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PREFACE TO: SOLUTIONS MANUAL - TO

ELECTROMECHANICAL DYNAMICS, PART III:

ELASTIC AND FLUID MEDIA

This manual presents, in an informal format, solutions to the problems found

at the ends of chapters in Part III of the book, Electromechanical Dynamics.

It is intended as an aid ﬁér instructors, and in special circumstances, for use
by students. A sufficieanamount of explanatory material is included such that
the solutions, together with problem statements, are in themselves a teaching
aid. They are substantially as found in the records for the undergraduate and
graduate courses 6.06, 6.526, and 6.527, as taught at Massachusetts Institute
of Technology over a period of several years.

It is difficult to give proper credit to all of those who contributed to
tihese solutions, because the individuals involved range over teaching assistants,
instructors, and faculty who have taught the material over a period of more than
four years. However, special thanks are due the authors, Professor J. R. Melcher
and Professor H. H. Woodson, who gave me the opportunity and incentive to write
this manual. This work has greatly increased the value of my graduate educa-
tion, in addition to giving me the pleasure of working with these two men.

The manuscript was typed by Mrs. Evelyn M. Holmes, whom I especially thank
for her senge of humor, advice, patience and expertise which has made this work
. possible,

Of most value during the course of this work was the understanding of my girl

friend, then fiancée, and now my wife, Linda, in spite of the competition for time.

Markus Zahn

Cambridge, Massachusetts
October, 1969






INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.1
Part a
We add up all the volume force densities on the elastic material, and with

the help of equation 11.1.4, we write Newton's law as
2

9 61 3T11
p 2 = 3% - Pg (a)
at 1
where we have taken 5%— = 5%— = 0. Since this is a static problem, we let
2 3
3 _
Y 0. Thus,
T
5 11 rg. (b)
X1

From 11.2.32, we obtain

361
Tll = (2G + A) -a—:q (c)
Therefore
2%,
(26 + 1)) 5 = g (d)
Bxl

Solving for 61, we obtain

2
61 = _—EETZ(ZG‘F ) xl + Clx + C2 (e)

where C1 and C, are arbitrary constants of integration, which can be evaluated

2
by the boundary conditions

6,(0) =0 (£)

and 36
- 1 = (g)
Tll(L) (2G + 1) 3x1 ¢H) 0 g

since x1= L is a free surface. Therefore, the solution is

g %y

1=2—(7G—+-X)—[x1- 2L]. (£)

S

Part b
Again applying 11.2.32
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.1 (Continued)

861
T;p = (268) E = pglx; - L)

T19 =Ty =0
Ti3=T3=0
¥,
Typ = A 5;; = ?ngxy [xl - L) (g)
26
=y 1 __Aog -
T3y = A ox, | (2GHN) (x; - L]
Typ = Ty3=0
. =
T, O 0
T = o T, o0 (h)
0 0 Ty

PROBLEM 11.2
Since the electric force only acts on the surface at X = - L, the equation

of motion for the elastic material (-L S-XI £ 0) is from Eqs, (11.1.4) and (11.2.32),

43261 8261
b —5 = (20 —; (a)
ot axl

The boundary conditions are

61(0,t) =0
and
228, (-L,t) 3, .
M —————— = aD(2G+L) — (-L,t) + £ (b)
2 x
at 1
£€ 1s the electric force in the Xy direction at X = = L, and may be found by
1
using the Maxwell Stress Tensor Tij = eEiEj - E'Gij eEkEk to be (see Appendix G
for discussion of stress tensor),
£ =-% £ an :
with
v + V1 cos wt
E= 2 (c)

d + 61(-L,t)



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.2 (continued)

Expanding £® to linear terms only, we obtain

2 2
\ 2V V. cos wt 2V

a-82 0y ol 05 (-L,0) (d)
d d d

We have neglected all second order products of small quantities.
Because of the constant bias Vo, and the sinusoidal nature of the

perturbations, we assume solutions of the form
R j(wt—kxl)
61(x1,t) = 61(x1) + Re Se (e)
where '

§ << 6.(x,) << L

1™y
The relationship between w and k is readily found by substituting (e) into (a),

from which we obtain

[26+)
k =+ 2 with g S £
el t vp \ o (£)

P

We first solve for the equilibrium configuration which is time independent.

Thus

2

9 6l(x1)
2
1

o9x

This implies

Gl(xl) = clx1 + c2

Because 61(0) = 0, C2 = 0.

From the boundary condition at X = - L () & (d))

2.
€ Vo h
aD(ZG'FX)Cl - —Z-?aD = 0 (h)
Therefore
e Y
§.(x.) =+ ———x (¢9)
1'71 2 d2(2G+A) 1

Note that Gl(x1 = - L) 1s negative, as it should be.

For the time varying part of the solution, using (f) and the boundary condition

§(0,t) =0

q



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.2 (continued)

we can let the perturbation 61 be of the form

Gl(xl,t) = Re 8 sin kx, eJut &)

Substituting this assumed solution into (b) and using (d), we obtain

+ Me2 8 sin kL = aD(2G+\)k 8 cos KL (k)
t—:aDVOV1 eaDV2 A
- 5 = 30 § sin kL
d d

Solving for 8, we have

eaDVOV1

=
1}
1

2
2 2 cabV
d”|Mw” sin kL - aD(2G+A)k cos kL + 30 sin kL

d

A

Thus, because § has been shown to be real,
€ V2 L ~
61(-L,t) =-2 —2%  _ § sin kL cos wt (m)

2 42(2640)

Part b

If k% << 1, we can approximate the sinusoidal part of (m) as

caDV V., cos wt
ol

61(-L’t) = 3 (n)
aD(2G+21) €abv
2 2 o
d” [ Mw™ - T + 3
d
We recognize this as a force-~displacement relation for a mass on the end of a
spring.
Part c

We thus can model (n) as

V£



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.2 (Continued)

where
€abDV V. cos wt
£ = - ol
d2
and 2
¢ o EDQGH) _ €anv,
L d3

We see that the electrical force acts like a negative spring constant.

PROBLEM 11.3
Part a
From (11.1.4) ,we have the equation of motion in the X, direction as

ﬂz— = a1 (a)
at2 axl
From(11l.2.32),
862
T21 =G H ()
Therefore, substituting (b) into (a), we obtain an equation for 52
o%s, 3%,
P ) =G ;;5— (c)
1
We assume solutions of the form
~ j(wt-kxl)
62 = Re 62 e (d)

where from (c) we obtain

k:-{-Y— V2=§'
- Vp P P
Thus we let
j(wt-kxl) j(wt+kxl)
62 = Re Ga e + Gb e (e)
" with k = —
v
P
The boundary conditions are
s GJut ,
Gz(l,t) 6°e (f).



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.3 (continued)

and

3d

2
N (8)
*1
since the surface at X = 0 is free.
Therefore
-jk& JkL_

Ga e + Gb e 60 (h)
and

-3k 53 + jk cb =0 (1)
Solving, we obtain

60

Ga = 6b = Zcoskl &)

Therefore
6o jwt 8
= ————— = ___0 )

62(x1,t) Re coskZ ©O8 kx1 e =~ %E oS kxlcos wt (k)

and
Géok ot
Tzl(xl,t)= - Re CoskL sin kxl e (€5
GS k
= - coskL sin kx1 cos wt
Part b
In the limit as w gets small
6, (x;,t) > Re[5_ eI (m)

In this limit, 62 varies everywhere in phase with the source. The slab of elastic
material moves as a rigid body. Note from () that the force ger unit area at

d
x; = £ required to set the slab into motion is T21(1,t) = pl szﬁo cos wt) or the.

mass /(xz-x3) area times the rigid body acceleration.

Part ¢
The slab can resonate if we can have a finite displacement, even as 60 + 0.

This can happen if the denominator of (k) vanishes

cos kL = 0 (n)
(2n+l) v
W=7

or .
n=0,1,2,... . (o)



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.3 (continued)

The lowest frequency is for n = 0
v

N A
OF W1 0w 2% (p)

PROBLEM 11.4
Part a
We have that

T = Tijnj = adijnj

It is given that the T ., are known, thus the above equation may be written as

three scalar equationsii'l‘ij - aGij)nj =0, or:
(T11 - a)n1 + Ty,0, + T13n3 =0
Typty + (Typ = 0dmy + Tygny = 0 (2)
T3lnl + T32n2 + (T33 - (x)n3 =0

-

Part b )
The solution for these homogeneous equations requires that the determinant of
the coefficients of the ni's equal zero. '
Thus
- - - - 2
(Ty, - DTy, = 0)(Tyy = ) = (Ty3)°]

- TyplTyp(Ta3 = @) = T)3Tp5] (&)
+ T50T5Ty5 = Ty3(Tyy — @] = 0
where we have used the fact that
Tij = Tji' (c)
Since the Tij are known, this equation can be solved for o.
Part c
Consider le = 'I‘21 = To’ with all other components equal to zero. The deter-
minant of coefficients then reduces to
—a’+ T2 = 0 (d)
for which a= 0 (e)
or Q= '_’_‘ T (f)

o)
The oo = 0 solution indicates that with the normal in the Xq direction, there is
no normal stress. The o =1 TO solution implies that there are two surfaces

where the net traction is purely normal with stresses * To’ respectively, as



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.4 (continued)

found in example 11.2.1. Note that the normal to the surface for which the shear
stress is zero can be found from (a), since a is known, and it is known that

|n] = 1.

PROBLEM 11.5
From Eqs. 11.2.25 - 11.2.28, we have

ey = F [Ty = ¥(Tyy + Ty ()

epp = § [Ty - v(Ty3 + 1)) (b)

e33 = § [Ty3 = v(Tyy + Tpy)l (c)
and T

ey = 200 143 @

These relations must still hold in a primed coordinate system, where we can use

the transformations

\J -
Tij = 20?52 Tke (e)
and
' = .
€15 = 23ye°Ke )
For an example, we look at eil
el = a, a e = l-[T' - v(T), + 11 )] (=)
11 1k712 ke E 11 22 33 g
This may be rewritten as
1
a8 = F L+ Waja Ty = v &, T, (h)

where we have used the relation from Eq.(8.2.23), page G10 or 439.

= & (1)

a_ _a
pPr ps ps
Consider some values of k and £ where k # 2.

Then, from the stress-strain relation in the unprimed frame,

Ter = 21210

a.,a.,e,, = a,, a
1k%12%k8 1718 5 —— (14 V)T, ()
Thus 1 1+v ©
2G E
or E = 26(1+v) which agrees with Eq. (g) of

example 11.2.1.


http:-11.2.28

INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.6
Part a .

Following the analysis in Eqs. 11.4.16 - 11.4.26, the equation of motion for

the bar is

w2  3p axla

(a)

where £ measures the bar displacement in the X, direction, T2 in Eq. 11.4.26 = 0

as the surfaces at X, = t b are free. The boundary conditions for this problem

are that at X = 0 and at X = L

T21 = 0 and T11 =0

as the ends are free.
We assume solutions of the form

£ = Re g(x)ejwt

As in example 11.4.4, the solutions for £(x) are

E(x) = A sin ox, + B cos 0x, 4+ C sinh
with }/
A
a = lu? (22
E¥

Now, from Eqs. 11.4.18 and 11.4.21,

2 _ 2
. - (x2 - b4)E 335
21 2 9% 3
1
which implies
3
A%k _ ¢
3x3
1

and
2
- &
= =% P03
1
which implies 2
3E =0
ax 2
1

(b)

(c)

ax; + D cosh ax, (d)

(e)

(£)

(g)

(h)
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.6 (continued)

With these relations, the boundary conditions require that

- A +C =
- Acos oL + B sin oL + C cosh aL. + D sinh oL

- B +D = £

1]
o O O o

-~ Asinal. - B cos oL + C sinh aL. + D cosh alL

The solution to this set of homogeneous equations requires that the determinant

of the coefficients of A, B, C, and D equal zero. Performing this operation, we

obtain
cos OL cosh oL = 1 (1)
Thus, )
2 3p }z
B = aL= |w = L . (k)
Eb?
Part b
1

The roots of cos B = follow from the figure.

cosh B

1/ cosh oL

< cos aL

Note from the figure that the roots oL are essentially the roots 3m/2, 57/2, ...

of cos aL = 0.

10



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.6 (continued)

Part c

It follows from (i) that the eigenfunction is

£E= A'[(sin ox, + sinh axl)(sin oL + sinh oL)
} . 2)

+ (cos oL - cosh aL)(cos ox, + cosh axl)

1
where A' is an arbitrary amplitude. This expression is found by taking one of

the constants A ... D as known, and solving for the others. Then, (d) gives the

required dependence on % to within an arbitrary constant. A sketch of this

function is shown in the figure.

11



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.7

As in .problem 11.6, the -equation of motion for the elastic beam is

2 2 L4
2% B2 L (a)
at p axl

The four boundary conditions for this problem are:

E(x1 =0)=20 E(x1 =L) = 0

= 9E - = - x, 35 -
§,(0) = - x, e =0 6 (L) x =0 (b)

We assume solutions of the form

g(xvt) = Re § (x,l)ejmt , and as in problem 11.6, the solutions for

g(xl) are
E(x? = A sin ox) + B cos =3 + C sinh oxy + D cosh 3
: 1/4
with o = |w? 3i2 (d)
Eb

Applying the boundary conditions, we obtain

B + D =
Asin oL+ B cos oL + C sinh oL. + D cosh aL = 0 (e)
A + C =

A cos ol - B sinolL + C cosh oL + D sinh oL =

The solution to this set of homogeneous equations requires that the determinant

of the coefficients of A, B, Cy D, equal zero. Performing this operation, we
obtain

cos oL coshalL = + 1 (£)

To solve for the natural frequencies, we must use a graphical procedure.

12



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.7 (continued)

Y J d X
T
oL, -*
4 + cos oL
The first natural frequency is at about
3n
oL = —2-
Thus
4
wz 2—2 L4= (%
Eb
or ' 3m\2 1/2
(__v ) (8)
2 <Eb> 8
w = 3
L2 P
Part b

We are given that L = ,5mand b =5 x 10-4 m

From Table 9.1, Appendix G, the parameters for steel are:
E% 2 x 10* N/m?

