Bx (h)’
with R = m/vp.
At x =0, W=W" =0 and hence ¢, = 0. At x=-1L, W="UW =W cos wt, or equiv-
2 o

alently a(—L) = No’ hence C1 =-N°/sinBL. Upon substitution we find that
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PROBLEM 9.22 (continued)'

the solution is
W sin Bx

= ' = - ———————rer— .
w=u sin BL

cos wt , (1)

PROBLEM 9.23
Part a

This part is similar to Prob. 9.24 with two simplifications:
V =0 and
o

the mass is M/unit width (Mw) instead of 2M. The two separate relations yielding

the natural frequencies are

G,
sin <wL \j —g—’>= 0 5 (a)
20m Om
— = tan <U)L —S_> B )
Mw \,—%; )

(a) yields wL ch/S = nm where n = 1, 2, ... and corresponds to solutions

and

which are "odd", or £(x) = - £(-x). (b) can be solved graphically and corresponds
to solutions which are "even", or E(x) = £(-x).
Part b

The effect of raising M is to reduce the eigenfrequencies of the ''even"
modes. The "odd" solutions predicted by (a) are independent of the mass M.
This is physically reasonable since there is a node at the mass, and since

"even' solutions

the mass doesn't move there is no inertial force. For the
predicted by (b), we notice that if M = 0 we have essentially the natural
frequencies of a membrane of length 2L. As M = ®, the system responds like
two different membranes of length L. The infinite mass acts like a

rigid boundary.

PROBLEM 9.24
Part a ‘
We can use the Maxwell Stress Tensor to find the forces of electric

origin, If fi corresponds to the force due to the upper electrode and

fz corresponds to the force due to the lower electrode, then we have:
2
€ VA >
33(0 -2 i, (a)
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PROBLEM 9.24 (Continued)

2
€ VA
-f)i (t) = - _2_0___7 -{ (b)
2[a+£(0,8) 1" 7
2 2 3%

Our equation for the membranes is dm 9°E/dtT = 8§ — and if we assume
€=Re[g(x)ejwt], then we can write o

g(x) = C1 sin Bx + C? cos Bx (c)
for x > 0 and

E(x) = C3 sin Bx + C4 cos Bx (d)

for x < 0 where B = w¢0m7s.
Our boundary condition will yield the four constants. We have

Ex=-1) =0

Ex=1) =0 (e)

Bx =0 = E(x=0")
and 9

37E _ E + _ K - e e

2M F 0,t) = S"’[ax ) P 0 )] + fu(t) + ff,(t) (£)

which reduces to 9 ¢
~ "2 £ 2¢e VA .
-’ £(0) = Swlj—i " - % Q) )} + Z3° £(0) ()

after we linearize [fi(t) + f;(t)]. Substituting, we immediately find C2 = C4.

Writing the remaining equations we have

0= - C, sin BL + C, cos AL ‘ (h)
0 = C1 sin BL + C2 cos RL (1)
2€ VZA 2
0=5wC, + |—22 + 2Mw“! c. - swB C )
1 3 2 3

If we eliminate the constants by setting the determinant of the coefficients

Cl’ C.,, and C, equal to zero, we obtain two separate relations:

2 3
sin 8L = 0 and S‘;B = tan BL. (k)
EoVoA 2
3 + Mw
d
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PROBLEM 9.24 (continued)
Substituting for B we have

 — 0 —
Om Sww 3 O'm '
Sin(wL ——J =0 and ——————— = tan wL {=— €3]
S 2 S
€OV°A 9
3 + Mw

d

The first relation implies that wL/5;7§ nT where n =1, 2, .... The second
relation can be solved graphically.
Part b

As V° is increased from V° = 0, the lowest natural frequency decreases.

When Vo approaches the value

Swd3
€ AL °
o

the lowest natural frequency approaches zero; as V0 18 further increased, there

will be an imaginary solution for w and the system will be unstable.

PROBLEM 9.25

Part a L
m _ oW o ,2
The force of the lower plunger is fz = e =i_i ig. By symmetry the upper
a
plunger has a force fﬂ = —(Lokagg ii. From the circuit
2 _ 2 .2 . 2 _ g 32 2 _ .
:L'Q = (Io + il) = Io + 21011 and iu = (Io il) = Io 2101
magnetic force is

1° Hence the total

2L I i 2L I G
m_ 00l _"“oo 3
£ = a a 9x ©,t) (a)
Writing the force balance on the tip of the wire at x = - £ we have
2L I G
£ -t,0 + —22 25 (0,1) = 0 ®)

Part b
Away from the ends

2 2
MERI i @
at 9x

and if E=Re[g(x)ejwt] then

E(x) = C, sin Bx + C, cos Bx ()
where B = wn/f., £(0,t) = 0 imples that C2 = (0., From part (a) we have
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PROBLEM 9.25 (continued)

2LI G 4

dE _ oo d& =

f a (-2) + 2 I ) 0. (e)

Upon substitution we ohtain
2L I .

£8 C, cos BL + =2 c8c, = 0 (£)

Since Cl must be finite for a finite response, we have
2LoIo

fB cos RL + a GR =0, (2)
or = 2LIG

f cos wylv? + —a—— =0 (h)

(We have ruled out one solution, because it is trivial.) A graphical solution

of (h) is shown in the figure.

L
S
-2
Part c
If G = 0, then
”
w, /2= (“;+1)1r (1)

withn =0, 1, 2,...
Part d

From the figure, wy increases toward w11%57f = T and W, decreases toward
the same value. They come together at G = af/ZLOIO and seemingly disappear

af
ifG>‘2—LI
oo
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PROBLEM 9,25 (continued)

Part e

If

GI > ET—%g, then (h) has imaginary solutions for w, hence the system
‘0o
will be unstable.

PROBLEM 9.26
Part a

First of all we notice that v(t) = £(~L,t). For the memhrane

2 2 L .
o] A& S §——-g-and if E=Re[£(x)e3mt] then £(x) = C.sinflix + C,cosBx where
m a2 2 1 2
dt Ix
B = w Om/S. At x = 0, g(x=0) = 0 and therefore C? =0. At x =~ 1., we can write
the boundary condition
2% 3E m
M —-—2— (-1.,t) = 8D 3’ (-1.,t) + £ (t) (a)
at X y

We can find fe(t) using Ampere's lLaw and the Maxwell stress tensor
2 .
R qun‘ (T, + I(t))? (I, - I(t))2 '
£ (8) = — 5 = 7 (b)
y © {d-D-E(-L,£)  (d-DHE(-L,t)) 7]

Since I° >> I(t) and (d-D) >> E(-L,t) then we can linearize:

- 2 R
2 Io Io
£208) = ON"A_ | T(t) + ——=3 E(-L,¢) (c)
Y (d-m* (d-D) )
2N7Au010
Substitution of (c) into (a) and definition of CI & — and
9 2 (d_n)
2N"AN 1
— [e N e)
C = — 3 gives
Y (a-m
2
M g (-L,t) = SD oF (-1.,t) + C.I(t) + C_ E(-L,t) ()
2 ax 1 y
At
or in complex form,
Mo E(-1) = SD k13 (-L) +c.I+c E(-L) (e)
! ax I y
After solving for Cl’ we can write
" ral
~ CI sin Bx I
E(x) = (f)

(Mw2+Cy)sinBL-SDB cos BL

or finally
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PROBLEM 9.26 (continued)

CY sin BL 'f

= 3 (#)
SDR cos RL - (Mw +Cv)sin AL

~< D>

re[y e“%).

where y(t)

Part b - .
To find the resonance frequencies we look at the poles of ;r\/I. This amounts

to finding the zeros of the denominator of §/i We have
Ja; MUm 2 ‘lcm
SDhw g cos wl, 3 = [Mw™ + Cy]sin wl 3 (h)

a_
Shw §1n- o—m' )
7 = tan (wL VE—) (1)
Mw +Cy

or

We can represent the solution graphically:

|
l
I
|
I
|
|
I
|
|

Cr g

T/, /: T BT /: Z“LJLE?TS:

