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ROTATING MACHINES

K, =,

i
PROBLEM 4.1 }Z(fw‘?)
Part a X sjn ‘})

With stator current acting alone
the situation is as depicted at the
right. Recognizing by symmetry that
Hrs(w+w)= —Hts(W) we use the contour

shown and Ampere's law to get

YT Nsis

24  (W)g = Lp [m sin ¥')(R+g)dy’ = N_1i_cosy

from which mbejnd:wu
N 1 cosy
S 8
2g .

H (9

and
uoNsiscosw
2g

B, (V)

Part b
Following the same procedure for rotor excitation alone we obtain

u Nrircos(w—e)

0
B W) = =50

Note that this result is obtained from part (a) by making the replacements
Ns — Nr
is ~— 1r
v —» ({¥-6)
Part ¢
The flux density varies around the periphery and the windings are distributed,
thus a double integration is required to find inductances, whether they are found
from stored energy or from flux linkages. We will use flux linkages.
The total radial flux density is

u
0
Br = Brs + Brr = T [Nsiscosw + Nrircos(w-e)]
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ROTATING MACHINES

PROBLEM 4.1 (Continued)

Taking first the elemental coil
on the stator having sides of angular
span dy at positions Y and Y47 as
illustrated. This coil links an amount
of flux

N, YT
D=rrgy S10¥] (Reg)ay —J B_(V') (Rig) Ldy'

~

number of turns in flux linking one turn
elemental coil of elemental coil
uoNB(R+g)2 X YT , . .
dxs= - ]}:EE"__—'Si“wdw J [Nsiscosw + Nrircos(w —Gﬂdw
1
H N, (Rtg)p
dAs = ——iizgj——— sinW[Nsissinw + Nrirsin(w-e)]dw
To find the total flux linkage with the stator coil we add up all of the
contributions
uoNs(R+g)£ m .
As= _-EEE——__— Jo sinw[Nsissinw + Nrirsin(w—e)]dw
u N (Rtg)l
A= —241——-——{£-N 1 +2N14 cosf]
s 28 2 s 2'rr

This can be written as
A =L1 + Mi cosf
8 s's T
where 2
T N"RE
L =28
s ;F:Eg
nuoNsNrRz
W 28

and we have written R+g < R because g << R.

M =

When a similar process is carried out for the rotor winding, it yields
A_=L4i + Mi cosh
r rr 3
where m Nle
L = —2F
r  \4Zs

and M is the same as calculated before.
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ROTATING MACHINES

Conkour of
inteqration
PROBLEM 4.2

Part a
Application of Ampere's law
with the contour shown and use of the

symmetry condition

H _(pm= -H (V) yields

Zﬂrs(w)g = Nsis(l— %ﬂ); for0 <P <m
. 2H__ g = N1 (-%#2Y; for m <y <zn

The resulting flux density is sketched below

Far'w<‘#<2ﬂ'
Eﬁs A ,ﬂgAL‘; [ - g:g)
2:1 ( v |
!
ar |
O 1 zt'rr ?"1]
!
|
| HNoks 5 éjH)
Zj (—Sf fr
Part b

st- -Lj 1r(£+a)

<= L 7 (R f‘?)
for o< ¥<T

The same process applied to excitation of the rotor winding yields

Bl’“ Z ,é/‘,/\/ I‘/r

_ 2029

.

2
|
| "
0 ) +
|
|
|

| 2w 2ree

|

{ .

VP U i, [_31, 24 e)]
Zj r
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ROTATING MACHINES

PROBLEM 4.2 (Continued)
Part c

For calculating inductances it will be helpful to have both flux densities
and turn densities in terms of Fourier series. The turn denéity on the stator

is expressible as

4Ns 1
n,=——— ) =sinny

s ﬂz(R+g) nodd ©

and the turn density on the rotor is
4Nr 1
n =— ] = sin(y-0)
7 R nodd

and the flux densities are expressible as

AuoNsis
Brs = 7 2 cos nY
nodd T gn
4uoNrir
Btr = Z —5 5 cos n(Y-0)
° nodd T gn

The total radial flux density is

B =38 +8B
r rs rr

First calculating stator flux
linkages, we first consider the
elemental coil having sides dy

long and ™ radians apart
P
dAs = ns(R+g)dw -Iw Br(w')(R+g)fdw'