0% 7.75 x 103 kg/m°
13



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.7 (continued)

w N 120 rad/sec.

=W a
Then, f1 =g v 19 H=z.
Part c
For the next higher resonance, oL % % n
2
Therefore, £, = (2] £, % 53 Hz. -
* 2 2 1 y

PROBLEM 11.8
Part a
As in Prob. 11.7, the equation of motion for the beam is
2’E , Eb2 3%
W2 3p
ot Ix

At X = L, there is a free end, so the boundary conditions are:

Tll(xl=L) = 0
and _ -
TZl(xl—L) = 0
The boundary conditions at X< 0 are
2%£(0,0) -
M > = + (T21) D dx2 + £, + F
It x1=0 °

and

Gl(xl = 0) = 0
The H field in the air gap and in the plunger is

e 27
D

Using the Maxwell stress tensor

Te.._ Gk wi?\ 2 w2 - u)T
= 2 2 2 7 = U1,

with 1 =1 + 1, cos wt = I_+ Re 1 et
o 1 o 1

14

(a)

(b)

(c)

(d)

(e)

(f)



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.8 (continued)

We linearize fe to obtain

2
f = - 5 (u uo)[Io + 21011 cos wt]12 (g)
For equilibrium
2
= N 2=
F0—2—01_“[0)10 7 0
Thus 2
-~ _ N 2 - \
Fo T2 (u'-uo)lo i2 ()
Part b
We write the solution to Eq. (a) in the form
- £ jut
E0xqpt) = Re &(x;) e
where, from example 11.4.4
E(xl) = A} sin ox, + A,cos ox, + A3sinh ax, + A, cosh ax, 1)
ith
v . 1/4
Eb
Now, from Eqs. 11.4.6 and 11.4.16
38 2
- 1 _ _x 978 _
Tll(x=L) = E % hxz 7 = 0 (3
1 9x
1
Thus 32€
—2 (x,=L) = 0
3 2 1
*1
From Eq. 11.4.21
< -b%) .3
T, = —2 g5 (k)
21 2 ax3
1
and from Eq. 11.4.16
= = e @i =
5,(x= 0) = - x, (3"1 0 O
xl—O
=0

Thus <%§; >
1

x1=0

15



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.8(continued)

Applying the boundary conditions from Eqs. (b), (c), (d) to our solution of Eq. (i),

we obtain the four equations

A1 + A3 =0
- A1 sin oL - A2 cos ol + A3 sinhaol + A4 cosh oL =0
- Al cos aL. + A2 sin oL + A3 cosh oL + A4 sinh oL =0 (m)
2 33 2 2 33 2 _ 2
-3 a’b EDAl +Muw A2 + 3-0 b EDA3 + Mw A4 =+ N Ioil(u-uo)
Now
2 -
a4 w4 L
v=4- & {D D[UOE(O) + u(D-E(O))JJ (n)
A*-NZI(U-U)w(A +A)+N21 Djw (o)
or v = o o j 2 4 lu Al o

We solve Eqs. (m) for A2 and A4 using Cramer's rule to obtain

. - N Ioil(u-uo)(—l + sin oL sinh oL - cos ol cosh oL) ()

2 - 2Mw2(l + cos oL cosh aL)+‘% (ab)BED(cos oL sinh oL + sin oL cosh aL)

and

2.,

. - N Ioll(u— uo)( 1 cos 0L cosh oL - sin oL sinh oL) @

4 - 2Mw2(1 + cos oL cosh oL) + % (ab)3ED(cos oL sinh oL + sin oL cosh al)
Thus

. 2 2 ‘
2w = v(jw) N +[F Io(u-»uoj jw(+ 2 + 2 cos al. cosh olL)
i1 - 2Mw2(l + cos oL cosh ol)+ g-(ab)3ED(cos ol sinh oL+ sin alL cosh ol)
2 .
+ N° ubjw (r)

Part c

Z(jw) has poles when

+ 2Mue(l + cos oL cosh alL) = (ab)3 ED(cos oL sinh aL + sin oL cosh al)

W]

16



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.9

Part a

The flux above and below the beam must remain constant. Therefore, the H

field above is
. Ho(a—b) -
a- (a-b-8)11
and the H field below is
= Ho(a-b) I]_
B = G@-o+D
Using the Maxwell stress tensor, the magnetic force on the beam is
M M 2 2
T, = - —2-(H2 -H 2) =-=2H (a-b) (+ AL
a b 2 o 3
) (a-b)
- - 2uoHog
(a-b)

Thus, from Eq. 11.4.26, the equation of motion on the beam is

2

R S WA

3 tz 3p axf (a-b)bp
Again, we let

g(xft) = Re g(xi)ejwt

with the boundary conditions

E(x1=0) =0 E(xl= L) =0

61(x1=0) 61(x1= L)y =0
Since 61= - %, ag/axl from Eq. 11.4.16, this implies that:

3 g
- Q28 o _ -
3;5-(x1—0) = 0 and 3“1 (xl— L) 0

Substituting our assumed solution into the equation of motion, we have
~ 2 4A u HZA
_ w2€ + Eb” 38 +-20 £
3p 3 4 (a-b)bp

1

Thus we see that our solutions are again of the form

E(x) = A sin ox + B cos 0x + C sinh ax + D cosh ox

17

(a)

(b)

(c)

. (d)

(e)

(£)

(g)

(h)

(1)
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INTRODUCIION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.9 (continqed)

where now - 1/4
2 WH 2 i
a={{w— 0 0 )( 3Q> (j)
\ (a-b)bp Eb2
Since the boundary conditions for this problem are identical to that of problem 11.7,
we can take the solutions from that problem, substituting the new value of a. From
problem 11.7, the solution must satisfy
cos oL cosh oL = 1 (k)
The first resonance occurs when

aL%%E

37\4( Eb2 2
or 2 _ (72 ) (36—) + uoHo

wo= L4 (a-b)bp

2)

Part c

The resonant frequencies are thus shifted upward due to the stiffening effect
of the constant flux constraint.
Part d

We see that, no matter what the values of the system parameters w2 >0, sow
will always be real, and thus stable. This is expected as the constant flux cons-

traint imposes aforce which opposes the motion.

PROBLEM 11.10

Part a

We choose a coordinate system as in Fig. 11.4.12, centered at the right end of
the rod. Because %-= f% ,» We can neglect fffnging and consider the right end of the
1o » We can assume that the electrical
force acts only at X = 0. Thus, the boundary conditions at X = 0 are

rod as a capacitor plate. Also, since % =

b
- T,. Ddx, + £ = 0 (a)
21 2 a
where T = —— — (Eq. 11.4.21)
21 2 3 3
b1

since the electrical force, fe, must balance the shear stress T to keep the rod

21
in equilibrium,

18
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (continued)

and :
2%
T,.(0) = -x, E (0 = 0 (b)
11 2 3x.2
X
1
since the end of the rod is free of normal stresses. At X = - 2, the rod is
clamped so
E(-2) = 0 (c)
and yE
§ (-2) = -x, 5;i(—2) =0 (d)

We use the Maxwell stress tensor to calculate the electrical force to be

2 2
e €A (Vo*'vs) (vs_ vo)
£ =7 7 2 (e)
[d-£(0)] [d + £(0)]
n  2€AV vV E(0)
7 |Vt T3
d s
The equation of motion of the beam is (example 11.4.4)
32§ Eb? 3t
at + 3p axI“ =0 (£)
We write the solution to Eq. (f) in the form
~ . t
E(x,t) = Re E(x)el" (g)

where

E(x) = Al sin ox + Azcos ox + A3 sinh ox + A4 cosh ox

with et
o = (Uz '—Z'3p
Eb

Applying the four boundary conditions, Eqs. (a), (b), (c) and (d), we obtain

the equations

- Al sin al + A2 cos ol - A3 sinh af + A4 cosh oL = 0
Al cos Of + A2 sin ol + A3 cosh af - A4 sinh ok = 0 (h)
- A, + A, 2 = X
2 2 AV 2c AV v
2 .3 3 2e AV 2 .33 o . __o os
- §-b DEa A1 + 070 A2 + 3 b~ DEa A3 + a7 A4 -———Ez———
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (continued)

dqs
Now is = 4t (i)
eoA soA(vs- vo)
where qs = d-£(0) (V°+ VS) + W
2 Av 26 AV 1)
N_9o s . o o £(0)
d 2
d
Therefore
1 = ju—2— v +-= £(0) (k)
s d s d
where

£(0) = A2 + A4

We use Cramer's rule to solve Eqs. (h) for A, and A4 to obtain:

tA

- EoAVovs {cos afsinh al -sin al cosh al]

d
Ay = A, = 2 (®)
2 4 %-bsasDE(l + cos O0fcosh o)+ 2€OAVo (cos®® sinh @%- sin Gfcosh al)
q°
Thus, from Eq. (k) we obtain
2
Z(jw) = 4 1+ 3€0AV0 (cos ol sinh ol - sinal cosh afl) (m)
ijEOA d3(ab) 3ED (1 + cos af cosh o )

Part b

We define a function g(af) such that Eq. (m) has a zero when

20



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (Continued)

' 3 3,2
(o) g (aL) = (1 + cosh af cos afl)(ol) - 32 Vero
8 sin al cosh ol - cos of sinh afl DEb3d3 (n)
Substituting numerical values, we obtain
337V Ae 3 x107°(10°)107*(8.85 x 10712) -3
°_ X : N 1.2 x 10 (o)

n, pey = =
DEb3d3 107°(2.2 x 1011107 °? 10 °

. 3
In Figure 1, we plot (al) g(al) as a function of af. We see that the solution to
3 .
Eq. (n) first occurs when (al) g(of) ~ 0. Thus, the solution is approximately

ol = 1.875

(a2) *g (al)

i i i i |
1 1 L T T
V] 0.4 0.8 1.2 1.6 2.0 al
Figure 1
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (Continued)

N

From Eq. (g) 1

a = |w? 2| 2 = 1.875
Eb

Solving for w, we obtain

w ~ 1080 rad/sec. G®)

Part ¢

The input impedance of a series LC circuit is

1 - LCw?
Z = e
(Gw) Jac @)
Thus the impedance has a zero when
2
_ 1
Y% = Ic *)
We let w = w, + Aw, and expand (9) in a Taylor series around w, to obtain
Z(jw)%+j@ﬂ = + 23 LAw (s)
Cw02
(m) can be written in the form
1
z = —X_[1 - - )
(Gw) X (1 - f(w)] where f(w) =1 (t)
€0
and C = ——
o d
For small deviations around wo
Z (5 ") j ﬁ
(u) ~ 20 3w Bu
Wo
Thus, from (@), (r) (s) and (t), we obtain the relations
1 3f
L= 3. 3w (u)
o w
(o)
and C = 12 )
w°L
o
£ s
now = ——— W
v (@2) g (o) )
where 312'3€oAVo2 -3
= —2 2 . 1.2x1
K T3 (EDDY) 1 0
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (Continued)

1l + cos ol cosh al
sin af cosh af - cos afl sinh ol

and g(al) =

Thus, we can write

d(al)
{.(al) l:(al) g (cxIL)] } G)

df(w)

Now from (g),

1
d(aW) | - f3p A 2 @
dw ) (Er 20, Y
wo mo
and
d K _ -K
d(al) [(aﬂ.)’g(az):] © T g2 d(oz!Z,) [(aR)3g(ol)]
Yo Wg
- % 3@ Lo 8(0‘“1‘ (aa)
Yo
since at @ = w,
(a2)%g(oR) = K. 6b)
Continuing the differentiating in (aa), we finally obtain
d_ [(a®)?z(a) 1 .
d(R) | - K ] - l:g(al)S(al) + (at)? d(odL) g(aR,)]
o Wy
-3 (@) d
=& | TRk d@n 8V (co
We W

Now

d () = 3 sinal coshal + cos alsinh af
d(on) & (sin alcosh af- cos 0&sinh 0L)

- (1+cos ofcosh al) (+cosafcoshul+ sinofsinh of+ sin afsinh 0f- cos al cosh of)
(sinof coshaf - cos afsinhal)

o - 1-_28(a2) (sin_afsinh of)
(sin afcosh af - cos afsinh of)

(dd)
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (Continued)

Substituting numerical values into the second term of
value much less than one at w = W

Thus,

o*

Ty B & -1

Thus, using (v), (2),(aa} (bb) and (dd), we have

df

. 1
df %(39 )/’ % 3 4.8
dw

EbZ, -

4+ Lo)?
20 }% al K
0 w

w

Thus, from (v) and (W)

n 4.8 x109™3
v %(1080) (8.85 X10- ') (10-%)

L

and

A 1 2 =
1.25 x10°(1080)° =

c 6.8 X 10°'° farads.

24
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

bl

PROBLEM 11.11

From Eq. (11.4.29), the equation of motion is

328, 3%, 3%,
Prer T C\ax? *5323> (a)
We let

(we- kxl) (b)

= 5 3
63 Re G(xz)e
Substituting this assumed solution into the equation of motion, we obtain

A

~ -~ 2
-pw?s = G<— k2§ +28 (c)
Bx:
or
225 pw? _ p2y3
szt (5 -kHs = o0 (d)
2
If we let B2 = —(%’- - k2 (e)

~

the solutions for ¢ are:

§(x ) = Asin Bx + B cos B x (£f)
2 2 2
The boundary conditions are
8(0) =0 and 6@ =0 (g)

This implies that B=20
and that B d = n1m .