—_ e — — — ——

EI_(_O_BI.EM 9,27
Part- a

The boundary condition may be obtained by applying force equilibrium using

the following diagram, F(t) 5E
s slope é_r
- X
\/—\
: 13
. .
slope A%
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PROBLEM 9.27 (continued)

thus
3t - ?&
L ,n- *r, +
- X S a
F(t) = £ |52 (0) - 5(0) (a)
Part b )
For the odd solution, Ez(x,t) = - Er(—x,t) and it follows that
13 3E
5—&'? 5—£~= 0. This implies that the odd solution is not excited by the force F(t).
X x
Part c 9 3t i
For the even solution, Ez(x,t) = Er(—x,t), we have e —;—-and the boundary

condition (a) from part (a) becomes

13

r
= - I = b
F(t) 2f oy at x = 0 (b)
For 0<x<% we have
2 2
n 26 2L (©)
ot dx

with £(x,t) = 0 at x = 2.

For t < 0, this reducss to

2
]
——§ =0 (d)
9x
and we obtain
Foz x
E(x) = 7% (1 - EQ for 0<x<% (e)

Part d

We now have a combined transient and driven response, as discussed in Sec. 9.2.1,
By contrast with the developments of that section, we now have a boundary condition
at x = ) on the slope agr/ax (see (b) of part- (¢)). Our program is: (EEEr in the
following)

i. Find the driven sinusoidal steady-state response, This satisfies the boun-
dary conditions:
- E1A
Fo cos wt = - 2f A ,t) (f)
E(L,t) =0 (g)

ii, Find normal modes, which satisfy homogeneous boundary conditions;

% 0,0 =0 (h).
£E(2,t) =0 (1)

The sum of these modes takes the form of a Fourier series.
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PROBLEM 9,27 (continued)
iii. Superimpose (1) and (ii) and use the initial conditions found in
parts (a)-(c) to evaluate the arbitrary coefficients.

The driven response is of the form

3 =RE(C1 sin Bx + C, cos Bx)ejwt; 8 =vafl (1)

2

a linear combination which satisfies (g)

£ = ReC, sin B(x—!l)ejwt (k)

3

while (f) evaluates Cg

Fosin R(x-2)e
2fR cos R

and the driven response is
jwt

(2)

E = - Re
The normal modes are in this lossless case the resonances of the driven
response and occur as cos BL = 0. Thus

™ +
w2 \[% - (2‘2‘ Y, n=0,1, 2, 3.. (m)

and the total solution for 0<x<% is

wt -jw t

F sinB(x-2) ® b
- __o + n - n 2o+l
g = 218 cos B °°° wt + nZO[An e + An e Isinf ( > )2 (x-2)] (n)
The coefficients A: and A; are evaluated by requiring that
F % F sinB(x-2) o
=2 -%-_° = t oA ntl,mo
E060) = 55 D) =~ S s pr * L (g + Al CFHE o] @)
and
12 PR + - 2otlm
3¢ (x,0) =0 nZO [w A - Ju A lsin[ (57 (x-2)] ()

- +
This last condition is satisfied if A: = An. The An's follow from (o) by using
the orthogonality of the functions sin[(2n+1/2)%-(x—2)] and sin[ (2m+1 /2)%(x—2),

m # n, over the interval 2.
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PROBLFM 10.1
Part a
At x = 0, the net force on an incremental length of the string has to be zero.
-2B %% - f %% =0
This is the required boundary condition at x = 0.
Part b

The power absorbed by the dashpots is the product of force 2B 3£/3t and the
velocity 3&/3t. Tsus

- &
P=28 (3)

If we solve Eq. 10.1.6 for

E(x,t) = Re[E o (WETKX),

and assume that w < w, we get

E(x,t) = Re {[A1 sinh|k|x + A cosh[k|x]ejwt}

2
where 1/2

We can calculate Al and A, using the boundary condition of part (a) and the

2
boundawy condition at x = £
E(-2,0) = Re £_ e*

We then get

1€ 2Bw

Ay=- [f]k[cosh|k[% + jw2B sinh[k|%]
£ £k

Ay = TE[[cosh|k|L ¥ juZB sinh[k|L]

If we plug these values into the expression for power,. and then time average,

we have
N2
B(flk]&ow)

<®> = 3 )
[(£]k]cosh|k|2)° + (2Bw sinh|k]2)]

where it is convenient to use the identity

jwt jwt> _1 ABR*

<Re Ae 2

ReBe
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PROBLEM 10.2
Part a
We use Eq. (10.1.6)

2% 23% 2. 2w
—2-=Vs_2—wc€’wc=r
ot Ix
Assume solutions £ = Re[(Ae_jkx + Bejkx)ejwt]. The dispersion equation is:
2 2
w, - w
2 _°d c
k™= 2
v

s
Now use the boundary conditions, which require
A eijL + Be-jkz = Ed

-jk[A - B] = 0O

1) w, < wc (below cutoff)

d

Ed cosh ax
E=—-—" cos w,t

cosh af d

-,K;Z_ 2y 2
&=\ wdyvs

(i1) Wy > w, (above cutoff)

Ed cos Bx
£(x,t) =W cos wdt
=2 22
B = d wc»vs

Part b
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DYNAMICS OF ELECTROMECHANICAL CONTINUA

PROBLEM 10.2 (continued)

w < w
d c
7%
|
|
|
|
! —
<G r
/
|
wy > N
X
%
|
|
| | T

'_Q
Part ¢

The string might be attached to a massless (frictionlesg) slider at

~
x = 0, so that the end would be free to move in the transverse dfrection.
Force equilibrium for the increment of length at x = 0 then requires

9E/3x = 0 at x = O.

PROBLEM 10.3
Part a
From Eq. 10.1.10 we have

2o
C

=
n

2
v
s

with our solution of the form

E(x,t) = Re(A; o (wt=kx) A, o (wt+kx))

We have the boundary conditions
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PROBLEM 10.3(continued)

9g =
N o,t) =0
and
9§ -
o -2,t) = 0.
From the first boundary condition, we obtain

= . - jut
A1 = A2 ; £E(x,t) = Re A3 cos kx e

From the second boundary condition, we obtain

sin k% =0
This implies that

k = %E-; n=0,1,2,3...

Note that by contrast with the case where the ends are fixed, n = 0 is a valid
(nontrivial) and crucial solution. It corresponds to an efgenmode which is
simply a rigid body translation.

From Eq. 10.1.7

w2 = k2 v2 + m2
s c

Therefore, the eigenfrequencies are

w =+ w2 + (EE v 22

— | L s

For the n = 0 mode, w =+ w_.
Part b

With I as in Fig. 10.1.9, we have the same equations as in part (a) if we

replace wi by —wi. Therefore, for this case, the elgenfrequencies are

1/2
oo |Ey) -
L s c

Part c
With I as in Fig. 10.1.9, the IxB force is destabilizing, as a small

perturbation from x = N tends to increase this force. If w in part (b) became
imaginary, the equilibrium £ = 0 would become unstable as the solutions are

unbounded in time. This will happen as
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PROBLFM 10.3 (continued)
or in terms of the current
n T 2
1> b (2 vs)
Note that any finite current makes the n = 0 mode unstable, since for this mode
there is no elastic restoring force.