NN

number of flux linking one
turns turn of elemental
coil
Substitution of series for Br yields
8u N 1 8u N 1
dA =n (R+g)29,dw Z —25 8 gin ny + Z —2 T sin n(y-0)
s s 2 3 2 3
nodd T gn nodd T gn

The total flux linkage with the stator coil is

32u N_(R+g) & (T N i N 4

A = _O_S—_ z ..1. Sinml} Z ..s_s_sin nw + z ﬁsin n(w-e) d(p

8 4 n 3 3
Tg 0 nodd nodd n nodd n
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ROTATING MACHINES

PROBLEM 4.2 (Continued)
Recognition that

T
I sin nY sin m(Y~98)dy = 0 when m # n

0
simplifies the work in finding the solution
32u°Ns(R+g)2 ﬂNsis nNrir
As = G—-7r-+ 7 cos n6)
mTg nodd 2n 2n

This can be written in the form

A =L1i + J M cosnbi
s s's n r

nodd
where 2
L. 16u°NSR2 1
s n3g nodd n
16u N N R%
osr
L N
n mgn

In these expressions we have used the fact that g << R to write Rtg xR,
A similar process with the rotor winding yields
A_=L4i_+ ) M cosnb i
r rr n s
nodd
where 2
L 16u°NsR2. Z 1
=_—3——— —

£ g nodd n4

and Mn is as given above.

PROBLEM 4.3
Wwith reference to the solution of Prob. 4.2, if the stator winding is
sinusoidally distributed, Xs becomes

32u N _(R+g)L W N1

A = —25 | siny|Nisin Y+ [ L sin n(y-6) |dy

s 4 s’s 3
mTg o nodd n )

T

Because J sin ¥ sin n(y~08) = O when n # 1
o

_ N (Rep)2

s ﬂ4g

A

[0}

1
I sinl,b|}lsis sin ¥ + Nrir sin(lp—e)}dlb

and the mutual inductance will contain no harmonic terms.

Similarly, if the rotor winding is sinusoidally distributed,
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ROTATING MACHINES

PROBLEM 4.3 (Continued)
32u N (R+g)2 ¢m
As = : 2 J Z %-sin ny Z Nsis sin np + N_1i_sin(y-6) |dy
TE o |[nodd nedd n3 rr

Using the orthogonality condition

il
f sin nY sin(Y-0)dy = 0 when n#l
[+]

i 32u_N_(Rtg)2

A
8

T Ncis 2
f Z —-Z~sin ny + Nrir siny sin(y~0) |dyY

Tg o[nodd n

and the mutual inductance once again contains only a space fundamental term.
PROBLEM 4.4
Part a
The open-circuit stator voltage 1s
dx

s d Mo
Ve = d¢ ~ac ! ) —Z ¢os nuwt
nodd n

wMoI
v (t) = - Z ——sin nwt
s
nodd n

Part b

\ \'
1L 13 5 83 o %—-% 4 percent

sl n sl 7

<3
<3

This indicates that uniform turn density does not yield unreasonably high values

of harmonics.
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ROTATING MACHINES

PROBLEM 4.4 (Continued)
Part ¢

Plot shown below

A
i-oT (Y
wM,I /
087

06T
0'4_ E

021

: »
2110 360 (b (Degreey

PROBLEM 4.5

Given electrical terminal relations are
A =L41 + Mi_ cosf®
] s’ s r
A_ =ML cosb +L 1
r [ r'r
System is conservative so energy or coenergy is independent of path. Select
currents and 6 as independent variables and use coenergy (see Table 3.1).