Thus, the dispersion relation is

2 :
ot &-x2= (5D (h)

Part b

The sketch of the dispersion relation is identical to that of Fig. 11.4.19. How-

ever, now the n=0 solution is trivial, as it implies that

3(x =0
2

Thus, there is no principal mode of propagation.
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.12

From Eq. (11.4.1), the equation of motion is

2
0 %Eg' = (26+\)V(V+§) - GVX(Vx §) (a)

We consider motions

§ = ae(r,z,c)fe ‘ (b)

Thus, the equation of motion reduces to

326 326 u
9 g . a1 2
e "G[a—rz +§;<: an%) 0 (e
We assume solutions of the form
84(Esz,t) = Re 8 (r)ed (wt—kz) (d)

which, when substituted into the equation of motion, yields
afia ;3 (_owz ' z) 3 ,
g [F - rG(rﬂ + - k4 8(r) 0 (e)

From page 207 of Ramo, Whinnery and Van Duzer, we recognize solutions to this

equation as

~ 2 Y 2 )
6(r) = AJ \:(p—‘é’—- 2)1] + BN l:(ﬁ(‘;’—— k2> r (£)

On page 209 of this reference there are plots of the Bessel functions Jland Nl.

We must have B = 0 as at r = 0, N1 goes to - . Now, at r = R

§(R)

0 ()

This implies that

2 )
e ] -

If we denote ai as the zeroes of J1 , L.e.

J1 (ai) = 0
we have the dispersion relation as

(12
sz_kz o _j.'_

G R 1)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.1
Part a
Since we are in the steady state (3/3t = 0), the total forces on the piston

must sum to zero. Thus

pLD +(fe)x =0 (a)
where (fe)x is the upwards vertical component of the electric force
2
€V
ey, _ __o'%
(f )x el 2x2 LD (b)

Solving for the pressure p, we obtain

R
0'o
p= 29 (c)
2x
Part b
Because %- <<1l, we approximate the velocity of the piston to be negligibly

small. Then, applying Bernoulli's equation, Eq. (12,2.11) right below the piston

and at the exit nozzle where the pressure is zero, we obtain

2 eV 2
1 o'0
2P Y% 2x2 ()
Solving for Vp, we have
v €
o 0
V = — [ — e
o X / 5 (e)
Part c
The thrust T on the rocket is then
= a 2
T vp ir - vp pdD (£)
eV 2
00
= >— dD
X
PROBLEM 12.2
Part a
The forces on the movable piston must sum to zero. Thus
puD - £5 = 0 (a)

where f€ is the component of electrical force normal to the piston in the direction
of V, and p is the pressure just to the right of the piston.

H 2p
o190 (b)

e=
f > w
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.2 (Continued)

Therefore
u 12
0

P= 2w (c)
Assuming that the velocity -of the piston is negligible, we use Bernoulli's law,
Eq. (12.2.11), just to the right of the piston and at the exit orifice where the
pressure is zero, to write

1

3 vi= p (d)
or i
v = &/2 (e)
Part b Wi o
The thrust T is
‘ u,I%d
T = v-g—b:= V2 pdW = °w (£)
Part ¢
For I = 103A
d= .lm
w = 1m
p = 103 kg/m3

the exit velocity is

V= 3.5 x 10 2 m/sec.
‘ and the thrust is

T = .126 newtons.

Within the assumption that the fluid is incompressible, we would prefer a dense
material, for although the thrust is independent of the fluid's density, the ex-
haust velocity would decrease with increasing density, and thus the rocket will
work longer. Under these conditions, we would prefer water in our rocket, since

it is much more dense than air.

PROBLEM 12.3
Part a .
From the results of problem 12.2, we have that the pressure p, acting just to
the left of the piston, is
oI
0
p= 2 : . (a)
2w
The exit velocity at-each orifice is . obtaineu by using Bernoulli's law just to the

left of the piston and at either orifice, from which we obtain
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,3 (Continued)

%
P w

at each orifice.

Part b
The thrust is

T = 2v-‘;—21 = 2V%pdy (c)
2u 1%d
T= —O (d)
w

PROBLEM 12.4
Part a
In the steady state, we choose to integrate the momentum theorem, Eq. (12.1.29),

around a rectangular surface, enclosing the system from -L < X <+ L.

- oV "a + o[v(L)1’D = Pa - P(L)b+F (a)

where F is the x . component force per unit length which the walls exert on the

1
fluid. We see that there is no x, component of force from the upper wall, therefore
F is the force purely from the lower wall.

In the steady state, conservation of mass, (Eq. 12.1.8), yields

V() = v, %'Il . )

Bernoulli's equation gives us

% Vi P = %-pvg f; + P(L) (c)

Solving (c) for P(L), and then substituting this result and that of (b) into
(a), we finally obtain
2 b a?

F= P (b-a) +pV  (-a+ 3+ 5) (d)-
The problem asked for the force on the lower wall, which is just the
negative of F.
Thus e

Fwall = - Po(b—a) - pV; (-a + %E.+ E-) (e)

PROBLEM 12.5
Part a

We recognize this problem to be analogous to a dielectric or high-permeability
cylinder placed in a uniform electric or magnetic field. The solutions are then

dipole fields. We expect similar results here. As in Eqs. (12.2.,1 - 12.2.3), we
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ELECTROMECHANICS OF INCOMPRESSIBLL, INVISCID FLUIDS

PROBLEM 12.5 (continued)

define

and since
Vev

then V%¢ = 0.

Using our experience from the electromagnetic field problems, we guess a solution

of the form

¢ = % cos 8 + Br cos 0
Then _ .
= (A _ A
V= (rz cos 8 - B cos Q)ir + ( =2 sin 8 + B sin OYIQ

Now, as r »

V= Vi = V (cos 61 - 1. sin 0)
01 o r

(]
Therefore
B = -V
0 -
The other boundary condition at r = a is that
Vr(r=a) = 0
Thus
A = Ba?’= -va?
o
Therefore *
V = V cos 8(1 - EEOI- -V sin9 (1+ a )1
r2’r o xZ ’*e
Part b
v 4/”——-\\\‘;
2> >
_ _/—\ —_——
= _/\ S
— D
—S— ﬂ\\\E_//,r >
\—/' -
% \/ 3
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.5 (continued)

Part ¢

Using Bernoulli's law, we have

2
l’.
%pvz+po= %pvz (1+-3;—-2;?—cos 20) + P

Therefore the pressure is

~ 1 ., a% 22l
P= p,-70Y, ( =T cos 2 9)

Part d
We choose a large rectangular surface which encloses the cylinder, but the

sides of which are far away from the cylinder. We write the momentum theorem as

j oV (v-mda = - [ Pda + F
_’S S
where F is the force which the cylinder exerts on the fluid. However, with our

surface far away from the cylinder

Thus, integrating over the closed surface

F = 0
The force which is exerted by the fluid on the cylinder is ~F, which, however, is
still zero.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.6

Part a
This problem is analogous to 12.5, only we are now working in sphefical co-

ordinates. As in Prob. 12.5,

V= -

In spherical coordinates, we try the solution to Laplace's equation

¢ = Ar cos 6 + ET cos 6 (a)

r
Theta is measured clockwise from ‘the x1 axis.

Thus .

= 2B - . = L B !

V= |-Acos 6+ cos ]i +1i,(A +— )sin-6 (b)

r r 6. x3

As r > o

V = Va(ircos 6 - ie sin 8) (c)
Therefore A = - v, (d)
At r =.a

v () = 0 (O]
Thus 2B = A= -V

a3 o
or Voaa
Therefore . 3

- a - a . -

V= Vo(l - ;3-)cos eir - Vo(l + 573 ) sin 6 ie (8

i 2 2
with r=\/ x2+x + X
1 2 3
Part b
n

At r=a, 6= m, and ¢ = - 7
we are given that p = 0
At this point

V=0
Therefore, from Bernoulli's law

1 2 a® |2 2 2 a® 2
= -_— - — + —
P 7 PV, [}l oy ) cos®H sin® 0(1 + . ) (h)

Part c
We realize that the pressure force acts normal to the sphere in the - I;

direction.

32



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.6 (continued)

at r = a

= _9 2.2
P=-3 pVO sin® ©

We see that the magnitude of p remains unchanged if, for any value of 6, we look
at the pressure at 6 + m. Thus, by the symmetry, the force in the X, direction is
zero,

£, = 0.

PROBLEM 12.7

rart a

We are given the potential of the velocity field as
A \'
__ o - o — -
b =5 x%,. v= % = -— (x,1, +x 1)
If we sketch the equipotential lines in the xlxzplane, we know that the velocity dis-

tribution will cross these lines at right angles, in the direction of decreasing

potential.
Part b
<. 4¥ _ vV L moyT
a It - 3t + (v*V)v
v, _ _
= (1;' (xlil + xziz) (a)
V.2
- o —
a = ( a) ri (b)
where _
r= xf-+ x? and i_1is a unit vector in the radial direction.
2

Part c

This flow could represent a fluid impinging normally on a flat plafe, located
along the line

x + x2 = 0. See sketches on next page.
PROBLEM 12.8
Part a
Given that
. X, _ X,
v=iv —+1iv — (a)
10 a 20 a
we have that _
- dv _ dv = o
a= & = 3¢ * W
9 3 ) -
(vl ax1 +v2 axz M ®©)
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ELECTROMECHANICS OF INCOMPRLSSIBLE, INVISCID FLUIDS

---- potential

velocity

Acceleration X
vV 2

- 0l —

a (a ) ri

Problem 12.7
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.8 (Continued)

Thus x v
- 27 — 0 -
a= v — i1 +(a2 xzi2 (c)
Part b
Using Bernoulli's law, we have
1 Vo 2 2 2
P, = 3 p( a) (x; + x7) +p (d)
1 Vol 2 ;
P= P, ‘2“0(—3—)(x2 +x)
2
1 2 r
Po = vao al (e)
where 3 2
r= X +x
1 2

PROBLEM 12.9

Part a
The addition of a gravitational force will not change the velocity from that

of Problem 12.8. Only the pressure will change. Therefore,
— v v
v = L -
v = il 2 X, + i2 2 X (a)
Part b
The boundary conditions at the walls are that the normal component of the velocity
must be zero at the walls. Consider first the wall

X, - X, = 0 (b)

We take the gradient of this expression to find a normal vector to the curve. (Note

that this normal vector does not have unit magnitude.)

n= iz- i1 (c)

Then ven = Zg x-x) =0 (d)
a 1 2 .

Thus, the boundary condition is satisfied along this wall.

Similarly, along the wall

x2 + xl = 0 ‘ (e)

= T, +1, (£)
and - _ _V_q _ '

ven = 3 (x1 + xz) = 0 (g)

Thus, the boundary condition i1s satisfied here. Along the parabolic wall

x? -x2%2= a? (h)
x

n= i, - X1, | (1)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.9 (Continued)
v
- = o
ven = — (XX - XX = 0 &
a ( 12 | 2) @)

Thus, we have shown that along all the walls, theé fluid flows purely tangential to

these walls.

PROBLEM 12.10
Part a
Along the lines x = 0 and y = 0, the normal component of the velocity must be

zero. In terms of the potential, we must then have

9¢ -
vy = 0 ‘ (a)
x=0
and
3% = '
3y 0 ) (b)
y=0

To aid in the sketch of ®(x,y), we realize that since at the boundary the velocity

must be purely tangential, the potential lines must come in normal to the walls.

X
potential
7/
lines
7
/
/]
il
/]
/
/]
/]
/ velocity
:: streamlines
/(/VCf/C//'/’/’/f/’/’/’/’/' VA AV A A y

Part b
For the fluid to be irrotational and incompressible, the potential must obey
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUILDS

PROBLEM 12.10 (Continued)

Laplace's equaiion

V2¢ = 0 (c)
From our sketch of part (a), and from the boundary conditions, we guess a solution
of the form
Yo
0= -—= (x> -y (d)
v a ’
where 22 is a scaling constant. By direct substitution, we see that this solution

satisfies all the conditions.

Part c
For the potential of part (b), the velocity is
v .
v = - = —9— 3 - i s '
v Vo 2'a (xix yiy) : (e)
Using Bernoulli's equation, we obtain
v-
= 0 2 2
p,= P+ 2 ( a) x* + y?) (£)
The net force on the wall between x=c and x=d is
z=w x=d
f = J [ (p, - p)dxdz iy (8)
z=0 x=c

where w is the depth of the wall.

Thus Zgj d
T= +\& w [ x%dx 1
6 y
v 2 c
)
a 3 INT
= <+ w (d° - ¢)i h
p ( A )y (h)
Part d
The acceleration is
_ _ v, Vo — vy vy -
a= (v'Vv= 2 ;—-x(Z e ix) -2 T (-2 b iy).
or _ Vo _ _
a = 4(:;) (xix + yiy) (1)
or in cylindrical coordinates
v
— o —
a = A(a)rir » (1)
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ELECTROMECHANICS OF INCOMPRESSIBLE. INVISCID FLUTDS

PROBLEM 12.10 (Continued)

A - V¥
: ar= 4(—)1:'1
y a r
/
/]
/]
/
/
/]
/]
/1 ! y
ST S 77T S )
PROBLEM 12.11
Part a
Since the V+v = 0, we must have
Voh = Vx(x)(h -§&) (a)
or V. h
= 0 v g—
vx(x) hoE v v, (1 + . ) (b)
Part b
Using Bernoulli's law, we have
Lov 4p = do v o1 +0 (e)
2 o Po 2 X
- 1 vz L1 2 &2
P = PO + 3 Vo 2 pVo 1+ h) (d)
Part c
We linearize P around £ = 0 to obtain
y _ 2 &
PYP -V 2?3 (e)
Thus )
T,=-P4P = pV £ (f)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.11 (continued)

Thus T = Cg €:9)

with o v;

Part d

We can write the equations of motoion of the membrane as

3% _ . 3%
oL YT Sax2 +Tz (h)
_ 2% :
= S35 *+CE (1)
We assume
A . t"'k
EGx,t) = Re g ol (WETkX) ()
Solving for the dispersion relation, we obtain
-ou?= -Sk?+cC (k)
or Y
= | S g2 - C
w 5 k e ®)
m m
Now, since the membrane is fixed at x = 0 and x = L, we know that
k = Igl n= 1,2,3, ..... (m)
Now if
7.2
S( 7 € <0 (n)
we realize that the membrane will become unstable.
So for )
ovS 2 ’
T
o < S(l) (o)

we have stability.
Part e

As § increases, the velocity of the flow above the membrane increases, since
the fluid is incompressible. Through Bernoulli's law, the pressure on the membrane
must decrease, thereby increasing the net upwards force on the membrane, which

tends to make £ increase even further, thus making the membrane become unstable.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.12

Part a

We wish to write the equation of motion for the membrane.