PROBLEM 10.4
Multiply the system equation by %% ’

=g 08 378 _ . 3, 9E
= f Ne Ib Ty E + T F(x,t)

Proper substitution of partial differential identities yields:

mas £ Ib g2 3|3 22,
—'2'( '2—( ) }"H[fax 3t 5t - T(xt)

PROBLEM 10.5

e have that

E(x,t) = Re[% ej (wt-kx) +’g ej (wt+kx)]
> 9’ + 2 :

Part a

For k real, we might write this in the form

E(x,t) =.% [é o (WE-kx) | E * e—j(wt—kx)

j (wt+kx) " g * e—j(wt+kxi}

+ &_ e

From Prob. 10.4 we have that the power carried by the string is

1f we do the indicated differentiations, then substitute into this expression,

and then time average,we will obtain

@ =B E Er-E 4

Part b
For k purely imaginary

=jB

with B real, we can write £(x,t) in the form
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PROBLEM 10.5 (continued)

E(x,t) =% [g+ SJut+Bx €+* oJutHBx L p o jut-Bx | e-jwt-Bx]

If we again substitute into our expression for power and average over time
we obtain

Jwf (2 .2 _ % %
e E_ - &, £ ¥]

From (b), we see that it is possible to have a net power flow from two evanescent

<P> = -

waves, but not from a single evanescent wave. Suppose that a single evanescent
wave did carry power away from the driving source. This would correspond physicall:
to a string driven at the left and infinite to the right. With wd<wc, the

response as x * ® becomes vanishingly small; clearly there can be no power flow at
x + ©, Yet, there is no mechanism for power absorption by the string and so there
can be no power flow into the string from the drive. With a dissipative load, a
second evanescent wave is established, decaying to the left, and the conditions

for power flow are met,.

PROBLEM 10.6

From the dispersion relation, we calculate:

2
v =6_(D=v _w_cl/z
g 9k s | 2

w
Now, assuming a single forward traveling wave:
£ = £+ cos[uwt - k(w)x]

Then:

2 2
i fk Iby,.2
<W> = (T + T+ 74—)£+
fkuwy ;-2
B> = (—2—) Ey
Thus, substitution gives
<P> fkw/2
R (_muﬁ + i‘ﬁ + &)
4 4 4
wi 1/2
=v_|l1-— =v
s w2 g

which is the desired relation. This result is of some general significance, but

has been shown here for a particular case.
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PROBLEM 10.7

Part a
The equations of motion for the membranes are
2
2’5, 9%,
Om 2=S ?+T1
at ax”
)
o’E, A%k,
g = = § -+ T
n 3t2 ax2 2
where Tl and T2 are the transverse magnetic forces/area. Tf the membranes extend

a distance w into the paper, and if we define regions 1, 2, and 3 as the top,

middle, and bottom repions respectively in Fig. 10P.7, the flux in each region is

Ay o=y w(d-g,)
AZ = ”0“2 w(d+€l—€2)
A3 = u0H3 w(d+£2)
where ”l’ HZ’ and H3 are the magnetic field intensities within each region. Since
the flux is conserved,when El = Ez = () we have
Al = AB = - uo“o wd AZ = + ”o“o wd
Therefore: Hod )
H, = - ——1
1 d—Cl x
and ) “od .
H, =+ i
2 d+£1—52 X
and
_ H d _

We will use the Maxwell stress tensor to calculate T1 and T2, using a pill-box
volume enclosing a section of surface on each membrane.
We then obtain

u

. v _ o 2 _ 2
Ty = -7 0 - W)
and
u
n O 2 _ 2
T, ¥ -7 [y - Hy]

Substituting the expression for the H fields, and realizing that El << d and
52 << d, we finally obtain for the forces
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PROBLEM 10.7 (continued)

2
_ uoHo (2&1 - Jc:2)

Ty = d
and 2
) -
R Y
2 d
Our equations of motion are then
3281 3261 uo"ﬁ
o - = S - (28.-£.)
> 176
8t2 ax” d 172
and ”
2%e, 2, “o“i
o7 ~ST3 - (28,-8))
dt Ax~ d
Part b_ _/‘}
We assume that .
_ 2 J(wt-kx)
El Re 51 e
and ’
- 2 i (wt-kx)
62 Re 52 e

We can substitute these functions into the equations of motion from part (a),
and solve for the relation between w and k such that the 2 equations of motion

are consistent. This dispersion relation is
5 , M 12 u H2
-0 w® + Sk” + 0 -4-220
m d — d

We see that the dispersion equation factors into two dispersion relations. 1If we
substitute this relation back inteo the equations of motion from part (a), we see
that we ohtain even and odd solutionsg,

The dispersion relation

2 H2
2 o Sk 15"
o o d
m m
vields
E] = Ez'

"
9 Sk 3UOH
w o= ——
g ogd
m m
yields &l = - 52.
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PROBLEM 10.7 (continued)

Plotting w versus k, we obtain

k real

- - - -k imaginery

From the plot we see that the lowest frequency for which we have propagation

(k real) for the even mode is

2
.. uo“o 1/2
ce o d
m

For the odd mode, the cut off frequency is
241/2
v - < 3UOH0>
co o d
m

We are given the boundary conditions that at x = 0

Part d

£150 & =0

jwt
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PROBLEM 10.7 (continued)

From the boundary condition, we see that our solution is purely odd. Therefore

2 2
Fu Um 3u°Ho

S Sd

1/2

We assume a solution of the form

gl(x’t) = - Ez(x,t) = Re{Al ej(wt—kx) + AZ ej (wtka)}
Evaluating A1 and A2 through the boundary conditions,we obtain
£
0
A, == A, = —o——
1 2 ejkl_ e-jkz
Therefore £ [e—ka B e+jkx]ejwt‘

g (xot)=—€ (x’t) = Re o —
1 2 [JKE _ IkE,

For w = 0, k is pure imaginary. We define k = jB, with B real with value

2,1/2
5 - 3UOH0
Sd

Therefore

%%\q\ﬁﬁ F1 08 = - sinh B2

A sketch appears below.

¢ 4%

Eo sinh Bx 'c,oswt

Q4
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PROBLEM 10.8
Part a
The given equations follow by writing out Maxwell's equations and assuming

E and H have the given directions and dependences.

Part b
The force equation for an incremental volume element is
_ avx
F= ix ™e 3t (a)
where F is the force density due to electrical forces on the electrons
F=- ix eneEx (b)
Thus, avx ~
mengF, = mg 5 (e
Part c
As the electrons move, they give rise to the current density
J = -en v (linearized) (d)
Part d
Assume ej(wt-k;) dependence and (c) and (d) require
T =73 Tm Bx (e)
u% .
= - wao —5| By (f)
w
where wp = Vezne/ms:0 is called the plasma frequency. (See page 600)
Combining this with Maxwell's equations:
2
2 w
L I ®)
c w” Veouo

Part e

We have a dispersion which yields evanescent waves below the plasma (cutoff)
frequency. Below this frequency, the electrons respond to the electric field
associated with fheuave in such a way as to reflect rather than transmit

an incident electromagnetic wave.

Part £

Waves impinging upon a boundary between free space and plasma will be totally

reflected if the wave frequency w < wp. The plasma frequency for the ionosphere
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PROBLEM 10.8 (continued)
is typically

f ~ 10 MH
P z

This result explains why AM broadcasts (500 KHZ < f < 1500 KHZ) can commonly be
monifored all over the world, whereas FM (88 MH7 < f < 108 MHZ) has a range

limited to ''line-of-sight'".