Assemble system first mechanically, then electrically so torque is not needed

in calculation of coenergy. Selecting one of many possible paths of integration
for i and 1_ we have
8 r
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ROTATING MACHINES

PROBLEM 4.5 (Continued)

i i
s r
' = ' ' '
wm(is,ir,e) Io As(is,o,e)dis + Io Ar(is,ir,e)di;
' _ 1 2 1 2
wm(is,ir,e) =3 Lsis + Miris cosf + 5 Lrir
w' (1 _,1_,6)
Te = _Li__r__ = - M 1 cosf
36 r's
PROBLEM 4.6

The conditions existing at the time the rotor winding terminals are short-

circuited lead to the constant rotor winding flux linkages

A_ =M
r o

This constraint leads to a relation between ir and 1s = {1(t)
MI = Mi cosf + L_1
o rr

i =

s
r [Io-i(t)cosel

rlx

r
The torque equation (4.1.8) is valid for any terminal constraint, thus
e M2
T = -Miriscose = - f: i(t)[Io-i(t)coselsine

The equation of motion for the shaft is then

2 2
3 é_g = -2 1(e)[1_-1(t)cosB]sind
L o
dt r

PROBLEM 4.7
Part a

Coenergy is

. 1. .21 .2
Wm(is,ir,e) =3 Lsis + 3 Lrir + Lsr(e)isir
L
- - me(is,ir,e) iy dLsr(e)
T a6 s’r dao

e
T = '1sir["151“9 + 3M3sin36]

Part b
With the given constraints

e——
T = IsIrsinwst sinwrt[Mlsin(wmt+Y)+ 3M3sin3(wmt+¥)]
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ROTATING MACHINES

PROBLEM 4.7 (Continued) . . -
Repeated application of trigonometric identities leads to:

M.II
¢ = - 148 r é’sin[(mm+ws-wr)t+Y]+ sin[(wm—ws+wr)t+Y1

-gsinf (u)m+ws-Hur) t+y]- sinf (wm-ws-wr) t+y ]}

- { sin{ (Swmms-wr) t+3y)+ sinl (3wm—ms+mr) t+3y]

-ginf (3wm+1ns+1ur) t+3y]- sin([( 3wm-ws—wr) t+3y ]}

To have a time-average torque, one of the coefficients of time must equal

zero. This leads to the eight possible mechanical speeds
wg * v
w = i w .-_3.__

+w
m s —

and w_ = +
T m -

For

w, =t - w)

e _ MIIsIr

avg 4

sin v
For
w = _-t(ws + wt)

e MIIsIr

avg 4

sin v

For
(ws-wr)
3
e 3M3IsIt

T =-—Z———sin3Y

€
n
i+

For
(ug+wr)

3
e 3M3Ia’.Ir

Tavg = — sin 3y

£
]
1+

PROBLEM 4.8

From 4.1.8 and the given constraints the instantaneous torque is
e
T = -IrM sinwrt cos (wmt+y) (Islsinwst + Is3sin 3wst)

Repeated use of trigonometric identities leads to:
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ROTATING MACHINES

PROBLEM 4.8 (Continued)
II .M
T®= - _rsl cos[ (w_+w -w )t+y]-cos[w_+w_+w ) t+y]
4 r m s r m s
+ cos[(wr-wm-ws)t-yl-cos[(wr—wm+ws)t-y{gz
I1
r

M
- ——7f51- é;cos[(wr+wm-3ws)t+yl—cos[(wr+wm+3ws)t+7]

+ cos[(wr-wm-3ws)t-yl—cos[(mr—wm+3ws)t-y]j%

For a time-average torque one of the coefficients of t must be zero. This leads

to eight values of W

w =+w_ +w and w =+ w_+ 3w
m — r—'s - r—"'8
For
W, = +(w -w )
e Ir slM
T = - cos Y
avg
For
w = i(wr + ws)
e - IrIslM cos
avg 4 Y
For
wy = *lw, - 3w)
I1I
e r s3
Tavg - A cos Y
For

PROBLEM 4.9

Electrical terminal relations are 4.1.19-4.1.22, For conservative system,
coenergy is independent of path and if we bring system to its final mechanical
configuration before exciting it electrically there is no contribution to the
coenergy from the torque term. Thus, of the many possible paths of integration

we choose one
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ROTATING MACHINES