RPE 9% , e
Om 3t2 ~ S 3z T pl(E) Po ¥ T - 08 (2)
2
where eo Vo 2 eo v

o) 2¢
 =2GE) R e U
is the electric force per unit area on the membrane.

In the equilibrium £(x,t) = 0, we must have

eV 2
P, (0) = b -5 () +og (b)
As in -example 12.1.3
p, = -—pgy +C
and, using the boundary condition of (b), we obtain
p, = -y +tog+p - 329 (-\-;9)2 (c)

Part b
We are interested in calculating the perturbations in p, for small deflections of
the membrane. From Bernoulli's law, a constant of motion of the fluid is D, where

D equals )

1 2 €o VB
D= 5pU'+0eg+p -5 () (d)
For small perturbations &x,t), the velocity in the region 0O < x< Lis
Ud
d+£

We use Bernoulli's law to write

v o=

1
F0v° +p (8) +pgE = D (e)
Since we have already taken care of the equilibrium terms, we are interested only in

small changes of P so we omit constant terms in our linearization of pl.

Thus 2
U
p (€)= - gt + 25 (£)
Thus, our linearized force equation is
2
¥ ? u? eovo
Cat s Smt H( B oest )¢ (e)
We define ,
\
u? €%
C= -pg+ QE—-+ d3

and assume solutions of the form

E(x,t) = Re g ej(wt—kx)
40



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.12 (Continued)

from which we obtain the dispersion relation

' %
wo=(e -2 (h)
m m
Since the membrane is fixed at x=0 and at x=L
k = ‘—‘g- n= 1,2, 3, v.... (1)

If C <0, theg w is always real, and we can have oscillation about the equilibrium.
For C > S(%-) » then w will be imaginary, and the system is unstable.
Part c

The dispersion relation is thus

1

72
w =<.—S_k2_°£.
om m

Consider first C< O

complex k for
real gy

A\

K

kr\.x!\x

WX

# \
/\

c>0 u
Y, Mr
\‘*’i\ ,:g:]/ " comple::ea(f 11:0::
X [X /EJ
X | Y
4 N\
4




ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.12 (Continued)

Part 4

Since the membrane is not moving, one wave propagates upstream and the other
propagates downstream. Thus, to find the solution we need two boundary conditions,
one upstream and one downstream. If, however, both waves had propagated down-
stream, then causality does not allow us to apply a downstream boundary condition.
This is not the case here.
PROBLEM 12.13
Part a

Since Vev = 0, in the region 0< x< L,

v d € -&)
N i 2
' d+‘glS g, Vo[ T4 ] (a)

where d is the spacing between membranes. Using Bernoulli's law, we can find the
pressure p, right below membrane 1, and pressure P, right above membrane 2.
Thus

1 2 1 2
200t P = T TP ®)
and
) 1 2
70V, tP, = oVt (c)
Thus
ovi(E -€,)
p = p Xp +—— (d)
1 2V Yo d
We may now write the equations of motion of the membranes as
2 2 2 2
2%, 2% s 2%, Va6, - &) ©
%n 3ez - S hxz (P, py) = ox? d e
%, 9%, . . 3%, oVA(E, - &) -
°n T3z T 55z Po. " P2 = 5%7 T d

Assume solutions of the form

E, = Re gl e (we—lex)
£ ej(wt—kx)
2

Substitution of these assumed solutions into our equations of motion will yield the

~ (g)
= Re 52

dispersion relation

~ ) pvg A A

- omwzgl = - Sk gl A &, - g2)
n ~ 2 (h)
2 _ _ 2 pVO A _ A

-0 wE, = -5k £, + —:r—(gz gl)

These equations may be rewritten as
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ELECTROMECHANICS OF INCOMPRESSiBLE, INVISCID FLUIDS

PROBLEM 12.13 (Continued)

~ pV2
a[-cw2+5k2-—d—ﬂ +£ L -) 0
. V2 - (i)
LJ+£ o_w? +Sk2-——dﬂ]=0

For non-trivial solution, the determinant of coefficients of El and Ez must be

zZero. 2

Thus pVé ’ pV:’
- 2 2————— = —_—
[ cmw + Sk 3 j { 3 (i)
2 2
or oV pv
- 2 2 __° _ +_°9°
o w® + Sk 5 T (k)

If we take the upper sign (+) on the right-hand side of the above equation, we obtain
2.1
S 2 ZOVO 2
w = | —k® - — (2)
A o cgd
m m

We see that if Vo is large enough, w can be imaginary. This can happen when

o 20 (m)

Since the membranes are fixed at x=0 and x=L

Kk = % n= 1,2,3,.0... (n)

So the membranes first become unstable when

2
, s(1)d
V ¢7 ——— o
o ) (o)
For this choice of sign (+), gl = ~ 52 » S0 we excite the odd mode. If we had

taken the negative sign, then the even mode would be excited

&, =&,

1
However, the dispersion relation is then

w = tik
(o

m
and then we would have no instability.
Part b

The odd mode is unstable.

1

—_—
or —_—>

_;/—\z
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ELECTROMECHANICS OF INCOMPRESSIBLE. INVISCID FLUIDS

PROBLEM 12.14
Part a

The force equation in the y direction is

) .

3y - P8 (a)

Thus
p= - pgly-8) (b)

where we have used the fact that at y= §, the pressure is zero.

Part b
V*v = 0 implies
Bvx EZX_ ~
3x * dy 0 (@)
Integrating with respectto y, we obtain
avx
vy = -35 Y + C (d)

where C is a constant of integration to be evaluated by the boundary condition at
y = -a, that

v (y= -a) =0

y y

since we have a rigid bottom at y = -a.

Thus . avx
v_ = = == (yta) (e)
Part c Y Ix
The x-component of the force equation is
ov
X __3% _ _ . 3 '
° 3t 3 P8 3x )
or
v
X __ ., 3%
it B (8)
Part d
At y = &,
13
Vy at (h)
Thus, from part (b), at y = §
3v
3 | _ X
= - (&) Y

However, since £ << a, and vy and vy are small perturbation quantities, we can
approximately write

av
T e )

Part e

Our equations of motion are now

44



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.14 (Continued)

v

X L=

3t 5% (k)
and v

X _ _ g2k

3t 8 3% . ®)
If we take 3/3x of (k) and 3/3t of (%) and then simplify, we obtain

v A

T = a8 532 (m)

We recognize this as the wave equation for gravity waves, with phase velocity

vp = Vag (n)

PROBLEM 12.15

Part a
As shown in Fig. 12P.15b, the H field is in the - i1 direction with magnitude:
I 6
lu| = 5 -
s 21r surface of integration (j5)
8 z for the MST
r

If we integrate the MST along the surface defined in the above figure, the only
contribution will be along surface (1), so we obtain for the normal traction

uI
1l oo
W = - 8 “zrsz ®)

Part b

Since the net force on the interface must be zero, we must have

Tn + pint - po =0 (c)

where Pine is the hydrostatic pressure on the fluid side of the interface.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.15 (continued)

2
uOIO

pint = po + 8 T2 (d)

Thus

Within the fluid, the pressure p must obey the relation

3
2 = -8 (e)
or
p= -pgz+C (£
Let us look at the point z = 2, T = Ro. There
1 uoIo2
= - z +C= p + 57T (2)
P ez, Yo = 8 TR g
Therefore b 12
C = z + + —-—3—2r .
PEZ, T Py T B W Ro (h)
Now let's look at any point on the interface with coordinates zZ s T
Then, by Bernoulli's law,
2 2
+ ——z—z—u°1° +pgz = l—z—z—u°1° +p + pgz
Po " BT Ro ez, 8 T P, T PBZg (1)
Thus, the equation of the surface is
2 2
z + = UOIO = z + l —z—-z—uolo * s
PeZs™ 8 nzr; PBZ, T B T R &)
Part ¢ .
The total volume of the fluid is
- 2 by2
V= m[RS - P ]a. (k)

We can find the value of zo by finding the volume of the deformed fluid in terms of

Z» and then equating this volume to V.

2
Thus R l: +luoIo 1 1
°© |26 7 8 Tpgn? ii? r2
= 2 byzq, o
vV = 1r[Ro - (50 Ja= 2m { rdrdz )
r=r, 2=0
where

T is that value of r when z = o, or
2 v,
1 Holo 2
8
YA
|
m Ro

Evaluating this integral, and equating to V, will determine z .

ﬁN‘H

(m)

0] =

+
P8z,
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.16

We do an analysis similar to that of Sec. 12.2.la, to obtain

E=-1 v (a)
y w
and
= o(- — = =
J iy ( w+vB) Td 1y (b)
Here Ve IR+V ()
Thus vBw - V
[o]
I= ———
R+ 2do

The electric power out is

P =VI= (IR+ V)I
e o

- Bw - V
+ R(vBw Vo) v o

= |V
° pa T )
Ldo Ldo
From equations (12.2.23 - 12.2,25)
we have
1B
bp = p(®) - p() = T 3)
Thus, the mechanical power in is
Bw(vBw-V )v
= z —_— 0
Py (Apwd)v e (8)
2do

Plots of PE and P, versus v specify the operating regions of the MHD machine.

M

P P P
. M | w Pe | Py
e
1 |
I‘ P
e
‘ v
- v
Vo b\\\\\~ | g
2doRB | w
P> 0 lfe< Ofp < 0 l P> 0
PM> 0 }iM> OPM< 0 PM> 0
Generator Brake ' Pump Generator

47


http:12.2.1a

ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEE“12.17
Part a

The mechanical power input is

L d
Py = - J ‘] f vaodxdydz (a)
z=0 y=0 x=0
The force equation in the steady state is
- Vp + £ =0 (®)
where o g ©
yo
Thus L w d
PM = f | JyBovodxdydz (d).
z=0 y=0 x=0
o 3, = 0@, +vB) = o %—3 +v,B) (e)

Integrating, we obtain

= 2 - VLd
PM ovoBoLwd oBovo (£)
V;; vvoc 1
Ri ~ R = ﬁr-(voc— v)Voc
1 i
Part b P .
Defining n = ——
P
M
we have )
. (voc - V)V - av ®
(voc - V)Voc
First, we wish to find what terminal voltage maximizes Pout' We take
aPout
3V - 0 and find that
A
_ oc .
V= 7(1+a) maximizes Pout'
For this value of V, n equals
1 1
n 2 (1+2a) (h)
Plotting n vs. 1 gives n
a
s e e e e . e —
1
N N A AR A I R a
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.17(Continued)

Now, we wish to find what voltage will give maximum efficiency, so we take

a,n
3v“°

Solving for the maximum, we obtain

/a .
V= voc\:lt l+a] (1)

We choose the negative sign, since V< Voc for generator operation. We thus obtain

n= 1+ 2a-2/a(l+a) )

Plotting n vs. % , we obtain

n

: , . 1
' 2 3 4 5 6 7 8 9B a
PROBLEM 12.18
From Fig. 12P.18, we have
E = 43
Wy
and
—_ —-_ V _ _I— —_—
J = 1yo[ -t vB] = iD iy (b)
The 2z component of the force equation is
_dp oL,
5z ~ 1D ° 0 (c)
IB v
or bp=p; -p,= F= Apo(l-vo) (d)
Solving for v, we obtain
IB
v= (1- m v, (e)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,18 (Continued)

Thus, we have

I \ IB

oo~ wt B mm_ % 0
or Y BZVOW.
= — -
Ve I{ 5o Bip, > v Bw (g)
Thus, for our equivalent circuit
w vosz
v oy
Ri LDo + DApo th)
and V = -vwuB (i)
oc o

We notice that the current I in Fig. 12P.18b is not consistent with that of Fig.
12P.18a. It should be defined flowing in the other direction.

PROBLEM 12.19
Using Ampere's law

NI +NI
_ oo LL ,
H = 5 (a)
Within the fluid
I \/ :
_— L — _ _ —L -—
J= 331, = o( ot vuoHo)iz (b)
Simplifying, we obtain
: 1 ovUONL _ UVUONOIO ) OVL ©
L| & d d w

For VL to be independent of‘IL, we must have

ki W (@
d T

or R e)
NL QOVNO (

PROBLEM 12.20

We define coordinate systems as shown below.