PROBLFM 10.9

In the regions

x<-f2Land x>0

the equation of motion for the string is

If we assume

E(x,t) = Re{f el (WETKX)}

and substitute back into the equations of motion we obtain the dispersion
relations

2 _ 2172

-2 <x<N

k =+ x < -2,x>0

<l€

The boundary conditions are

at x = - % £ = Eo

ok
at x =0 £ and 5;-xmust be continuous.
[¢

Ve assume that

E(x,t) = Re {[A e‘Bx + B e+8x]ejwt} for -2 < x <0
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PROBLEM 10.9 (continued)

where
2 2(1/2
w, - w
R = — for w < W,
v
s
and
el -j x L]
E(x,t) = Re {E e e eIt} for x > 0
where
=9
% =5
s
Using the above boundary conditions, we obtain
NEACRELY
2(B cosh R4 + jkb sinh R4)
LS CRELY,

2(B cosh B2 + jkb sinh 89)

= A+
But £ = A + B

Therefore

by 1

£ ]

©  lcosh B + -:3 sinh B2)
Part b
As 2 =+ 0
3

2

go
As { + o

3 ]

_ll.+ 0 ’

£

o
PROBLEM 10.10

Part a

The equation of motion for the string is

2 2
m— = f §_§_+ S - mg
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PROBLEM 10.10 (continued)

where, for small deflections £ in the "1/r" field from Q,

N aQ [1+€]

T 2me d d
o
In static equilibrium, £ = 0 and from (a)

aQ= Zsto-mg (b)

Part b

The perturbation equation of motion remains;

2 2
3 3 Q
P
at 9% 2nd"e
)
Assume eJ(wt-kx) dependence and (c¢) requires (vs = Vf/m)
W = vikz - ——J%?——— (d)
' 2md"e m

or from (b),

wz = vzkm'- &
s d

The boundary conditions require k = nm/f, and for stability the most critical

mode is n = 1; thus

v@? > & (e)
fd m. 2 .
m < e (',; (f)

Part c

Increase f, d, or decrease .

PROBLEM 10,11

2% _ . »%
m— = f > + S-mg
at ax
- - - UOI
wvhere § = (IxB) r=f and |B| = 7 ro » ¥ the radial distance from the fixed wire.
u I 1°
Therefore S = 7T

For static equilibrium
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PROBLEM 10.11 (continued)

HIT
S =g = 220
& 2mE
o
Therefore
2ﬂmg£0
=971
uo o

Note that IOI > 0 for the required equilibrium.

Part b
The force per unit length is linearized to obtain the perturbation equation.

uoIoI " uoIoI 1 £

S = n, - T
2
_ﬂ(£°+£) 27 .Fo E2
Therefore
325 32€ uoIOI .
mea =t 3T
ot Ix 2mE
o
Part c 3
. j (wt-kx) .
Assuming e solutions, the dispersion relation is
HuIT
—mw2 - - f k2 __oo
2
hﬂio
Solving for w, we obtain
i w1 I|1/2
u?'= k2 £-+ 0 07
m 2mmE "
) o

As long as IoI > 0 the equilibrium will always be stable as w will always be
real. Note that this condition is required for the desired static equilibrium

to exist.

PROBLEM 10.12
The equation of motion is given as

2 2
ma_%.=f-a—§+l’€ (2)
ot ax”
Part a

Boundary conditions follow from force equilibrium for the ends of the wire
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PROBLIM 10.12 (continued)

(1) -2KE(O0,t) + £ E(—gx—tl =0 (b)

an E@,e) + ¢ ﬁ(;—xtl =0 (c)

Part b

The dispersion relation follows from (a) as

w2 = v2 k2 - % 1 v = Vf/m (d)
where solutions have been assumed of the following form:

£ = Re[ (A sin kx + B cos kx)ejwt] (e)
Application of the boundary conditions yields a transcendental equation for k:

4Kf k (£)

f2k2—4K2

tan kf =

where, from (d),

k = %— \lm"‘ + P/m (g)

s

Thus, (f) is the desired equation for the natural frequencies.

b =2K/f

I
|
|
|
|
|
l
|
|
l
|
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PROBLEM 10.12 (continued)
Part ¢ '
As K + 0, the lowest root of graphic solution goes to k + 0, for which
stability criterion is:
0o>2
m
PROBLEM 10.13
Part a
This problem is very similar to that of problem 10.7. Using the same

reasoning as in that problem, we obtain

azgl 3251 eovi
o =5 + (26.-E.)
m atZ ax2 d3 1 72
32g2 3252 eovi
o] =S + (2¢,-£.)
m 5.2 2 3 %

Part b

Assuming sinusoidal solutions in time and space, the dispersion relation is

2 ‘ 2 ZEOVZ Eovi
-0 W + Sk - 3 = + 3
d d
We have a dispersion relation that factors into two parts. The odd mode,
El = - €2 has the dispersion relation
9 3¢ v2 1/2
Sk 00
i 3
m Umd
L
The even mode, El = 52 has the dispersion relation
1/2
[ 2
W = Sk2 Eovo
T lo T 3
L m o] md kN
o
Part ¢

A plot of the dispersion relation appears below.
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PROBLEM 10.13 (continued)

Part d

The lowest allowed value of k is k = gfsince the membranes are fixed at

x = (0 and x = L., Therefore the first mode to go unstable is the even mode.

This happens as 5
2
3E:OVO) = ﬁ [<IAY))
Sd3 L2
or
1/2
nz Sd3
Vo© 7 €3
L oY |
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PROBLEM 10.14
The equation of motion. is

2 2

9°E 2 97 ;13

—2 =V, =2 -V (a)
at2 s ax2 at

Part a

The dispersion for this system is:

WX - jvw - vzkz =0 ®)
We may solve for w,
2

\Y Vv 2,2

w = j[@‘i ('5) - Vsk (c)
z jla + vl
We assume solutions of the form:
—-(a+y )t -(a-y )t

Eyt) Re{ [ [Ae ™ +Be " Jsin X} (d)

n odd
Now, we may use the initial condition on %% to relate An and Bn. Thus we obtain:
-y t oty ¥ t
E(x,t) =Re{ | Afe " - (="

n o~ e
n odd Yn

]e-Ott sin HEX} (e)

Now, we apply the initial condition on £(x,t = 0) to determine An.

2y
X
E(x,0) = ] A Ll gin X (£)
nodd ™ |[Ya™® .
= z A' sin 2T
n 2
n odd
The coefficient A; is determined from a Fourier analysis of the displacement:
4E
v o 9
Ay = am ()
So that:
Yy -0 4E
= (L (2
An - (ZY )(n'n' ) (h)
n
Part b

There 1s one important difference between this problem and the magnetic
diffusion problems of Chap. VII. While magnetic diffusion is "true diffusion"
and satisfies the normal diffusion equation, the string equation is basically a

wave equation modified by viscosity. Hence, we note (c) that especially the
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PROBLEM 10.14 (continued)

higher modes in the solution to this problem have sinusoidal time dependence as
well as decay. Magnetic diffusion as discussed in Chap. 7 exhibits no such
oscillation, because there is no mathematical analog to the Inertia of the
string. If we had included the effects of electromagnetic wave propagation

(displacement current) the analogy would he more complete.

PROBLEM 10.15
From Chap. 10, page 588, Eqs. (e) and (f) we have
o O 13
da 2v 3x 2v_ ot
s s

A L N W 4
< [¢] 2VS 9x 2vs ot

"To
% —p
z
Since %% (x = 0) = 0, we have the following relations in the three regions.
Region 1
Eo Y
da 2v_ ’ dB
Region 2
EEi =0 EE:.= Xﬂ_
do ’ dB 2vS
Region 3
By Vo Y
da 2v_ * dB 2v
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PROBLFM 10.15 (continued)

In the other regions, the derivatives are zero, From Eq. 10.2.10 on page 586,
A
x da dg
we have
3E \Y

o]
3% 7‘2 fu_y B)-u_; (B=b) - u_,(a) + u_; (0-b)]

Integrating with respect to x, we obtain
vo
E0xr) = 7o [y ®) = u,(Bb) = u, (@) + u (b))

A sketch of this deflection is shown in the figure.