PROBLEM 4.9 (Continued)

ibs ar’ sl 0) =

as

J (i' ,0,0,0,8)4d1i’

as as
)

+rb

“os Uags 50,0008

o]

i
ar, 1! '
+ ar as ibs ar’ o’e)diar

(-]

r.brxbr(ias ibS ar’ il;r e)dibr

The use of 4.1.19-4.1.22 in this expression yields

ias ibs
[ ' ' U U
wm I Lsias ias + Io I"sibsdibs

o

i
+ J ATl 4' + ML cos® + Mi_ sinB)di'
o r ar as bs ar

fibr

o

(L ib - Mi sinB + Mib cose)dib

Evaluation of these integrals yields

volp 42 gl 42 gl 42 L 1,2
wm 2 Lsias + 2 Lsibs + 2 Lriar + 2 Lribr

+ ML 1 cosf + Mib i sinb
as ar s ar

- Miaéibr31n 0+ Mibsibrcose

The torque of electric origin is then (see Table 3.1)

e aw (ias ibs ar’ ibr’g)
96

e
T = —M[iasiarsinﬁ-ibsiarcos6+iasibrcose+ibsibrsine]

T

PROBLEM 4.10
Part a

Substitution of currents into given expressions for flux density

= +
Br Bra Brb

u N

Br = EE_ [I cos wt cos Y + Ib sin wt sin Y]
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ROTATING MACHINES

PROBLEM 4.10 (Continued)
Part b
Application of trigonometric identities and simplification yield.

uON Ia Ia
Br = -Z—g— [T cos(wt-y) + 7 cos(wt + §)]
I I

+ ib-cos(wt-W)' Eb-cos(wt + 9]

u N

B_ = Zg— [(T+1)cos (wt- VI+H(I -1, ) cos (wt+)) ]

The forward wave is
uN(I +1)
‘0 a b
B ¢ ig cos (wt=y)

For constant phase on the forward wave

wt - P = constant

=dl=
We =3qe = @

The backward wave is
uoN(Ia B Ib)

Brb = —4?-— cos(wt + Y)

For

wt + Y = constant

d
wy = Je-w

Part c
The ratio of amplitudes is

>
L]

-1
a

-2

This has simply reversed the phase sequence.
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ROTATING MACHINES

PROBLEM 4.11

Part a
Br = Bra + Brb
u NI
B = 28 [cos wt cos Y + sin(wt + B)siny]
Part b

Using trigonometric identities

M _NI
Br = 28 {cos wt cos Y + cos B sin wt sin Y + sin B cos wt sin Y]
M NI
Br = gg [% cos (wt-y)+ % cos (wt+y)
+ cc2>sB cos (Wt-P)- cgsB cos (wt+8)
+ §%E§ sin(wt+y)- s;nB sin(wt-y)]
u NI »
B = ‘Zg [ (1+cosB) cos (wt-Y)-sinBsin (wt-P)

+ (1-cosB)cos (wtP)+sinBsin (we+y) ]

Forward wave is
U NI

B .= _ﬁg_ [ (1+cosB)cos (wt-P)-sinBsin (wt-Y) )

rf
For constant phase

wt - Y = constant

and
= _
We =g~ ¢
Backward wave 1is
MNT
Brb = —Zgr{ﬂrcosﬁ)cos(wt+w)+sinﬁsin(wt+¢)]

For constant phase
wt + P = constant

and

d
o
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ROTATING MACHINES

PROBLEM 4.11 (Continued)
Part c

The ratio of amplitudes is

—_—
Brbm - V(l—cosB)2 + sinZB - V 1-cosB
B 1+cosB
rfm ‘/(1+cossB)2 + sinzB
as B + O, thm 0.
rfm
Part d

The forward wave amplitude will go to zero when B = m. The phase sequence

has been reversed by reversing the phase of the current in the b-winding.