Y2

MHD #2. MHD # 1
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ELECTROMECHANECS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.20 (Continued)

Now, since Vev = 0, we have

vwd = vwd
11 1 2 2 2

In system (2),
I v

= = -_— — +
J2 1y2 7,4, o( va sz)iy2 (a)
and
I,B
ap, =p(0) -pQ&, D= - - ®)
2
In system (1),
- - b Vl
Jl = iylW =0 ( W_ - VIB) (C)
11 1
and IIB.
Ap = p(0,) - p(ll_) = - (d)

1
By applying Bernoulli's law at the points x = 0_ (right pefore’'ID system 1) and at
X, = 21+ (right after MHD system 1), we obtain

1 2 . 1 2

5 Py, +p (0) = Fpv: +p (L) (e)
o P, (00 = p (2 ) (£)
Similarly on MHD system (2):

p,(00) = () )
Now,

§ Vpedt = O

c

Applying this relation to a closed contour which follows the shape of the channel,

we obtain

11_ x2=0_ x2=22_ xl =0_
é Vpedl = JV pedl + { Vped? + I Vpedl + I Vpedl
C x1=0+ x1=£1+ x2=0+ x2=£2+

=p, (@ )-p, (0D +p,(0)-p (& J+p Q)
- p2(0+) + pl(O_) - p2(22+) (h)

From {f) and (g) we reduce this to

Apl + Apz = 0 (i)
or
' Lo oh 3)
d d
- 1 2
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.20 (Continued)

Thus, we may express v1 as

I
v = <+T1723+%>% (k)
We substitute this into our original equation for J2 (a), to obtain
I Y wdy /1 v
;e (o) (8 ) “

This may be rewritten as

w 1 wld1 d1

= - —l - —
V,* L |ltatwrar|- T Y (m)

2" 2 2 1 2 2

The Thevenin equivalent circuit is:

_— 1, R
V.YV, W
_ +
Voc _:L_ v,
+
where dl
vV =— YV
oc d 1
2
and d
- Y2 ;L_+ iy
eq ad 22 w2d22,l
PROBLEM 12.21
For the MHD system
= I Vo
3] = W = 95 - VUOHO) (a)
and I, H
Ho'o
bp = py-py= +—— (b)
Now, since
f Vp*d? = 0 (c)
we must have v .
o
Ap = kv = UOHOLO( 5 vuoﬂo) (d)
Solving for v, we obtain
= UOHQLOVO
D{k+ (u_H_) ?Lo] @)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.22
Part a
We assume that the fluid flows in the +x direction with wvelocity v.
Thus
- I

- v )
J = 13 o= o( It vuOHO) i, (a)

where I is defined as flowing out of the positive terminal of the voltage source Vo'

We write the x component of the force equation as

AT
_3% __o9° _ =
axl T w o} 0 (b)
.Thus Iy H
090
For 8p = p(0) - p(L) =0
Then Iy H
‘0 0
e T T8 @

For the external circuit shown,

V= - 1R+ Vo (e)

Solving for I we get
Vo '
— +
_ d vuoHo - pglw
I-= = (£)
—l—-+ R uoHo
OLw d

Solving for the velocity, v, we get
__esﬁv_(l + B)_‘b_

U H oLw d d
00
- (8)
uOHO
For v > 0, then
Vo<uH (E+ RLw) (h)
oo

Part b
If the product VOI > 0, then we are supplying electrical power to the fluid. From
part (a), (f) and (h), Vo is always negative, but so is I. So the product

VOI is positive.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.23

Since the electrodes are short-circuited,

7- 1L - T

J= i 99 = OB i, (a)
In the upper reservoir

P, = pytegth -y) (b)

while in the lower reservoir

P, = P, *+pelh, -y) (c)

The pressure drop within the MHD system is

bp = p(O) -p() = 2 (@

Integrating along the closed contour from y=h1through the duct to y=h2 , and

then back to y=h1 we obtain

IB
-§ UpedR = 0 = - pg(hl - h2) + =2 (e)
C
Thus L - pg(h1 - hz)d (£)
i BL
and so
h - h
vo L pg(h - h) (2)
oLdB ol°B
o o

PROBLEM 12.24
Part a

We define the velocity vy, as the velocity of the fluid at the top interface,
where

_ dn
Yh T dt (2)

Since Vev = 0, we have

th = v wD (b)
where Vg is the velocity of flow through the MHD generator (assumed constant). We
assume that accelerations of the fluid are negligible. When we obtain the solution,
we must check that these approximations are reasonable. With these approximations,

the pressure in the storage tank is

p= - pgly-h) +p (c)
vhere P, 18 the atmospheric pressure and y the vertical coordinate. The pressure

drop in the MHD generator is

&p = —3 (d)
where I is defined positive flowing from right to left within the generator in the
end view of Fig. 12P.24,
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.24 (continued)

We have also assumed that within the generator, v, does not vary with ﬁoSition.

The current within the generator is

I . IR
LoD = of w + veuoHo) (e)
Solving for I, we obtain
v, U H
= -5 00 ‘ (£)
1. R
OLD w

Now, since § Vped? = 0, we have

Ap - pgh = 0 . @)
Thus, using (d), (f) and (g), we obtain
(u H )2 ’
00 1 .
- pgh + R, 1 _|% =° (h)
-+
W OLOD

Using (b), we finally obtain

dh .
T tsh=o0 (1)
where o8 W o [&p 1
$° wnoz Alw tor
oo o
Th -st
us h= 10 e °° | until time T, when the valve closes &)
Numerically at h = 5.
s= 7.1x10°° , thus T~ 100 seconds.

For our approximations to be valid, we must have

v,
’pgr << pg (k)
or
s?h <<g.

Also, we must have

1
RSN
or
1l 2
7 8 h <<g (L)
Our other approximation was
3ve IuoHo
pLo at << D (m)

which implies from (f) that
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.24 (continued)

(W H )2
psL_ << —2L o (n)
o p R4 1
\4 ULOD
Substituting numerical values, we see that our approximations are all reasonable.
Part b
From (b) and (f)
I-= —-———_.—._.__UOHO A _ah
wd L Rl9e
OL D w
o
= - 650 x 10° e %t amperes.,
until t = 100 seconds, where I = -325 x 103 amperes. Once the valve is closed,
I = 0.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25

Part a

Within the MHD system

— - i -— v —_—
J = E:E 13 = - g( o vuoHo)i3 where V = -iR + Vo (a)
iuy H
and bp = p0) - p(-L) = —g=a (b)

We are considering static conditions (v=0) so the pressure in tank 1 is

p, = -pglx, - h) +p, (c)
and in tank 2 is

P

2 - pg(xz - hz) + Ps d)

where P, is the atmospheric pressure,

thus v

i= = (e)
vl + B
OLID w
Now since ﬁVp-dz = 0, we must have
C iy H
+ pgh + -pgh =20
pgh D pgh_ (£)
Solving in terms of Vo we obtain
pg(h = h )wD
e TN 011,1)*% (8)
Ho'o |
For hz = .5 and hl = .4 and substituting for the given values of the parameters,

we obtain

Vo = 6.3 millivolts

Under these static conditions, the current delivered is
pg(h2 - hx)D
i=s ——————— = 210 amperes
u_ H
o o
and the power
delivered is 2

pg(h, - 00 Fy g
-Pe = Voi = _———TTTT_——_ w Ef_b+ ol = 1.33 watts
oo : 1

We expand h1 and h2 around their equilibrium values hlo and h20 to obtain

Part b

h + Ah
1

1 lo
h, + bh,

0
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25 (Continued)

Since the total volume of the fluid remains constant
Ah = - Ah
2 1

Since we are neglecting the acceleration in the storage tanks, we may still write

P, = -pg(x -h)+p
' 2 v (h)
P, = -p8lx, -~h)+p,
Within the MHD section, the force equation is
iy H
v oo :
°3c =" Vep * LD 1)
Integrating with respect to X, , we obtain
iuoHo v
Spyyp = P(O) - p(-L) = LD - oL 53¢ )
The pressure drop over the rest of the pipe is
A = - L d_v
ppipe PLIFTS
Again, since ﬁ Vped? = 0, we have
o
pg(hl - hz) + ApMHD + Appipe =0 (k)
For t > 0 we have
2V
o
w - VHol,
i=— R Q)
— + _—
OLID w
and substituting into the above equation, we obtain
<’2v0
— - VU H) Ui
v W 0o ‘oo _
og(hl— hz) pP(L+L) 3T Yo7 X 5 =0 (m)
oL D w
1
We desire an equation just in Ahz' From the Vev = 0, we obtain
dAh2
vwh = o A (n)
tlaking these substitutions, the resultant equation of motion is
2 2
d Ah2 .\ (uOHO) dAh2 .\ 2gwdAh2
dt? 1 R] dt (L.+L)A
= 1 2
p(L1+L2)D[?LID + Y}
(o)
VouoHo
1 R
p(L +L,)A LD + w]
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25 (continued)

Solving, we obtain

vV u Ho Slt szt
Ah = o2 +Be +Be ()

2 Zp?Wd(%‘ D+ E) 1 2

where Bl and B are arbitrary constants to be determined by initial conditions
2

and

2 ,
ALY /[“oo \ 2gwd_ (@
3 ZpiL +L )1)( \/\< [L +LZJ [OL . y @ + LA

Substituting values, we obtain approximately

-1
~ .025 sec.
1 -1

s = - .94 sec.
2

s

The initial conditions are

Ahz(t=0) = 0
and dAhz(t=0) -
dt

0

Thus, solving for B, and B, we have

- VuH
0 0o
B = = - ,051 (r)
1 2 LR -5
20gwD [ + ](1 _)
1 s
2
- VuH _3
B = ~—2-2 s = + 1.36 x 10
z 2pgwD [ 1 + —ji
[4:4 quD
Thus
-3 _ -
h () = h 48h () = .55+ 1.36 x 10" e WOME_ go1,me025L )
From (L) we have
o
— - v H
{ = w o o (t)
R, _1
\ OLID
Substituting numerical values, we obtain
slt s,t
i = 420 - 2.08 x 10° (B,s,e t+ B,s,e )
- 420 - 268 (e "O25F - o7vo%E) ' (v
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25 (continued)

hz(t)

«55 L
Sk 4
.53 4
.52

«51 4

50 ] I—

i(t)

420 — e e ewn - e cmme e vm e e

210 +

60



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25 (continued)

Our approximations were made in (h) and (k). TFor them. to be valid, the following

relations must hold:
3%An
2
51:
gh,

@
<l

v S nvas & X A
J——+ (veV)vds ~ t/A« L,

Qo
[ad

transition
region
Substituting values, we find the first ratio to be about .001, so there our approx-

imation is good to about .1%. In the second approximation

VA .3
B R
2
Here, our approximation is good only to about 15%, which provides us with an idea of

the error inherent in the approximation.

PROBLEM 12.26
Part a
We use the same coordinate system as defined in Fig. 12P.25. The magnetic field

through the pump is

NiM g

d 1_2 . (a)

B =

We integrate Newton's law across the length £ to obtain
8p

ot & = 50 -p() +IBL= -—2y+ip )
at v, d
Ap Nu
=—T°v+ d2 iZ
o
Thus

bp Nu Nu
v, o = 0 ;2 2 _ 0 2,7 _
3 * BIv, v = 7oL I° sin® wt = Saiok I°(1 - cos 2 wt) (c)

Solving, we obtain

dp
Np I% |v pR (—172—- cos 2wt + 2w sin 2wt
o o _\P* ¥vo (@)
2d“pl | Ap Ap N2
° 9 + 4w
Part b pgvo
The ratio R of ac to dc velocity components is:
R = 89, /voPt (e)
oo \ %4 z.wz:]Y
VoP%
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,27
Part a

The magnetic field in generator (1) is upward, with magnitude

Niluo Nmizuo
B = — (a)
1. a a -

and in generator (2) upward with magnitude

N1iu Ni u
B = m 1l o + 20 (b)
2 a a

We define the voltages V1 and V2 across the terminals of the generators.

Applying Kirchoff's voltage law around the loops of wire with currents i and i
pply P 1 2

we have
dll dAz

V1+N-a-t—+Nm?lE— +11R'L =0 (c)
and dl d),

Vz-+ N EE—-- Nm T + 12RL = 0 (d)
where

Al = Blwb ) (e)

= B wb ’
2 2

From conservation of current we have

2o v, ()
abs  w
and
1, v,
abo w + VBZ (8)
Combining these relations, we obtain
2 ) wbuo di, wuoN uow
o +Nm) a dt + [abo RL_ 3 + a VNmiz =0 ()
and
wbu di VNu oV N u
2 2 o 2 . - _mo -
(" + Nm) a dt + * abc + RL WVi; 0 (1)
Part b

We combine these two first-order differential equations to obtain one second-

order equation.

a’i, di,
a4 4t ta ¢ tai, =0 ()
where = wa;-z
N2+ N?)
a = m a | (k)
1 wN Vu
m [o]
a
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.27 (continued)

2 2
) - N _ wuoNV (N*“+ Nm)b
2 abo RL a Nm A

VN U w
a - —mo’ ,
3 a

[
]

If we assume solutions of the form

1= A *)
Then we must have
as®+as+a =0 (m)
1 2 3 .
or -a*Va® - 4aa
s = 2 2 13
2 a

1
For the generators to be stable, the real part of s must be negative.

Thus
a, > 0 for stability .
which implies the condition for stability is

wu NV
' 0
—_— > e
Part ¢ abo | R, a (n)
When a =0
2
wuoNv
w =
abo + RL a (0)

then s is purely imaginary, so the system will operate in the sinusoidal steady state.

Then
a!
s= *j/—
al
Nm v
RN YCEE Y 2

The length b necessary for sinusoidal operation is

b = — wuoNg (q)
[ - v
Substituting values, we obtain
b = 4 meters.
Part d

Thus, the frequency of operation is

w = éQ%Q_ = 500 rad/sec.
°F  f£= - X 80 Hz.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.28

Part a
The magnetic field within the generator is
uoNi _
B = w i2 (a)

The current through the generator is

= _ _ _j__ _ X -—
J = 13 T = ol 5+ VB)i’ ’ (b)

Solving for v, the voltage across the channel, we obtain

i Vu N
= (D __0o
v = <02,w - D) i (c)

We apply Faraday's law around the electrical circuit to obtain

p N2

"o d1

d == (d)

1 .

v + E-f idt + 1 RL
Differentiating and simplifying this equation we finally obtain
a2 (AT E Y Nai, _w ©
dt u N“Rd w dt uoN 2dC

We assume that i = Re I eSt.