-137-



DYNAMICS OF ELECTROMECHANICAL CONTINUA

PROBLEM 10.16
Part a
The equation of motion is simply
2

-2
at ax
The dispersion equation follows as:

(uu—kU)2 = vik2

or w(U-=v )

K, = =15 =45%8
+ U+v 2 2 -

- —'s U —vS

Where solutions are assumed of the form:

E(x,t) = Re{(£,e3"* + g om1Bx)  (we-0x))

The boundary conditions are both applied at x = 0, because string is moving at

a "supersonic'" velocity.

E(x,t) = Eo{cos Bx cos[wt-ox] - %— sin Rx sin[wt:-ax]}
s
Part b

s“o:\: onary awvdo Pe

'

2

P\\ ase Vel 00‘\\/}
w/a
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PROBLEM 10.17
We use Eq. 10.2.9
2 32

) ) 2
Ge+vsd £-v 2
X

Assuming sinusoidal solutioms in time and space we obtain the dispersion relation

Y

(o-k)2 = k2v§

Thus
w(U + v.)
k = = S
Utys U2 _ V2
s
We let
o= wl
U2 - v2
s
wv
B_
U2 - v2

Therefore, k = o + B and

£(x,t) = Re[A e‘j(a—B)x +B e—j(a+8)x]ejwt

The boundary conditions are

£(x = 0) = 0 which implies A = - B

E(x=-12) =&
Therefore

E(x,t) = Re A[e'j(""s)x - o3 (oB)xg Jue
However, = Re A2} sin Bx o (we-ox)

E(-2,t) = Re & oJut
Therefore

E(x,t) = - s—i‘:——s—z sin Bx cos[wt—o(x+L)]
Part b

For £ = 0 at x = 0 and at x = - £ we must have B = nm/L
_s__nom
2 2 [
v
s

or
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PROBLEM 10.17 (continued)

These are the natural frequencies of the wire.

Part ¢

The results are meaningful only for [U| < Ivs|. If this inequality were not
true, we would not be able to use a downstream boundary condition to determine
upstream behavior and arrive at a result that would be obtained by "turning the driv

on'". That is, if U > v, the predictions are not consistent with causality.

PROBLEM 10.18
Part a

In the limit of wavelength short compared to the radius, we may "unwrap' the

system:
/ % Vz
v —_—
S U
2 2
3_ 3 - g o8&
nEpt Uy &=f— (a)
3z
Now let z +» R6, U +~ RQ. Then, it follows that
2 2
9 9 f 3°E
nE-+ Q57 &= — (b)
at a6 R2 892
2
where Q_ = wfﬂh R“)
Part b
The initial conditions are
9E/3t(B,t = 0) = 0 ()
£(0,t = 0) = Eo 0<86< /4
(d)
0, elsewhere
Solutions take the form
£=¢.(x) +§&_(B) (e)

where
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PROBLEM 10.18 (continued)

o=0 - Qst
B=0-30¢
Because 3£/3t (t = 0) = 0,
g, dg_
=- % & " @ (£)
Alsd,
% &, &
35 (t=0) = ;5= * @5 = Eolu, (@ - u (1/4)] (g)
Thus, from (f) and (g).
€y 3
= = 3 Eolu (0 - u (1/8)]; on @ (h)
dg_ 1
B "7 Eolu(® - u (n/4)1; on 8
The solution in the 6-t plane follows from
dg dg
-g-g- = Ti&i t 1

and an integration at constant t on 6. The result is shown in the figure. Note that
the characteristics that leave the interval 0 < 8 < 27 até= 2T reappear at 6 = 0 to

account for the reentrant nature of the rotating wire.
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PROBLEM 10.19

In the moving frame we can write

2 2 '
ma—-%=fa£2+l"(x',t')
at' ox'
and so from Prob. 10.4, we can write
P! =3W' _azl
in at' ax'
where
L1
] - —_
Pin F ot'’
2 2
R Y14 1. E
w—zm(tl) +2 |)
] 3
P' =_f—}€{' "%v
9 9 ]

) _ 9 3
But oo =3x ad 5o =5t U s

“Therefore (c)-(e) hecome

' 3 )
Pin = F(—a—t + U 3’)—(—)5
W' =__l m(ag +U g) + 5 f( g)
P! = - f 85 (35 +U 85)

The conservation of energy equation, in terms of fixed frame coordinates,

becomes
oW’ oW’ JP'
\J = ——
Pin at +u ax * 5% ¥x
L TSR
_3t+3x(P + W'U)
If we let
= A
Pin Pin
o=
P=P + WU
we can write
aw BP
P Bt x

which is the required form.
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PROBLEM 10.20
The equation of motion is given by Eq. 10.2.33, and hence the dispersion
equation is 10.2.36;

k=n+ jy (a)
where
2 2
n = de/(U -vy)
- 2_2..2 2 2_2
Y = v, (U vs)kc Wy /U vs)

Solutions are assumed of the form

£ = Re[A sinh yx + B cosh Yx]ej(wt-nx) ()

Boundary conditions require;

B=Eg (c)

(o]

A

[}

anO/Y (d)

Thus

g j (wt-ﬂx) (e)

The deflection has an envelope with an essentially exponentially increasing

Re £°[$n-sinh Yx + cosh yxle

dependence on x, with the instantaneous deflection traveling in the + x

direction.

PROBLEM 10.21 ~m? swoutd BE 6,7 TNEUCHr pRORIEM
Part a
The equation of motion is
2 2

9 3 =g 3 & _
o (at + U ax) E=S5 5 = Mg + T (a)
9x
2
€ v €
(d-£) d d
For equilibrium, £ = 0 and from (a)
DA
5 = mg (®)
2d g
or
9 1/2
2mg d
VQ = . (c)
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PROBLEM 10.21 (continued)
Part b

With solutions of the form e
2.
eV
wkn? =312 - 22
m o d

Solving for k, we obtain

j (wt-kx)

the dispersion relation is

%

k =wU + g—wz-(uz
m

2 S
w® -2y
m

For U > /S/Gm , and not to have spatially growing waves

-€V2

S a8 (s

m m \o d

m

or

2
eV
& fat -2 s
m Sd

POOBLEM 10.22

Part a

Neglecting the curvature of the system, as in Prob. 10.18, we write:

2
"G R T
R
where the linearized perturbation force/unit area is
2 v
T, = 5E

a

Therefore, the equation of motion is

2 2
SIS IR D 1 3
Ge* 239 € QS(aez
2 S
Q= —
s o R2
m
2
m2 - 28ovo EE
c 3 S

+ m E)
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PROBLEM 10.22
Part b

w-)” = & (n”-n2) (a)

W wm = o+ Q_(nP-nd)/2 Ao As0, @

(1) m = —-=2 (£)

O+
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PROBLEM 10.22
Part c

Because the membrane closes on itself it can be absolutely unstable
regardless of  relative to Qs. Allowed values of m are determined by the
requirement that the deflections be periodic in 6; m = 0, 1,2,3,... Thus,
from (e) any finite m, will lead to instability in the m = O mode. Note
however that this mode does not meet the requirement that wavelengths be

.short compared to R.

PROBLEM 10.23
We may take the results of Prob. 10.13, replacinglgz-by %E-+ U %; and
replacing w by w-kU.