PROBLEM 4,12
Equation 4.1.53 is

Pe = vasias + vbs:"bs
For steady state balanced conditions we can write
ias = I cos wt; ibs = 1 sin wt
Vs = V cos(wt+d); Vpg = V sin(wt+d)

then
P, = VI[coswtcos (wt+d)+sinwt sin(wt+)]

Using trigonometric identities
P, = VI cos¢

Referring to Fig. 4.1.13(b) we have the vector diagram

<>

ij'SIS
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ROTATING MACHINES

PROBLEM 4.12 (Continued)
From this figure it is clear that

stIscos¢ = -Efsinﬁ

(remember that § < 0)
VE

Then P = BE; sin &

which was to be shown.

PROBLEM 4,13
For the generator we adopt the notation for one phase of the armature circuit

(see Fig. 4.1.12 with current convention reversed)

~ix::j(.Ul.ls
——
—_

A I A

A v

—_— ~
The vector diagram is then é}
€

From the vector diagram

cos 8-V

XI sin¢g = Ef

XI cos¢ = Ef sin §

Also, the mechanical power input is

EfV
P= X sin 6

Eliminating ¢ and § from these equations and solving for I yields
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ROTATING MACHINES

PROBLEM 4.13 (Continued)

E, 2 E, 2 2
v f f PX
I=x| & -2\/<v—> -2t

Normalizing as indicated in the problem statement we define
Io = rated armature current

If°= field current to give rated voltage
on open circuit.

Po = rated power

)I:_. = "IL)E (i_f_)2+ 1-2 \/(——:f )2-({;—)2(¥)2
o o fo fo o V

Injecting given numbers and being careful about rms and peak quantities we have

I, 2 2

P
I .0.4%1 \/(Tf—) +1-2 \/(Ii) —3.92(§—)
fo

Io fo o
Ifo = 2,030 amps

and
I
(f—-) = 3.00
f
0 max

The condition that § = % is

PX
Ee=v

e X PX P
Gy =X _ K _ ;4P
Teo min PV - 2 o

For unity p.f., cos ¢ = 1, sin ¢ = O

Ef cos § =V and Ef sin § = IX

eliminating & we have

I,
I
o
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ROTATING MACHINES

PROBLEM 4.13 (Continued)
for 0.85 p.f.

Ef sin § = 0.85 IX

Eg cos § - V = \/1—(0.85)2 X

eliminating 8, solving for I, and normalizing yields

1 If 2
E = 0.431 |[[-0.527 + (T_) - 0.722}
o fo

This is double-valued and the magnitude of the bracketed term is used.

The required curves are shown on the next page.
PROBLEM 4.14

The armature current limit is defined by a circle of radius VIo’ where Io
is the amplitude of rated armature current. )

To find the effect of the field current limit we must express the complex

power in terms of field current. Defining quantities in terms of this circuit

.
3 v
Ei?
@—
A
E
The vector diagram is
jXI
3
¢ v
A E. -V
f
I X
P+ 10 = v;* } VEf* \Y - VEfe _ !3
-3X X X
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ROTATING MACHINES

PROBLEM 4.14 (Continued)
If we denote the voltage for maximum field current as Efo’ this expression

becomes
2 VE VE

P+jQ=-j;](—+ Xf° sind + J —

fo cos$

On a P+jQ plane this trajectory is as sketched below

Q N

Field Cacrent LimikE

— P

d //' . Acwabure Cavvent Limt
Vi
C

. . Sbab”{t
\I‘- . If\/iwn[; (Jj:—l’;)
= I
X

The stability limit (3= g§ is also shown in the sketch, along with the armature

current limit.

The capability curve for the generator of Prob. 4.13 is shown on the next
page.
P and Q are normalized to 724 MVA.
PROBLEM 4.15
The steady state deflection { of the rotatable frame is found by setting

sum of torques to zero

™ +71,=0=1" - gy (1)

where T¢ is electromagnetic torque. This equation is solved for V.