Substituting this assumed solution back into the differential equation, we obtain
RL w U _NDV
___._.Jl___. + = 0 (£)
s® u N?%d Tw W s N’de

Solving, we have

RV ) U NDV R w ) M NDV \ 2
uy NZ2d Y oLw w Wy NZed t ch W .
s == ) pa A T U NAC (g)

For the device to be a pure ac generator, we must have that s is purely imaginary, or

. 2
) uoNDV D uoN 24 -
RL w OLw w

Part b
The frequency of operation is then

w
w = uoNszC 1)
PROBLEM 12.29
Part a

The current within the MHD generator is

- _ v —
J = Rd iy = 0(w + vBo)iy (a)
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ELECTROMECHANICS 6F INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.29 (continued)

where V is the voltage across the channel. The pressure drop along the channel is

bp= p,-p,= 7 tezt (b)

where we assume that v does not vary with distance along the channel. With the switch

open, we apply Faraday's law around the circuit, for which we obtain

V+2iR= 0 (c)
Since the pressure drop is maintained constant, we solve for v to obtain
"20R , 1) pd2 3v. ({1, 2R\d_
(w+£d) B ot T " (zd+w)BOA" (@
In the steady state
_ 1 2R\ d
vE (old+w>§7Ap (e)
o}
and d
i-= B Ap ()
o
Part b
For t > 0, the differential equation for v is
oR , 1 )ptd dv o (L, or)d
(w+2d) B ot O " (2d+w>Bo bp ()
The general solution for v is
_ 1 R\d -t/T
v = <——_02,d-.+w>FgAp+Ae (h)
_ (oR, 1) _ad
where T = (w ld)a’—ﬁ—z
We evaluate A by realizing that at t = 0, the velocity must be continuous.
Therefore
- 1 R\ d R d - t/t
v = (EEE-+ w) 37 Ap + - 57 Ap e (1)
o o
and
} PL R d —t/'r)g_
i Ap<l+Tw-ﬁ-é-e B &)
- t/t
= Ap 1+ Ro e d
JERL LT B
w 2d °
PROBLEM 12.30
Part a
The magnetic field in the generator is
uoNi
B T ; (a)
The current within the generator is
i v
T - o(;"’VB) (b)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,30 (continued)

where V is the voltage across the channel. The pressure drop in the channel is

b= p -p = M, 1-%)= I (©)

Applying Faraday's law around the 8xternal circuit, we obtain
_ d(NBg,W) e - 2,_\"1 N2 g'j_.

V+ AR + R = dc d Mo dt (d)
Using (a), (b), (¢) and (d), the differential equﬁsion for 1 is then
U N\2
2 . o
&’.N_gi.}.i m.p_];__i’iv +.__g_ vid =0 (e)
d dt w ofd d o dApo o
In the steady state, we have
R+ Re 1 “oNvé]
{2 = - [_ \ + o%d =~ d 7 dApo (£)
u NJ2 .
9 v
d o

The power dissipated in RL is
2
P= i"R
For P = 1.5 X 106, then

12 = .6 x10° (amperes)2

Substituting in values for the parameters in (f), we obtain

4

_ (L1125 + 2.5 X 10 °N® - 6.3 X 107" N)40 x 10°

N (4 %X 1079

i = .6 x10°=

(g)

Rearranging (g), we obtain
N2 - 102N + 2.04 x 10° =0

or N= 75, 27

The most efficient solution is that one which dissipates the least power in the coil's
resistance. Thus, we choose

N = 27
Part b

Substituting numerical values into (e), using N = 27, we obtain
(1.27 x 107) %% - (6 x 1071 + 1% =0 (h)

or, rewriting, we have

dt - di )
1.27 x107 i(6 x107 - i%)

Integrating, we obtain

1 .
9.4t + C = log (gj;167jjiz> @)
We evaluate the arbitrary constant C by realizing that at t=0, i = 10 amps
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ELECTROMECHANICS OF INCOMPRESSIBLLE, INVISCID FLUIDS

PROBLEM 12.30 (continued)
Thus

C= - 13.3

We take the anti-log of both sides of (j), and solve for i’ to obtain

6 x 107

iz =
l-+e(1&3 =9.4¢)

i

275 X 10° -JL ———————— _— ——— —— —

5.5 x103-L

)}

A\

10

1-'4}55

seconds t

Part c

For N = 27, in the steady state, we use (f) to write

P = izRL =
(=)
d o
or
= _ 2
P alRL a, RC "
where 1 HohVg
a=-dAp° w ¥ opd a) A 1.47 X 10°
1 (u N\ *
o
v
and d °
B dApO 1
a,s= (uoN)z A3 gsx10
d Vo
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.30 (continued)

6
1.5 X190 -

i
) AJ
2.5x1072 s x1072 L
PROBLEM 12,31
Part a
" With the switch open, the current through the generator is

- L
2d

where V is the voltage across the channel. In the steady state, the pressure drop

- v _
L= o(-g+vB)T (a)

in the channel is

iB
Bp= Py ~Py= F=0=28p (1-3) (b)
[o]

Thus, v = vy and the voltage across the channel is

vV = voBow. (e)

Part b
With the switch closed, applying Faraday's law around the circuit we obtain

Thus . .
m=—Tl+OVBO (e)
and
. iB v, o _y
Ap = Tt SE L = Apo (1 vo) (£)

Obtaining an equation in v, we have
v [fpo 9B, ()
pL s+ v — + = AP g
at Vo 1+°5] L
Td " v
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.31 (continued)

Solving for v we obtain

bp
. -t/t o = A
v = Ae Bp v where R, ald (h)
)
Vo RL*'Ri
and where
p 2
T = 1)
v, RLi-R
at t = 0, the velocity must be continuous. Therefore,
8p
"0
A= Yo T Ap wB
(e )
v° RL+Ri
Now, the current is
wB v
[¢] \
i s ——— (k)
R tRy
Thus
wB Ap - -
i= 2 ) — 1-e t/T) vy et/ (2)
R Ry (Ap wB :> o
q1—=L + — 90
Vo RL-FR
A
———————— VO
v
o
\ wB
1+ 5 (R = )
Po \Ry*R,
t
i
voﬂow
+ Ry
B, WV,
- —-15 _
(R+R;)(1 + —( RL+R ) )
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.32

The current in the generator is

i \'
2d =o(g =B (a)

where we assume that the B field is up and that the fluid flows counter-clockwise.

We integrate Newton's law around the channel to obtain

v _ _ i
pl 3; = JBJL1 = 3 B (b)

or, using (a),

IV . w3 By
T + i (c)

dto 3t  dp
Integrating, we have

oG
A B%w
V = dlo_i'i'mf idt (d)
1 0
Definin R, = A
8 i of,d
and
C =M—.
i wB?2
we rewrite (d) as o
V= iR +-1T—Iidt (e)
i Ci
0
The equivalent circuit implied by (e) is

R,
1 .
i

A v
1

PROBLEM 12.33
Part a
We assume that the capacitor is initially uncharged when the switch is closed

at t = 0. The current through the capacitor is

dv v
{ = ¢ L2 - -L
i= C dt O'Q,d( - + VOBO> (a)
or
dVC . ofd v OZdvo Bo ®)
dt wC 'C C
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.33 (Continued)
The solution for VC is

-t/
Vo= vBuw(l-e ) ()
with wC
T = Sid° where we have used the initial condition that at t = 0, the vol-

tage cannot change instantaneously across the capacitor. The energy stored as

t > o, is

1 2 1 2
W, = = = =
o 5 C Ve 7 C(voBow) (d)
Part b
The pressure drop along the fluid is
iB
- _o°o _ 2 -t/T
Ap = d BOVOOR‘ e ' (e)

The total energy supplied by the fluid source is

o0

Wf = L Ap vodwdt
_ f:("oBo)z otwde /T at 3
= - OQ(VOBO)2 dee_t/T )

We= Clv B)? (g)

Part ¢

We see that the energy supplied by the fluid source is twice that stored in the
capacitor. The rest of the energy has been dissipated by the conducting fluid. This
dissipated energy is

L]
Wy f v, idt (h)
0
o

= J + (voBo)zw(l - e—t/T)Glde—t/T dt

)
oldw(v B )? Efe_t/T+ I e_Zt/T]
oo 2

[+~]

0

= 2 1
Uldw(voBo) 5 (1)
Therefore
= L 2 ‘
Thus '
wfluid - welec + wdissipated (k)

As we would expect from conservation of energy.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.34

The current through the generator is

i \'/
E:a- = g( i VBO) (a)

Since the fluid 1s incompressible, and the channel has constant cross—-sectional area,

the velocity of the fluid does not change with position. Thus, we write Newton's law
as in Eq. (12.2.41) as

oV

LY

where U is the potential energy due to gravity. We integrate this expression along

= - V(p+U) +J x B )]

the length of the tube to obtain

v iBo
Pyt = g ek, tx) (e)
Realizing that X, = Xy
and v = dx, (d)
dt
We finally obtain
2 2
d X, N oBoﬂ,ldxa . 2 . - GBOV El @
dtz pl dt 2 a wp L
We assume the transient solution to be of the form
x, = x St (f)
Substituting into the differential equation, we obtain
) UBglls 2g
—0 > + = .
M) 2 0 (g)
Solving for s, we obtain
oB*g oB2g, \?
1
s = - =2 + o 1\ _ 28 (h)
208 - 200 ] 2
Substituting the given numerical values, we obtain
s = = 29.4
1
s, = -.665 (1)
In the steady state
oBoVR,l
x = W oy .075 meters (1
Thus the general solution is of the form
- s, t s,t
X, 075 + Ale + Aze (k)

where the initial conditions to solve for A1 and A2 are
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.34 (continued)

xa(c=0) = .0
*q )
35 (t=0) =0
.075 s 075 s
T = :
hus, A2 — - 1 = .0765 and.A = - .____3_ = .00174
27 % ! 5,7 %)
Thus, we have:
x, = .075 + 00174294t _ 7656665t
x
a
075 &=
R { - .y
T { }
1 2 3
Now the current is
v dx
" lldO( v Bo EEO s, t s,t
= ndo[ 5 - B 0s,8,6%% + 5,0,0%20)] (m)

100 - 2 % 103(slA1eslt + szAzeSZt) amperes
—2% 4 ¢ -.665¢L
100(1 + e - e )

Sketching, we have

i

100

-+

-

-
[ad
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PROBLEM 12.35
The currents Il and I2 are determined by the resistance of the fluid between

the electrodes. Thus

VooDx
Lt @
and V_ODy
2 w

The magnetic field produced by the circuit is

_ W _
B= — (I, - IDI, (c)
or B = —-zu°N V oD(y- x)1 (d)
w [o] y 2

From conservation of mass,

y= (L-x) (e)
_ u NV oD _
Thus  §. & _0©° _ (- 21 (£)
w

The momentum equation is

v
P 3t
Integrating the equation along the conduit's length, we obtain

= - V(p+U) +J x B ()

v

o) SE-(ZL + 2a) = -pg(y-x) - JOBL (h)
Now
= - 9%
v 3t (1)
so we write:
. 2 u NV oDL
X o o
2p(L + a) FYS) + | pg + Jo R (2x - L)= 0 D)
We assume solutions of the form
x = Re x 5% + %— (k)
Thus ] . UONVOCD
s° + (L+a) + pwZ (L + a) Job = 0 (2)
Defining
2 UONVOODJOL
2 _
YoT Tra T T vt (m)
we have our solution in the form
Xx = A sin Wt + B cos w,t + % (n)
Applying the initial conditions
x(0) = L and d§£0) - 0 (o)
we obtain x = %-(1 + cos wot) (p)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.36
As from Egqs. (12.2.88 - 12,2.,91), we assume that

YT Tele
B= B I +TgBy (a)
TJ=TJ +13J
rr zZ 2
E= Tk +TE
rry zZ 2

As derived in Sec. 12.2.3, Eq. (12.2.102), we know that the équation governing Alfvén

waves is .
2 2
3t2 1,0 3%

For our problem, the boundary conditions are:

at z =0 E =0
r

(o)

at z = 2 Vg = Re[Qrgjwt]
As in section 12.2.3, we assume

vy = Re[A(r)vg(z)el) ' (d)
Thus, the pertinent differential equation reduces to

a?v "

~d—-z-z- + kv = 0 (e)

UpP
where k=w [—5
B,

The solution is

vg = C, cos kz + ¢, sin kz (f)
Imposing the boundary condition at z = ¢, we obtain

A(r)[Cl cos k& + c, sin k8] = Qr (g)
We let r

A(r) = ¢ (h)
and thus

QR= C, cos k& + C, sin k& (1)
Now

E.= - VgB, &P
Thus, applying the second boundary condition, we obtain

=0) = 0

vg(2=0)
or c, =0 (k)
Thus _ SR

€, ® Sih k2 2
Now, using the relations

E_= - vgB, (m)
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PROBLEM 12.36

ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

(continued)

3

3z

1 86

Ho 9z r
A

9E 9B

ar ot
By i

a(rBe)

we obtain

v =

=
]

(]
H

Z

PROBLEM 12.37

Part a

We perform a similar analysis as in section 12.2.3, Eqs. (12.2.84 =~

From Maxwell's

VXE-=

which yields

oK
D A

9z

Now, since the fluid is perfectly conducting,

or E =
y

Re

= Re

ar z

f r j t]
'______ W
Re oin KL sin kz e .

Qra k
Tastn kg o8 ke ]

r QrBo k2

jwt:\
———————— gin kz e
hbj(usin kg

2 QB k
J = Re{————il————- cos kz ejw%

uoj(usin kg

equation
- &
at

3

It 'x

E+vxB = 0
S

v B
X o

Substituting, we obtain

v

B, X
° 92

3B
=
it

The x component of the force equation is

v
X _
P ot
where

3T

76
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.37 (continued)
Thus

avx Bo QBX
S TR S P (h)
Eliminating Bx and solving for Vs we obtain
v B2  3%v
X _ o X 1)
3t U 0 322
or eliminating and solving for Hx’ we have
?H B2  3%H
x _ o X (4)
3 t? H P 322
where
B = uH, (k)
Part b
The boundary conditions are
vx(—z,t) = Re vel¥t (L)
Ey(O,t) = 0~ v, (0,t) = 0 (m)
We write the solution in the form
v = A ej(wt—kz) + B ej(wt+k2) (n)
X
where
k = —ru°p
w Bo
Applying the boundary conditions, we obtain
_ _ _V sin kz [ jwt
vx(z’t) = Re [_ sin k& ] e (o)
Now v 3B
X - X (p)
o 3z at ' P
or
- B,Vk cos kz ~
sin kg - jwuo Hx ()
Thus - BoVk cos kz Jut
Hx = Re[ jwuo sin KL e (r)
Part c
From Maxwell's equations
_ BHx _
VxH= i —=— (s)
Thus y 32
_ _ BOsz sin kz jut
J = iy Re ———‘——jw uo sin KL e (t)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,37 (continued)

Since VeJ = 0, the current must have a return path, so the walls in the x-z plane
must be perfectly conducting.