Part a
The equations of motion are
2
) 9 2 3251 EoVo
om(a_t" +U E) El = § 2 + 3 (Zgl - Ez) (a)
9x d
™ & +ude —sfi+e°vi (2, - £ ®)
T ax "2 - 2 3 2 %1
ox d
Part b
The dispersion relation is biquadratic, and factors into
2 2 280V2 eovi
-0_(w-KI)“ + Sk“ - =+ (c)
m d3 - d3
‘The (+) signs correspond to the cases El = - 52 and El = Ez respectively, as will

be seen in part (d).
Part c
The dispersion relations are plotted in the figure for U > /S/Um.
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PROBLEM 10.23 (continued)

Iw

and
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PROBLEM 10.23 (continued)
Part d

Let El = 52. Then (a) and (b) become

2 2
o rudy p asotl, o, @
nGet V30 & 7 3 &
X d
and 3 5 2 a252 EOV§
TnGet U3 & =8 2 v 3 &y (e

These equations are identical for El = 52; the dispersion equation is (c) with

the minus sign. Now let 61 = - Ez and (a) and (b) require
2 2
2 & 3 V
) ] _ 1 00
O'm('gg + U 3% El =S 3 + 3 El (£)
9x d
and
2 2%, 3¢ V2
o @ +udy £ =s—2+°0%¢ (8)
m'ot ox 2 2 3 2
9x d
These equations are identical for El = ~ Ez; the dispersion equation is (c)
with the + sign.
Part e
£ 0,t) = Re £ & = - £,(0,1) )
oE of
1 2 _ _
3% - 3% Dat x=0 (1)
The odd mode is excited. Hence, we use the + sign in (¢)
2 2 3€oV§
-0_(w-kUu)“ + Sk~ - =0 1
m d3
2 2 2 € Vg
k“(S-0 U%) + 20 wkU - o w - —22=0 (k)
m m m d3
Solving for k, we obtain
k+=0+8 Q)
where a = wy (m)
2
U —vs
3e v2PvDy M2
22 00 s
[wivy - 3 1
omd
B = (n)
U2 - v2
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PROBLEM 10.23 (continued)

with v2 = S/o .
s m

Therefore

El = Re {[A e_j(OH-B)x + B e-j(a_B)x]ejwt} (6)

Applying the boundary conditions, we obtain

_ F (B-0)
_ ()
B 28 . (q)
Therefore, if 2 is real
Ei(x,t) = - 52(x,t) = E cos Bx cos (wt-ax)- % E sin Bx sin(ut-ox) ()
Part f

We can see that B can be imaginary, for which we will have spatially

growing curves. This can happen when

2
3 V
W - =22 ” - D) <0 )
gd
m
or 2 Umd3 w2 vi
> ———
V° 3¢ (U2 - vz) ©
o s
Part g

With V. =0 and v > v_;
o s

1}2:

ANAN A USRI AW AW
7\ /,_v;l“\\/\v’ >

Sl -

-~ (4
3

\ t . - ,,—-7\\\‘\\ .
;Qr\\//\. e N\ /. ANS
\\ d .

-~
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PROBLEM 10.23 (continued)

Amplifying waves are obtained as (t) is satisfied;

PROBLEM 10.24

Part a

The equation of motion for the membrane is:

2 2 2
i [ A
™ a3t x~ Dy z
where
R B |
T, = Tzz 2€°V° Els

The equation may be rewritten as follows:

-150-

(a)

(b)

H oSN T T N -
ST T I NS ‘
i —
Ve
|
)ﬁz - "~
e o N /\ [\ /\
.(__._S\./‘__——\_.-C___ —_ \/
- .
w/ol T~



DYNAMICS OF ELECTROMECHANICAL CONTINUA

PROBLEM 10.24 (continued)

2 2

9
B L 2BEs 25, (@
ot 9x dy

where 2 V2

2 _ 00

kc = 3
S s

Assume solutions of the following form:

A 3wtk x-k_y)
E(x,y,t) = Re[E e Y (d)

The dispersion is:

2 2.2 2 2
Vs[kx + ky - kc] (e)

The mode which goes unstable first is the lowest spatial mode:

W

kx = % ’ ky =% (£)
Instability occurs at
2 2
=D + D (®)
or,
Ss 2 1/2
v, = {2€ [(—) + @ 1) )
Part b
The natural frequencies follow from Eq. (e) as
w_ = [(—) + @ R (1)
™ c
Part c

We superimpose eigensolutions to obtain the membrane motion for t > 0.

The solution that already satisfies the initial condition on velocity is
E(x,y,t) = ) } £, sin MMX gin MY cos w_t ()]
27 o a b mn

where m and n are odd only, since the initial condition on E(x,y,t=0) requires
no even modes. Now use the principle of orthogonality of modes. Multiply
() by sin(pmx/a) sin(qmy/b) and integrate over the area of the membrane.

The left hand side becomes
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PROBLEM 10.24 (continued

b ra
f I [%(x,y,t=0)sin 255 sin 9%2] dx dy (k)
o’0

b ra
- - & -5 X qmy
jo Jo Jouo (x 2)uo(y 2)sin a sin 5 dx dy

Thus, (j) reducesto

Ty = b PP ®)
which makes it possible to evaluate the Fourier amplitudes
4Jo
Em = 3 (m)

The desired response is (j) with Emn given by (m).

4J
= .0 mrx nmy
E(x,y,t) g g (ab ) sin 2 sin = cos w _t

(odd)

Note that the analysis is valid even if the lowest mode(s) is (are) unstable,

for which case:
cos W t > cosh o t
Pq Pq

PROBLEM 10.25
The equation of motion 1s (see Table 9.2, page 535)i

2 2 2
o 3= 5 (55 + 5) (@
at 9x oy ,
~ j(wt-kxx—k y)
With solutions of the form £ = Re £ e y , the dispersion equation is
2 2
w _-tvs kx+ky (b)

A particuiar superposition of these solutions that satisfies the boundary
conditions along three of the four edges 1is
= amy _
£ = A sin 3 sin kx(x b) cos wot (c)
where in view of (b),

2
Wl =20l + & @

Thus, there 1s a solution for each value of n, and
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PROBLEM 10.25 (continued)

0 .
= - nny
3 E An sin kn(x b)cos mot sin 3 (e)
n=1
where, from (d)
2 .
w 211/2
o 4
o |6 - e o
S
At x = 0, (e) takes the form of a Fourier series
@ nw
E(y=0) = Z —An sin knb cos wot sin _;X (g)
n=1

This function of (y,t) has the correct dependence on t. The dependence on y

is made that of Fig. 10P.25 by adjusting the coefficients An as 1s usual

in a Fourier series. Note that because of the symmetry of the excitation about
y = af/2, only odd values of n give finite An. Thus

a2 2t a 2§
-2 y sin m y dy + -2 (a-y)sin uuS y dy (h)
a a a a
o al2
a nm m
=-f A sin k b sin 22X gin TX gy
o n a a

Evaluation of the integrals gives

48 a o Ana sin knb
7 sin G)= - 3 )

(mm)
Hence, the required function is (e) with kn given by (f) and A.n given by
solving (1)

85
A = - 5 sin (——)/sin k b (&)
n ()

PROBLEM 10.26
The force per unit length 1S/ubi x H, where H is the magnetic field intensity

evaluated at the position of the wire. That is,
S=ypI(H 1 -H 1. (a)
u[yyx]
To evaluate H and Hy at ui + viy note that H(O 0) = 0. By symmetry
H 0,y) =0 and therefore BH /By (0 0) = 0. Then, V+B = 0 requires that
BHX/Bx(O 0) = 0. Thus, an expansion of (a) about the origin gives
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PROBLEM 10.26 (continued)

S ]JOI FViy-ax uix (b)

Note that because Vx H = 0 at the origin, BHxlay = 3Hy/3x. Thus, (b)

becomes

S=puI=XL[-uil +vil] (e)

I I

=9l _1,% o 2x
Hy(x,O) T 2m ta-x a+x] 2m [32] ()
Thus,
S = [Fudl +vi] (e)
. X y
Ta

It is the fact that V x H = 0 in the neighborhood of the origin that requires

that the contributions to (e) be negatives.