Torque T is found from
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1.0—‘F-
?\ -
—— ™
°6T \Field cavreut
[imit
~\§ O.é_‘
<<
l
04+
Avwaliwf&. '
cuveent liml
0.7 T
o .
= P
1?) O + JI = 1 » N
© 0.2 o4 b 08 t Po
N
A
( - L. ——
R
|
-0l —4—
~0.68F Stabiliby limit (7= %)

4.14

Ca_lpubilltj turve OF ProbleW\
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ROTATING MACHINES

PROBLEM 4.15 (Continued)

e aw (11’ 2) 39¢9w)

T 0

and the magnetic coenergy for this electrically linear system is

y_1.2.1..2 1.2
W= 2 L]+ 5 Ll + 5 Lty

+ Mili3cos(¢—w)+M1213sin(¢-¢)

from which

™ = Mi_ 1.sin(d-) - Mi,1,c08 (6-V)

173
For constant shaft speed w, the shaft position is

¢ = wt.
Then, with 13 = Io as given
dkl di1
ac = - wMI sin(wt-w)ﬂ. = -11R
and
d\ d12
qc = uMIocos (wt-yP)+L T = -12R
Using the given assumptions that
dil d12
lL'at—<< Ril’ and ‘LF<< Riz‘
we have
uMIo
11 = sin(wt-y)
wMIo
12=- R cos (wt-Y)
and the torque T 1s
e wMI 2 2
= MIO( R o)[sin (wt-YP)+cos” (wt-y) ]
Hence, from (1) 2
(MI )
Y= — w
KR

which shows that pointer displacement ¥ is a linear function of shaft speed w
which is in turn proportional to car speed.
Suppose we had not neglected the voltage drops due to self inductance.

Would the final result still be the same?
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ROTATING MACHINES

PROBLEM 4.16

The equivalent circuit with parameter values as given is

jouséLs'WDT:jCL3 ok JLDSCLP-—AA);:Jleg-fL

+ i
Juhﬁdzaf4lf;~£L /;;
5

_01 o
~ s

\=|z's00 v

-

o—

From (4.1.82) the torque is
2

L R
k r T, .2
QE—)CE—)(E—)VS
e s s
T = N 2
[w, (1-k*)L_1°+(R /s)
2 2 w -“h
where k= L L and s =
.r's s

Soldﬁion‘pf (4.1.81) for Is yields

Rr 2 2 ¥
- (;-) + (wer) (VQ )
s R 2 w L
s's

5+ Ll k)]

: volt-ampere input is simply (for two phases)
(VA)in = vsIs

The electrical input power can be calculated in a variety of ways, the

simplest being to recognize that in the equivalent circuit the power dissipated

in‘Rr/s (for two phases) is just W times the electromagnetic torque, hence

e
Pin T ws

Finally, the mechanical power output is

e
Pmech T wm

These five quantities are shown plotted in the attached graphs. Numerical constants

used in the computations are
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Tnduction Machine C urves fov M
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ROTATING MACHINES

PROBLEM 4.16 (Continued)

wsLs = wer = wsM + 0.3 = 4.80

2
2 4.5
k™ = (4.8) = (0,878
7
Te = —_—__ji—TTTTI newton-meters
0.342 + —if—
s
23.0 + Q:gl
s
I = ————————== 147 amps pPK,
s 0.342 + 9;%i P
s
sor = 0.188

PROBLEM 4.17
Part a
For ease in calculation it is useful to write the mechanical speed as

w = (1-s)u§
and the fan characteristic as
3 3
Tm -Bws(l-s)

With w, = 1207 rad/sec

Bw: = 400 newton-meters
The results of Prob. 4.16 for torque yields

117

S
0.342 +-SL%%L
-1

400(1-s)° =

Solution of this equation by cut-and-try for s yields:
s = 0.032

3 4
Then Pmech = (400) (1-s) w, = (400)(ws)(l-s)
P = 133 kilowatts into fan
mech
Pmech '

Pinput: = 1-s = 138 kilowatts

Circuit seen by electrical source is
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PROBLEM 4.17 (Continued)