Even though the fluid has no viscosity, since it is perfectly conducting, it
interacts with the magnetic field such that for any motion of the fluid, currents are
induced such that the magnetic force tends to restore the fluid to its originmal
position. This shearing motion sets the neighboring fluid elements into motion,

whereupon this process continues throughout the fluid.

78
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PROBLEM 13.1

In static equilibrium, we have

~Yp - ngr =0 (a)
Since p = pRT, (a) may be rewritten as
rT 90 4 pg = 0 (b)
dx,
Solving, we obtain
- x
b= o, RT ™1 (c)

PROBLEM 13.2
Since the pressure is a constant, Eq. (13.2.25) reduces to

dv
VT JyB (a)

where we use the coordinate system defined in Fig. 13P,4. Now, from Eq. (13.2.21)
we obtain

Jy = t’J(Ey + vB) (b)

If the loading factor K, defined by Eq. (13.2.32) is constant, then

- KvB= +E (c)
"Thus, Jy = gvB(1-K) ) (d)
Then pv %% = - ovB?(1-K) (e)
or B2 A ‘
v GB2(1-K) = - g(1K) -1
o} iz = 0B° (1-K) 0(1 K) NG (£)

From conservation of mass, Eq. (13.2.24), we have

V48 = PAGR)V (8)
Thus
p.V.A 2
iidi dv _ L
v dz - TOUSKB A . (b)
Integrating, we obtain
- 0(1-K)Bi
fn v = — C 1)
P14
or z
v= ve zd N
Pi V4
where ld = Eii:iiﬁz_——. and we evaluate the arbitrary constant by realizing that

v=yv, at z = 0.
i
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.3
Part a
We assume T, Bo’ W, O, cp and c, are constant. Since the electrodes are short-

circuited, E = 0, and so
J,= VvB_ (a)

We use the coordinate system defined in Fig. 13P.4., Applying conservation of energy,
Eq. (13.2.26), we have

pv g;(%‘vﬁ = 0, where we have set h = constant. (b)
Thus, v is a constant, v = vy Conservation of momentum, Eq. (13.2.25), implies
dp _ _ 2 .
dz viBo (e)
- . 2
Thus, p = v,Bz + p, (D
The mechanical equation of state, Eq. (13.1.10) then implies
v.B°z + p v, B2z
. G S N . (e)
P = RT R T Pi = TRT
From conservation of mass, we then obtain
viB;z
piviwdi = <— <t 0 vy wd(z) (£)
Thus pidi
d(z) = r*—-—;zﬁzz—— ()
0
(pi— RT >
Part b
Then viB; 2
p(z) = o, - —xv— (h)

PROBLEM 13.4
Note:

There are errors in Eqs. (13.2.16) and (13.2.31). They should read:

— 2 ] - 2

L a0y {ov-1) (yi®)E + ¥[2 +(r-D)M?]v B} I, (13.2.16)
W Tdx, (1 - 4 pv, o
and
1de®) 1 [(-1) A+HHE + Y 2 + (y-1)N?} v B_] s
0 Xm - Y Y 7Y Y V.2, val
2
_ 12 + (y-1u2]1dA

Y & (13.2.31)

Part a

We assume that o, v , Bo’ K and.M are constant along the channel. Then, from

the corrected form of Eq. (13.2.31), we must have
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID.FLUIDS‘

PROBLEM 13.4 (continued)

vB?g(1-K) 2
= 1 _ 2y ¢ _1ym2 _ 12 +(¢y-1)M°) dA
0 T [(y-1) (14+yM?) (-K) + y(2+(y-1)MI) - I I (a)
Now, using the relations
vZ = MZyRT
and p = pRT
we write
2
v M
Tl ®
Thus, we. obtain Bzo(HK)Mz
1 oaa LD QM) R + (24 (-] S
A7 qz 7 ¥ (y - D2 : ()
‘From conservation of mass,
pvA = .,V AL ' (d)
Using (d), we integrate (c) and solve for Aiz)
i
to obtain
A(z) 1
Ai Tl - B,z (e)
where
[(y-1) (1+ M%) (-K) + ¥(2 +(y-1)M)loB2M? (1-K)
1 = 12
p v, L2 + (y-1)M7]
We now substitute into Eq. (13.2.27) to obtain
vB2(1-K)o
1dv _ _ 1 __ 1) (- o _1da
vz~ ey O DR + vl Yp A dz (£)
Thus may be rewritten as . .
oB“ (1-K)M B8
1l dv 1 [ (o) 1
$&% T O [(v-l)(-x)+y1-—————————] A (@)
v dz (1-M2) piviAi Ai
Solving, we obtain
_B )
tn v = —B—:—— fn(L - B,2) + fn v, (h)
or
V‘(,z) = (1- Blz)_Bz/Bl (1)
i .
. 1 [(y-1) (K) +y]oB] (1-K)M*- B,
where =
82 (1-M2) Py Vi

Now the temperature is related through Eq. (13.2,12), as
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.4 (continued)

M2yRT = v?
2
Thus T(Z) _ (V_)
Ty Vi
From (d), we have
o) _ Vi A
pi v A
Thus, from Eq. (13.1.10)
pG) . Y1k o1
Py v A Ti

Since the voltage across the electrodes is constant,

= -V _ _
E = ) Kv(z)B0
or w(z) = KvyB vy S | .
l(v(z)Bo v(z) i
Thus, wiz) _ Vi
vy v(z)
Then W
d(z) - A(z) i
di Ai w(z)
Part b

We now assume that o, v, Bo’ K and v

Eq. (13.2.27) we have

1
0 = o) E(rl)(—K) +Y]viB§

But, from Eq.

B

Py

where 83 =

Substituting the results of (b), into (a) and solving for

A(z)

A

where R =
4

i

—1-Kg

Yp

(13.2.25) we know that

1 -

(1-K)

g

[(y-1) (-K) + v]

_ 2
(1 K)oviBoz

av,
1

Pi

BZ
(o]

Py

y -

"
Py

B“/B3

From conservation of mass,

p(z)

p

i

A(z)

2
viBo

Py

1- Baz

(1-K)o

82

A

are constant along the channel.

A(z)

i

Then,

» We obtain

(3

(k)

1)

(m)

(n)

(o)

(r)

(9)

from

(r)

(s)
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.4 (continued)
and so, from Eq. (13.1.10)

T(z) _ plz) “i )
Ti pi p(z) :
As in (p)
w(z) _ Vi _
Wy T ov(z) 1 ()
Thus
d(z) A(z)
= A2iz) (x)
di Ai
Part c
We wish to find the length £ such that
1
CT@QR) +5 [v(R)]2
P 2 = .9 6]

1 4
CPT(O) + 35 [v(o)]

For the constant M generator of part (a), we obtain from (i) and (k)

2 - 28,/8 -28,/8
v(2) 1 2 A T P 2751
cp[vi T, + 5 v(R)] Cp(l - B, T, + 5lv; 1-8,20)]

v (o) o 1 2 s
PH T, + = [V(O)] Cp Ti + 5 Vi @

Reducing, we obtain

- 28,/8,
1 -8,2) = .9 (aa)

Substituting the given numerical values, we have
B, = .396 and B /B = - 7.3x 1072
We then solve (aa) for &, to obtain

2 R 1.3 meters

For the constant v generator of part (b), we obtain from (s), (t), (u) and (v)

p(R) Pi lvz
pi p; p(R) i

" = .9 (bb)
Cp Ti + E'Vi
or
(1- Bu/By) |
CT (1- Bal) + 2
1 " = .9 (cc)
Cp Ti+5 Vi

Substituting the given numerical values, we have
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PROBLEM 13.4 (continued)

63 = .45 and B“/B3 = ,857

Solving for £, we obtain

2 & 1.3 meters.
PROBLEM 13.5

We are given the following relations:

1
B B Y1 Y (MY
A(z)

B, ~ L w2  d@@) “\A(z

and that v, 0, Y, and K are constant.

Part a

From Eq. (13.2.33),

J = (1-K)ovB
For constant velocity, conservation of momentum yields
e - - - 2
ds (1-K)ovB
Conservation of energy yields
ar _ _ 2
vapdz = K(1-K)o(vB)

Using the equation of state,

P = ORT

we obtain
dp dT (1-K) 2

T iz + [ Brpy - TR ovB
or

N G 9) (1-K)ove* _ _ (1-K)ove®

dz Cp R

Thus, ;A

rd0 _ 200y (=14 K

T 42 ovB (lK)< R+cp)
Also 2

42 Bi (Ai)

A(z)

and

piA; = P(2)A(2)

ovB2 (1-K) (- = + &
Therefore T do _ 1 R c” -)
az = 0 - p(=
i 2

and dT BiD

p cp -E = =K(1-K)ov —p—l'
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continued) 4

PROBLEM 13.5 (
and so

ar

dz
Therefore

T =
Let

o =
Then

T

gyg _

o}
We let

] =

Integrating (n

K(l-K)OVBi

P31 .
2
0’VB i

- K(1-K) z+ T

icp i
—K(l—K)ch;

pi cp

oz
Ti(,-r—i + 1)

2 K 1
+ ovB(1-K) ( < T R)

dz

04 (oz + Ti)

+ ovB2 (1K) ( C“—D - 5)

p; o©

°
KR~ *

), we then obtain

&n p= B n(az + Ti) + constant

or
o = o, (41 )8
i
Therefore
Ai
A(z) =
8
(Z+1)
Ty
Part b
From (m),
T(L) ol + Ti B
T = T = .8
i i
or ol
T = -.2
i
Now )
o _ K(l—K)oviBi
Ti picpTi
But R Ti Py
c T = = =
pi

1, 1
-9 -9

2.5 x 108
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PROBLEM 13.5 (Continued)

Thus a _ - .5(.5)50(700)16 -2
T = : = -8.0x10
i .7(2.5 % 10%)
Solving for %, we obtain
L= ﬁ% x 10° = 1.25 meters
Part c
B
= gz
p= pCg +1
i
Numerically
c
B= & -1= —F—-1 % 6.
(1-)K
Thus Y

po(z) = .7(1 - .08z) ©
Then it follows:
p(z) = oRT = p. (1 - .082; =5 x 105(1 - .OSzf
T(z) = T,(1 - .082)

From the given information, we cannot solve for Ti’ only for

p v
R, = = = L& 7x 10
§ B
Now v.? v? vZ p, (%E +1
Mi(z) = 1 - A @) = =4 ;
YRT (z) yp(z) P Y oz o\ (B+H)
Pi T,
- e
1 - .08z
Part d
The total eélectric power drawn from this generator is
p° = VI = -E(z)w(z)J(z)2d(z)
= - E(z)(1-K)ovB(z)Ld(z)w(z)
= - Eiwi(l-K)GvBidiZ
But
Ei = —KvBi
Thus e _ 2 _
P = K(vBi) widiG(l K) %

.5(700)216(.5)50(.5)1.25
61.3 x 10° watts = 61.3 megawatts
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T(z)
Ty
A
T(z) _
T = (1 - .082)
Z
1.25
p(z)
1 p(z) = .7(1 - .082)°®
zZ
p(z) 1.25
A
p(z) = 5 x 10° (1 - .082)7
. 1.25
M2 (z)
/\ 2 - .5
/ Mo (z) = (1-.082)
z
1.25
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PROBLEM 13.6

Part a
We are given that
1
F- T 40 7
x3 %
and
' o = % _fo ¥
e 9 L')/ax%
The force equation in the steady state is
dv_ __ _
pmvx dx ix = pe E
Since pe/pm = q/m = constant, we can write
d(12) . akte %
dx\2 "x m 3 ng

Solving for v we obtain

x
- 2
“
v =\/-2£v(£)
X m o\L

Part b

(a)

(b)

(c)

(d)

(e)

The total force per unit volume acting on the accelerator system is

F= pE
Thus, the total force which the fixed support must exert is

ftotal =T IFdVixz

16 €' W -

T | = ——— x Adx 1
27 L9 X
2

- eV
ft:ot:al =—§ S20 AT

9 L2 X

PROBLEM 13.7

Part_a

We refer to the analysis performed in section 13.2.3a.

for the velocity is, Eq. (13.2.76),

3 a 32

The boundary conditions are
v(-L) = V0 cos Wt
v(0) 0

We write the solution in the form

88
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PROBLEM 13.7 (continued)

v(x,t) = RelA oJ (we=kx,) I (wttkx, ) (b)
where k = w
a

Using the boundary condition at x = 0, we can alternately write the solution as

1

v = Re[A sin kxlert]
Applying the other boundary condition at X == L, we finally obtain
A
= - -9 _
v(x{t) = Sin KL sin kxl cos wt. (d)

The perturbation pressure is related to the velocity throughEq. (13.2.74)

v' ap’

°3 ° ° Bxl (e)
Solving, we obtain

pV W Ip!

szniL sin kxlsin wt = - %E— (£)

1

or povow

p' = ¥ sin KL cos kxl sin Wt (g)

where po is the equilibrium density, related to the speed of sound a, through
Eq. (13.2.83).

Thus, the total pressure is

pVw
p= p,tp =p, + EQE%;—EE cos kx sin wt (h)
and the perturbation pressure at x; = - L is
pV.a
p'(-L, t) = E%EQEE cos kL sin wt (i)
Part b

There will be resonances in the pressure if

sin kL = 0 (1)
or kL = naT n=1,2,3.... (k)
Thus
- oam
w = - a ' ¢9)

PROBLEM 13.8
Part a
We carry through an analysis similar to that performed in section 13.2.3b.

We assume that
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PROBLEM 13.8

=_ = .