Part b
(i) Assume u = Re[u ej(wt—kz)] "
Then
2__ 2,2 2 2_2' 2__12
WmV YUy Ve Ty T (8)

The w-k plots are sketched in the figure
c0vv\|>\ex %

X AQ&\Q(A‘\O\AS ;}(«0
-Cor \“eo\\ w
i
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PROBLFEM 10.26 (continued)

X AQ&\CC‘\" owns

—_———— W,

AW

cou/\?\ex (28]

Sor veaﬂ %

(3
(11) Assume
v = Re[:r ed (wt—kz)] (h)
Then
o = B2 - o W
and the w-k plots are as shown
te lox B
C oun e X
\* Ae-“ec\:ous s P 9
«‘or vea) s
>f
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PROBLEM 10.26 (continued) b CowP\ex w
Y Ae&\ec\:ous Sor vea ) B Y,
.jw‘ﬁ:wb
//’ _—--‘\\\\
it i N
/ \

Note that 1f the effect of the field is to stabilize motions in one
direction, it must destabilize motions in the other direction.
Part c
Driven response is found in a manmer similar to that for Prob. 10.2.
Thus for
w < W (cutoff)
uosinh (xux
u(z,t) = - W cos wot (j)
vosin k x
v(z,t) = - W sin w,t (k)
w > w
uosin k x
u(z,t) = - _S—muT cos wot )
vosin k x
v(z,t) = - —siT-va sin wot (m)
where [,2 _ 2|12
a = %~ %
u 2
v
L Vg
sz _ 2]1/2
ku = 2
v
o s ~
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PROBLEM 10.26 (continued)

2 2[(1/2
P
v 2
v
s
Part d
We must suppress instability of lowest natural mode in v.
2
2 7 2
ve (@ >y (n)
or
2 2
fra”™ 7w
11 <@ 0)
o
for evanescent waves
2 2
w, < w (p)
2 2 2
Thus, from (n) and (p), wy < vy (n/)".
Part e
0
/A
A ;z
t]: =0 A
A
4
! bt
L u
th
2
T < W /(U"‘) - 5°
’ AV
%
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PROBLEM 10.26 (continued)

2
Yo
L= b/m

The effect of raising the current is summarized by the w-k plot, with
complex k plotted for real w. AUJ Com?\q;\ 2
As I is raised the hyperbola moves
outward. Thus, kv increases and ku
decreases to zero and becomes imaginary.
Thus, wavelengths for the v deflection

shorten while those for u lengthen to

infinity and then deflections decay.
Note that v waves shorter than A=2%
will not be observed because of

instability.

PROBLEM 10.27

Part a

We may take the results of problem 10.26 and replace %E-by g{ + U %; in the

differential equations, and w by w-kU in the dispersion equations.

Therefore, the equations of motion are

2 2
3 3 _ g O u _
mcsg + U 5;) u=f g—f Ibu (a)
z
2 2
] ] v
m(—at +U _Bz) v=f ———azz + Ibv (b)

Part b
For the x motions, the dispersion relation is

-k = - k% - b (c)

We let
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PROBLEM 10.27 (continued)

2
m = Y%
f 2
-—=v
m 8

Therefore w=kU + \szv2 + uﬁ
- s

or solving for k

2.2 2,..2 2

‘- W+ v+ m‘(U -vs)
2 2

U -v)

The w-k plot for x motions is sketched as
J}w
U+vs

Wy

¢ - - At f';

(d)

(e)

For real w, we have only k real. For real k, we have only real w.

For the y motions, we obtain

€
]
~
=]
+
<
o
1

\{22 2,22
Wi + \u'vo - @ (U-v)

w? - v

Thus for real w, the sketch is
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PROBLEM 10.27 (continued)

- W
w=~ =
%
,
’
/
/
l
{
\
N\
~
e // "
e \\\ w=-Wi 2 2

while for real k, the w-k plot is

V-

-160-~



DYNAMICS OF ELECTROMECHANICAL CONTINUA

v

PROBLEM 10.27 (continued)
Part ¢

Since the wire is traveling at a "supersonic" velocity, we cannot impose
a downstream boundary condition to determine upstream behavior.

We are given

u(O,t)ix + v(O,t)iy = uocoswot ix + vosinwot iy (h)

and the boundary conditions

du _ .0V _
%? (O’t) = Olaz (O’t) = 0 (i)
We let
2 2 2,.2 2
Y- WU ‘o< \/w vs+wb(U —vs)
= oB =
U2—v2 (Uz-vz)
s s
1
2.2 2,2 2
\ﬁn vy - wb(U - vs)
v (U2 - vz)
s

For the x motions, the allowed values of k are

kl =0 +B with w = wy

k2 =a-R8 (k)
Therefore .

u = Re [él e Y2 +A,e szz]ejwof} )
Applying the boundary conditions and simplying, we obtain

u = uoRe[(J%-sin Rz + cos Bz) ej(wt_az)] (m)

For the y motions, the allowed values of k are
k,=0a+Y

3 (n)
k4 a-y

Therefore

j(wt—az)] (o)

v=-v Re[ (- %-sin Yz + j cos yz)e
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PROBLEM 10.27 (continued)

Part d
[78

—

N
\/ T
Tl

N[ ‘ﬂ' /—ﬂ.

what
As long as U > A this 1s the form of u, no matter/the value of I (as long

as I > 0). As the magnitude of I increases, B increases but 0 remains

unchanged.

w /d
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PROBLEM 10.27 (continued)

This is the form of v, as long as

w2 vﬁ - wﬁ(U2 - vz) >0 (p)

As I is increased, we reach a value whereby this inequality no longer holds. At

this point Yy becomes imaginary and we have spatial growth.

As I is increased beyond the critical value, v will begin to grow exponentially
with z.

Part e
To simulate the moving wire, we could use a moving stream of a conducting

liquid such as mercury. We would introduce current onto the stream at the

nozzle and complete the circult by having the stream strike a metal plate at

some downstream postion.

PROBLEM 10.28
Part a
A simple static argument establishes the required pressure difference.

The pressure, as a mechanical stress that occurs in‘a fluild, always acts
on a surface in the normal direction. The figure shows a section of length
Az from the membrane. Since the volume which encloses this section must be

in force equilibrium, we can write

-163-



DYNAMICS QF ELECTROMECHANICAL CONTINUA

PROBLEM 10.28 (continued)

2R(Az)[p; - p ] = 28(A2) (a)

where we have summed the forces acting on the surfaces. It follows that the

required pressure difference is

S
Pi'Po=§ (b)

Part' b

To answer this question, and other questions concerning the dynamics of
the circular membrane, we must include in our description a perturbation
displacement from the equilibrium at r = R. Hence, we define the membrane

surface by the relation
r =R+ £(0,z,t) (c)
The pressure difference PP, is a force per unit area acting on the membrane

in the normal direction. It is the surface force density necessary to counter-

act a mechanical force per unit area Tm

@
which acts on each section of the membrane in the radial direction. We wish
now to determine the mechanical force acting on each section, when the surface
is perturbed to the position given by (c¢). We can do this in steps. First,
consider the case where £ is independent of 6 and z, as sﬁown in the figure.

Then from (d)
T =-————=—s[l-§—] (e)

where we have kept only the linear term in the expansion of Tm about r = R.
When the perturbation £ depends on 6, the surface has a tilt, as shown,

We can sum the components to S acting on the section in the radial direction

as
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PROBLEM 10.28 (continued)

-S3¢% :
-2 (£)

Similarly, a dependence on z gives rise to a radial force on the section due to

the mechanical tension S,

lim S |28

=8 —= (2)
A20 Az |9z

In general, the force per unit area exerted on a small section of membrane under

the constant tension S from the adjacent material is the sum of the forces given

by (e), (f) and (g),

2, .2
R At S R | ®
R> Rae? 3.