J'O.'QD— Jo,3n.
— /7
A5 0.
\ %)4 1 2130
>

Input impedance is

} (44.5) (3.13+40.3) _ =2.79+115.0
Zin =303+ 5933548 = T3.13+14.8

= o _ o = (]
ézm 100.6 56.8 43.8

Hence,
p.f. = cosAfgin = 0.72 lagging

Part b

Electromagnetic torque scales as the square of the terminal voltage,

thus 117 v 2
e S S
T = )
0.342 + 94%1 Vso

s
where Vso = V2 500 volts peak. The slip for any terminal voltage is now

found from

1;7 vs 2
)
0.342 + uz)l Vso

]

400(1-s)° =

The mechanical power into the fan is

= +(1-8)%
Pmech 400 ws(l 8)
+ electrical power input is
P = Pmech
in 1-s
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PROBLEM 4.17 (Continued)
and the power factor is found as the cosine of the angle of the input impedance

of the circuit -

.50'30" JO.S_Q.

i L1110 mn
\ Jitsn Forn

These quantities are plotted as required on the attached graph.
PROBLEM 4.18
Part a
The solution to Prob. 4.1 can be used to find the flux densities here.
For the stator a-winding, the solution of Prob. 4.1 applies directly, thus,

the radial component of flux density due to current in stator winding a is

uoNsia
Bra(w) = g cosy

Windings b and ¢ on the stator are identical with the a winding except for the

indicated angular displacements, thus,

M N1
os

cos (Y- g—")

uNi{i

Brc(w) = 02: € cos (Y- %E)

The solution in Prob. 4.1 for the flux density due to rotor winding current
applies directly here, thus,
uNi

B (V) = °2; L cos(y-6)

Part b
pd
The method of part (c) of Prob. 4.1 can be used and the results of that

analysis applied directly by replacing rotor quantities by stator b-winding
quantities and 6 by 2m/3. The resulting mutual inductance is (assuming
g << R)
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PROBLEM 4.18 (Continued)

Lab = NUONSRQ cos8
2g 3
u NRE L
L =208 _ s
ab 4g 2

where Ls is the self inductance of one stator winding alone. Note that

Lac = Lab because of relative geometry.

Part c

The A-i relations are thus

L L
s s
Aa Lsia- 7 ib- 5 1c + Mcoseir
Ls Ls 27
Ab= -5 1a+Lsib- 5 1c + Mcos (8- 3—)ir
Ls . Ls 41
Ac= - 5—-18— 5 ib + Lsic + Mcos(6- 5—)1r

2T
Ar = Mcoseia + Mcos (6- S—Oib

4
+ Mcos(6- 3—)1c + Lrir

where from Prob. 4.1, :

2
. m NRR
s 2g
ﬂuoNsNtRl
M= —————
2g
2
nuoNrRQ
L = ———
T 2g

Part d
The torque of electric origin is found most easily by using magnetic
coenergy which for this electrically linear system is
' =1 2 2 2
wm(ia’ib’ic’ir’e) 2 Ls(ia + ib + ic)
1
+ E-Ls(iaib + iaic + ibic)+Mcoseir1a
2 4
+ Mcos (8- 3—)irib + Mcos (8- 3 )iric

The torque‘of:electric origin is
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PROBLEM 4.18 (Continued)

'
awm(ia’ib’ic’ir’e)
36

Te

e _ 2n 4
T = —Mir[iasine + ibsin(e— 3 )+ icsin(e- 3 )1

PROBLEM 4.19
Part a
Superimposing the three component stator flux densities from Part a

of Prob. 4.18, we have

uN
0's 27 4
Brs 28 [iacosw + 1bcos(w— 3 )+ iccos(w— 3 )]
Substituting the given currents
uoNs 27 2
Brs = 2% [Iacos wtcosy + Ibcos (wt- —3-—) cos (Y- 3—)

4 4
+ Iccos(wt- 3 ) cos (P~ 3 )
Using trigonometric identities and simplifying yields

u N I +1 +1
os [( a b c)cos(wt—w)

B =

rs 2g 2

cos am
b 3

1 4 2n
+ E(Ib sin — + Ic sin 3—)sin(wt+w)]