B 13 [uoH° + uoﬂa (xl,t)]
Conservation of momentum yields

p—EZL = -2 (H_ + H!
D - Bxl Jzuo o 3) (a)

Conservation of energy gives us

ol wrly e -2 vy +IE (b)
Dt 2 Z)xl 1 2 2
We use Ampere's and Faraday's laws to obtain
]
-—aHa= -J ()
axl 2 ¢
and SE 1 OH"
_——2= - ° 3 (d)
axl at
while

Ohm's law yields

J = ofE -vB] (e)
2 2 1 3

Since ¢ + o

E = v B (£f)
We linearize, as in Eq. (13.2.91), so E2 X vluoHo

Substituting into Faraday's law
B ]
ov aH3

Bolo 3% = " Mo 36 (8)

Linearization of the conservation of mass yields

ap' avl
3t - T Po EET (h)
Thus, from (g)
U H , IH'
003p _ 3
o, e~ Moot (1)
Then
Ho 0o
T

Linearizing Eq. (13.2.71), we obtain

op' _ Yo pp 0
Dt Po Dt
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PROBLEM 13.8 (continued)

Defining the acoustic speed

23
YP,
a; =\ where P, is the equilibrium pressure,
%o 2
-, _too
Py P, 5
we have
pl = aszpv )

aV ] 3H
1l _ _9p_  _ 3
Po at ox, Ix oHo )
or, from (j) and (%),
aV [] ]JHZ
1. 3 [(_,2_00
Po 3t 9x < s po) w

{

Differentiating (n) with respect to time, and using conservation of mass (h), we

finally obtain

3 2y 2
1= 2y HoHL P\ v, ©
at? s p ax ?
Defining ° 1
M HS
az = azs + o (P)
we have °
3%y 3 2%y
1 a2 1 (q)
at? ax * 4
Part b

We assume solutions of the form

3 (we-kx ) (wt+kx )

V = Re [Ae + A el ] (r)
1 1 2
where k = 2
a
The boundary condition at x, =- L is
V(-L,t) = vs cos wt = VsRe eJut (s)
and at x =0
! dv (0,t)
140,8) _ ' '
M ‘ P AJ( + u HH AJ( (t)
1=0 =0
From (h), (j) and (%),
13p' _ _ dv
a Jt o) —L (u)
s Ix
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PROBLEM 13.8 (continued)

H! '
3
T © ._g_a )
o s Po
Thus
dv,(0,t) ung ' a®
M dt =A;—z—6——+lp=A?—p (w)
s o s
From (u), we solve for p’l to obtain:
x=0
2
Poag K
] e - 0’8 _ jwt
p (4, —A)e (%)
x1=0
Substituting into (s8) and (t), we have
a z poagk
Mjw(Al+ Az) = A (;S—) '——;’— (Al_ Az)
and - (¥
Ale+jk2+ Aze jkl = VS

Solving for Al and Az’ we obtain ’ .

i (Mjw + Aap )V_
1 2(~Mw sin k& + Aapocos k2)

i (Aap | - Mjw)V_ (2)
2 2(-Mw sin k& + Aa p,cos k%)

A

A

Thus, the velocity of the piston is

v (0,t) = Re [A +a )&
Aapovs

- Mw sin k& + Aapocos k®

vl(O,t) cos Wt (aa)

PROBLEM 13.9
Part a

The differential equation for the velocity as derived in problem 13.8 is

v 3%y
1 2 1
el B R (2)
h 12
where a2 = a2 + 0 O
S po
2 Ypo 1/2 ung
with a” = ('—Q where Py = P, - 7T3

Part b

We assume a solution of the form
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PROBLEM 13.9 (continued)

w

j(wt—kxl)] wvhere k = 2

V(xl,t) = Re [De

We do not consider the negatively traveling wave, as we want to use this system as
a delay line without distortion. The boundary condition at X = = L is

V(-L,t) = Re vsej‘*’t

and at xl = 0 is

dv_(05t)
M = ' - '
M e p'(0,t)A BVI(O,;)+ “o“oﬂa A (b)
From problem 13.8, (h), (j) and ()
" avl H' '
LI 2.1 9 = - — —-——--3 = —Z-B—
P agh * 3t Po 3% and H aco
1 o s 0
Thus, (b) becomes
. . )
-l + &y A = 0 (c)
s
vhere ' o _fbD(_ jk) 2 jut . @
P B 7w 3¢
xTO
Thus, for no reflections
a z Apoa:
- B + (;__) —.—.a = 0 (e)
or
B = Aap (£f)

PROBLEM 13.10
The equilibrium boundary conditions are

T[- (L +L +0),e] = T

T(- (L +8),tlA, = - pA,

Boundary conditions for incremental motions are
1) T[- (L + L + 4),t] = T (t)
1 2 s d
2) - T[- (L1 + A),t]AS - p(—Ll,t)Ac =M Ez-vz(—Ll,t)
3) vl(-Ll,t) = ve[—(L1 + A),t] since the mass is rigid

and4) vz(O,t) = (0 since the wall at x=0 is fixed.

PROBLEM 13.11
Part a
We can immediately write down the equation for perturbation velocity, using

equations (13.2.76) and (13.2.77) and the results of chapters 6 and 10.
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PROBLEM 13.11 (continued)
We replace 3/t by 3/3t + vV  to obtain

i 3 2 v _ 2 2.1
( + vV ax) vi = a_ 3°v

it o A2
Letting v' = Re G ej(wt-kx)

we have
(w=- kv Y = a2k?
o s

Solving for w, we obtain
= +
w k(Vo as)
Part b

Solving for k, we have

[

Vta
o s

k =

For V0 > ag, both waves propagate in the positive x- direction.

PROBLEM 13.12
Part a

We assume that

E = i? Ez(x,t)
i.= f? Jz(x,t) .
B= 1 u [H + Hy(x,t)]

We also assume that all quantities can be written in the form of Eq. (13.2.91) ,
v

1
p 2= -3 _g u H (conservation of momentum (a)
o St ax z oo i
linearized)
The relevant electromagnetic equations are
OH
3x Jz (®)
and IE, . OH]
% - %3¢ (e)
and the constitutive law is
J, = O(E, +vuH) (d)

We recognize that Eqs. (13.2.94), (13.2.96) and (13.2.97) are still valid, so

1o9pt . 0%
L 5% (e)
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PROBLEM 13.12 (continued)

and

— 2 1t
p' = ayp (£)
Part b

We assume all perturbation quantities are of the form

v, = Re[; ej(wt—kx)]

Using (b), (a) may be rewritten as
pdwv = + jkp + u H jkH (g)
and (c) may now be written as

- JKE =y _juH (h)
Then, from (b) and (d)
- jkH = o(E + vu H) (1)

Solving (g) and (h) for H in terms of v, we have

~ vou H
H = ) - )
- jk+0U0 m
" From (e) and (f), we solve for p in terms of v to be
P = TP,V (k)
Substituting (j) and (k) back into (g), we find
. 2
o P s i U 0 @)
o] W o s r_ jk+0u0w
L k
Thus, the dispersion relation 152 )
FUH) W k
W* - k*al) - —7=——— = 0 (m)
¢+ 5+ U woe

We see that in the limit as 0 + «, this dispersion relation reduces to the lossless

dispersion relation

uOHO
w? - kz(az + -—) = 0 (n)
s Do

Part c

If 0 is very small, we can approximate (m) as

2 : juwp o
2_ 2,2 _ w92 )} 2
- Kl - 3l 5 (1= ) 0 B

for which we can rewrite (o) as
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PROBLEM 13.12 (continued)

(uoHo uoHo 2
k"a: - k2 [wz— Jwo 5 + 5 wzo'zuo = 0 (p)
2 o o
Solving for k© , we obtain
2 2 !
2 (UOHO)Z (u H ) u wzcz )
w® - jwo 2 0 0
— W= juwo 5 5 (HOHO)
k2 = Po + o 2 o (q)
2 g ¢ 2a 2 Z
s 8 s

Since ¢ is very small, we expand the radical in (q) to obtain

- (u H Y 2
2 _ 00 H Ww"0o
2 [m Jwo o ] w?- :lpE (uoﬂo)2 ( . 0 (uoHo)z ‘
k= y, + 2{'L z - (r)
s

a wo
P ]

Thus, our approximate solutions for k are

(u H )
E’"jm o0
2 a P

L P (s)

8 .
d
an uowzoz e
) 0, G, o <u002\( 2 )
k™ & X uH (t
G-I A

o]

The wavenumbers for the first pair of waves are approximately:

., O 2
N w=-j ——Zpo (uoHO) \
k¥ T P / (u)
S

while for the second pair, we obtain

u
T ooy o )

K~

The wavenumbers from (u) represent a forward and backward traveling wave, both with
amplitudes exponentially decreasing. Such waves are called 'diffusion waves'. The
wavenumbers from (v) represent pure propagating waves in the forward and reverse

directions.
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PROBLEM 13.12 (continued)
Part d

If O is very large, then (m) reduces to
2

H N lJHz
wi- k2a?- 3 -2 KL o g, 2,2 4 00 (W)
P, OwW s P
This can be put in the form
w? £ (w,k)
2 W
S | @
where H2 K"
f(w.k)‘l=—~5;—w';7

As ¢ becomes very large, the second term in (x) becomes negligible, and so
2 _w?
Ny 6]

However, it is this second 'term which represents the damping in space; that is,

kvt [é -3 f (w,k) %]

a 20 W (2)
Thus, the approximate decay rate, ki’ is
H? k*
f(w,k)a _ o a aa
K ¥ 5w - ZpOwa‘bw (aa)
2
or 2
k % _.i{g._ kl. = —-H—or— (uz
i 200 a0 w? 2p a’c
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PROBLEM 14.1

Part a

We can specify the relevant variables as

v = i1 vl(xz)
E_= fghz(xz) + iaEs(xz) (a)
I7 L'
B = izBo + ixBl(xa)
The x component of the momentum equation is
1 aZvl
0= was—r (b)
with solution 2
v = Cx +C
1 1 2 2
Applying the boundary conditions
v, = 0 @ X, = 0 ©)
v, =V, @ X, = d
We obtain x
02
Y d (d

We note that there is no magnetic force density since the imposed current and mag-
netic field are colinear. We apply Ohm's law for a moving fluid
T= oE+7VxB) (e)

in the x, and X, directions to obtain

J°= GE2 (£f)
and
0 = G(E3+leo) &)
since no current can flow in the X, direction.
Thus Jo
E = 5 (h)
and v.X B
= ._920
E, = 3 (1)
As from Eq. (14.2.5),
d J0
vV = JE,dx, = - ¢ )
Thus, the electrical input P, per unit area in an X - X, plane is
2
Jo d
Pe = JoV = o] (k)

98
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PROBLEM 14.1 (continued)

We see that this power is dissipated as Ohmic loss. The moving fluid looks just
like a resistor from the electrical terminals. The traction that must be applied

to the upper plate to maintain the steady motion is

ov uv
1 o

T = ¥z = — L)
3x2 x2=d d

Again we note no contribution from the magnetic forces,

The mechanical input power per unit area is then
2

uv
PaT Y% T T (@)
The total input power per unit area is thus
uv?2 J24
o o
Py = Pe + P d M a (n)

The first term is due to viscous loss that results from simple shear flow, while the
second term is simply the Joule loss associated with Ohmic heating. There is no

electromechanical coupling. Using the parameters from Table 14.2.1, we obtain

V= 15 millivolts Py

2.2635 x 10"
.015

and

P = 2.2635 x 10 “watts/m?, independent of B .
These results correspond to the plots of Fig. 14.2.3 in the limit as

Bo + 0.
We see that the brush losses and brush voltage are much less for this configuration
than for that analyzed in Sec. 14.2.1. This is because the electrical and mechanical
equations were uncoupled when the applied flux density was in the X, direction.
This configuration is better, because low voltages at the brush eliminate arcing,
and because the net power input per unit area is lessno matter the field strength Bo.

The only effect of applying a flux density in the X, direction was -to cause an

electric field in the X, direction. However, since there was no current flow in the

X, direction, there was no additional dissipated power. However, if E3 became too

large, the fluid might experience electrical breakdown, resulting in corona arcs.
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PROBLEM 14.2
The momentum equation for the fluid is
p%—g + p(VeVV = -Up + uv¥v (a)

We consider solutions of the form
v = iz vz(r)

and

p= p2).
Then in the steady state, we write the z component of (a) in cylindrical coordinates
as v

3p ., 12 =

T LR T (b)

Now, the left side of (b) is only a function of z, while the right side is only a

function of r. Thus, from the given information

P,-P
p . 21
9z L (c)
Using the results of (c) in (b), we solve for vz(r) in the form
v_(r) = EELLBl.rZ +Afnr+B (d)
z 4Lu

where A and B are arbitrary constants to be evaluated by the boundary conditions

0) is finite

vz(r

and

R) = O
Thus the solution is

v_(r
2

(r.-p,)
= 21 2 _ p2
vz(r) % VD (r R®) (e)
We can also find relations between the flow rate and the pressure difference, since
R
J v, 2mrdr = Q
0

PROBLEM 14.3
Part a
We are given the pressure drop Ap, the magnetic field Bo’ the conductivity O,

and the dimensions of the system.

Now +d +d
v
is J J,de2 = gl J (E3 + leo)dx2 = 3R (a)
where -d -d
V= - % is defined as the voltage across the resistor.
From Eq. (14.2.29), we have the solution for the velocity v, . We then perform the

integrations of (a) and solve for the voltage V to obtain
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PROBLEM 14.3(continued) .
(Ap) 2d <1 _ tanh M>

Bo M
= b
v T, 208d tanh M ()
R w M
where
- g\
M= Bod( " )
Then, the power p®dissipated in the resistor is
2 2
) (ﬁ 2d; (l-ta;}hM)
A .
e 0
P = g = 3 (e)
_1_+1._ tanh M R
R R M
i
where we have defined the internal resistance Ri as
w
Ry = 2014
Part b

To maximize pe, we differentiate (c) with respect to R, solve for that value
of R which makes this quantity zero, and then check that this value does indeed
maximize pe. Performing these operations, we obtain

. ) M Ri @

max tanh M
Part ¢

We must convert the given numerical values to MKS units, using the conversions

10,000 gauss = 1 Weber/meter?
and 100 cm = 1 meter
For mercury

g = 10° mhos/m

and p = 1.5 x 10 ° kg/m-sec.

Thus . .
- g% _ -2 1 3}/

M= Bod( m ) 2 x 10 ( 1.5 % 10 )

M= 520
Then tanh M & 1
and so

-1
— 10 n, -3
Rmax = 520 (2 % 10° X10-2 ) N 2.60 x 10 © ohms.
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