It is now possible to write the dynamic force equation for radial motionms.
In addition to the pressure difference PP, actinp in the radial direction,
we will include the inertial force density o /(3 E/at ) and a surface force
density Tr due to electric or magnetic fields. Hence,
2%k 1,6 ,1 9%, 9%
6 —=2 =S5+ +——)+T +pi—p (i)

m, 2 R R2 R2 ae2 822

w
(a3

Consider now the case where there is no electromechanical interaction.
Then Tr = 0, and static equilibrium requires that (b) hold. Hence, the constant

terms in (1) cancel, leaving the perturbation equation

2 2
3°E £ 1 937§ 52 E
o is-s G 2L, 2L )
™ 3t (R2 r? 362 322
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PROBLEM 10.28 (continued)
Parts ¢ & d

This equation is formally the same as those that we have encountered
previously (see Sec. 10.1.3). However, the cylindrical geometry imposes
additional requirements on the solutions. That is, if we assume solutions

having the form,

£ = Re E(2ed (Wt * 1) o)
the assumed dependence on 6 is a linear combination of sin m8 and cos m6.
If the displacement is to be single valued, m must have integer values. Other-
wise we would not have £(0,z,t) = £(0 + 2m,z,t).

With the assumed dependence on 6 and t, (j) becomes,

2A
.ﬂ_% + kzg =0 ¢))
dz
where 2
w'o
k2 = l;-(l—mz) + n
R2 S

The membrane is attached to the rigid tubes at z = 0 and z = £. The
solution to () which satisfies this condition is

~

£ = A sin knx (m)
where
nm
kn =g s n°= 1,2,3,...
The eigenvalue kn determines the eigenfrequency, hecause of (R).
2 2
2 @y =D, S
W= @D+ o ()
R m

To obtain a picture of how these modes appear, consider the case where A is

real, and (m) and (k) become

£(8,z,t) = A sin fﬂ~x cos mb cos wt (o)

The instantaneous displacements for the first four modes are shown in the

figure.

There is the possibility that the m = 0 mode is unstable, as can be seen

from (n), where if

2 1
(ﬂ) < 7 (p)
L R
we find that the time dependence has the form exp i'lwlt. The first mode to

meet this condition for instability is the n = 1 mode. 1lHence, it is not possible
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PROBLEM 10.28 (continued)

m
g
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PROBLEM 10.28 (continued)
to maintain the uniform cylindrical shape of the static equilibrium if

\

RT/L < 1 (@)

This condition for static instability is easily understood if we remember
that in the m = 0, n = 1 mode, there are two\perturbation surface forces on a
small section of the membrane surface. One of these is the perturbation part
of (e) and arises because of the curvature in static equilibrium. This force
acts in the same direction as the displacement, and hence tends to produce
static instability. It is counteracted by a restoring force proportional to
the second derivative in the z direction, as given by (g). Condition (q) is
satisfied when the effect of the initial curvature predominates the stiffness
from the boundaries.
Part e

With rotation, the dispersion becomes:

2 _ 2, 2. 2
p (W-mQ) "~ = Qs[m -1 mc]

with
o) = 2
o R
m
2.
m2 - 28ovo R2
c 3 S
a

Because there is no z dependence (no surface curvature in the z direction) the
equilibrium is unstable in the m = 0 mode even in the absence of an applied

voltage.

PROBLEM 10.29

The solution is of the form

£=E () +E_(B) (a)
where

a=x-yv

B=x+y

We are given that at x = 0

g, dg

+ 55— = Alu_; ()-u_; (y-a)] (b)

95 _ _+
3x do dB

and that
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PROBLEM 10.29 (continued)

£=0
which implies that
_a_s_;=0=—d_g+-.+_(5-.'
3y do dB (c)

We therefore have

aE
o= 8l o) - Coma)]

and
dg_ A
Fr 5‘[0_1(3) - U_l(B—a)] (e)
dg dg
3 -
Then 5%—= - Eﬁjt t3m = %—{u_l(y—x)— u_l(y—x—a) + u_l(x+y)-u_l(x+y-a)} (£)

Integrating with respect to v, we obtain

A

£ = E—{—u_z(y—x) + u_z(y-x—a) + u_2(y+x) - u_z(y+x-a) (g)
where u, is a ramp function; that is u_z(y—b) is defined as
i
>4
=b
0 4
Part b

The constraint represented by Fig. 10P.29 could be obtainéd by ejecting
the membrane from a slit at x = 0 that is planar, but tilted over the range
0 <y < a. Thus, the membrane would have no deflection £ at X = 0, but would
have the required constant slope A over the range 0 <y < a, and zero slope

elsewhere.
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PROBLEM 10.30
For this situation, the governing equation is (10.4.15) of the text.

2 2
oy 25 -2% (a)
9x ay
Here Mz = 2; so we have the equation:
2 2
2 2
9x dy

The characteristics are determined from equations (10.4.17) and (10.4.18) to be:

a=x-y (c)
x+vy

o
1}

4;"&'

0 §.='f;

The x-y plane divides into regions A...F, as shown in the sketch. Tracing
back on the characteristics from points in regions A, D, F... shows that in
these regions £ = 0; the characteristies originate on "zero" houndary conditions.

At points in region B, only the C+ characteristic originates on finite data;
£ (@) = &, € (B) = 0 and hence

£ = Eé in region B
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PROBLEM 10.30 (continued)

In C, deflections are determined by waves, both originating from the initial
dafa. Hence £+(a) = £o, but £ (B) is determined by the reflection of an incident
wave on the boundary at y = d. llence §_(B) = - Eo and

£ =0 in region C

In region E only the £_(8) wave is finite because the £+(u) wave originates

on zero conditions and
£ = - Eo in region E

The deflection has the stationary appearance shown in the figure.

/?

PROBLEM 10.31

From equation 10.4.30, we have

kB I
W = kzv2 + -2 (a)
s — m
We define
IB
o=+ —2 (b)
2
2mv
s
and
B I\2 wZ
B = 4+ — (c)
2 2
2mv v
s s
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PROBLEM 10.31 (continued)
The four allowed branches of k as a function of w are therefore k = + kl,

and * k,, where

kl =qa+ B (d)

k‘2=-a+B (e)

The sketch shows complex w for real k. Note however, that only real values of

k are given if w is real and hence the solid lines represent the plot of complex

k for real w.

jv
A Vs
//— e /" ~ ~
S N
/// // \
/ \ BT
o\
/ i/ \\ &:: 3
g =Y
/ .
/ /
7 /7
~ P
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PROBLEM 10, 32

The effect of the longitudinal convection 1is accounted for by replacing w
in Eq. 10.4.3 by w-kU (see for example page 594). Thus,

kB I
2 2.2 0
(w-kU) k Vs + o (a)

This expression can be solved to give

B I 2 2 " B I\ [BI\2
(200 + 29 + \J 4vi0® + 4wv {+ 2-) +| =
= m — S — m

k = n )
2eu? - vz)

The sketch of complex k for real w is made with the help of the following
observations: Consider the modes that are represented by -Bo.
1) Asymptotes for branches are k = w/(U ;:vs) as w + o,

2) As w is lowered, the (-Bo) branches become complex as

5 9 -B I ‘B I\2
vin” + 4 | —2)+{ 2} =0
s m m
or at the frequencies

B I
w=—- (v i’\/uz - vi)

2vim
s

(<]

Thus, for U > v there is a lower as well as an upper positive frequency at
which k switches from real to complex values.

In this range of complex k, real k is

BoI 2 2
= [ Y ] -
k= (200 - —)/2(0° - v7)
or a straight line intercepting the k = 0 axis at
BI
=92
2Um

3) as w + 0,

w

k >0 and k + + BOI/m(U2 - v:)
where the - sign goes with the unstable branches.
4) As w » - = the values of k are real and approach the asymptotes

k=wKU;%L
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PROBLEM 10.32 (continued)

Similar reasoning gives the modes represented in (b) by +B°. Note that these

modes have a plot obtained by replacing w + - w and k + - k in the figure.

jw

R
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