1 27
+ f(la +1 + Ic cos S—Qcos(wt+w)

3
Positive traveling wave has point of constant phase defined by

wt - Y = constant
from which

d_w=

ak - Y

This is positive traveling wave with amplitude

uoNs
Brfm = 4g (Ia + Ib + Ic)

Negative traveling wave has point of constant phase

wt + Y = constant

from which

W,

dt
This defines negative traveling wave with amplitude
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PROBLEM 4.19 (Continued)

N I 2 2
ran = e [0 ¢ 50 G

rbm 2

Part b

When three phase currents are balanced

Ia = Ib s Ic
and Brbm = 0 leaving only a forward (positive) traveling wave.
PROBLEM 4.20
Part a

Total radial flux density due to stator excitation is

Brs 2g

(iacos 2y + ibsin 2y)

Substituting given values for currents
u N

o
Brs 28 (Ia cos wt cos 2y + Ib sin wt sin 2y)
Part b
N I +1 I -
_ Mo a b a”" %
Brs =3 G——E———Jcos(wt—Zw) + f——if——ﬂcos(wt+2w)

The forward (positive-traveling) component has constant phase defined by

wt - 2y = constant
from which

v _w
dt 2

The backward (negative-traveling) component has constant phase defined by

wt + 2y = constant

from which

dt 2

a  _w

Part c
From part b, when Ia = Ib’ Ia - Ib = 0 and the backward-wave amplitude

goes to zero. When Ib = - Ia’ Ia + Ib = 0 and the forward-wave amplitude goes

to zero.
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PROBLEM 4.21 )
Referring to the solution for Prob. 4.20,

Part a
Brs P (ia cos pp + ib sin py)
uoN
Brs = EE_ (Ia cos wt cos pY + Ib sin wt sin pY)
Part b

Using trigonometric identities yields

uoN Ia + Ib Ia - Ib
rs = 25 ———75———)cos(wt-pw) + (——-5———)cos(wt+p¢)

Forward wave has constant phase

wt - pY = constant
from which

4 _w
dt P

Backward wave has constant phase

wt + pY = constant
from which

@ _w
dt P
Part c

From part b, when Ib = Ia’ Ia - Ib = (0, and backward-wave amplitude goes

to zero. When Ib = -Ia, Ia + I. = 0, and forward-wave amplitude goes to zero.

b
PROBLEM 4.22

This 1s an electrically linear system, so the magnetic coenergy is

w;(is,ir,e) = %(Lo + chos 26)15 +-% Lrii + Miris cos O
Then the torque is
'
T = w =-Mi_1_ sin 0 - L,1’ sin 20
PROBLEM 4.23
Part a
L

0
L = {120.25 cos 46 = 0.25 cos 80)
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PROBLEM 4.23 (Continued)
The variation of this inductance with 6 is shown plotted below.
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PROBLEM 4.23 (Continued)
From this plot and the configuration of Fig. 4P.23, it is evident that minimum

reluctance and maximum inductance occur when 8 = 0, w/2, ﬂ,...%'ﬂ,.... The

inductance is symmetrical about € = O, 12[ s+« and about 6 = %, %,... %+ ;—",...
as it should be. Minimum inductance occurs on both sides of 6 = %-which ought
to be maximum reluctance.

The general trend of the inductance is correct for the geometry of Fig.
4P.23 but the equation would probably be a better representation if the sign

of the 80 term were reversed.

Part b
For this electrically linear system, the magnetic stored energy is
2
1A
wm()"e) 7L
2
o A~ (1-0.25 cos 46 - 0.25 cos 86)
wm(x’e) 2L
o
The torque is then
P awm(x,e)
36

2
8 = - %L— (sin 40 + 2sin 86)
o]

Part c
With A = Ao cos wt and 8 = Qt + §
e Ai coszwt -
T = - ——iir-———-[sin(49t+46)+2 sin (8Qt+848) ]
(o)

Repeated use of trig identities yields for the instantaneous converted power
QAZ
1% - 772 [s1n(40t+48) + 2 sin(BQL+8S)
o
+ 3 sin(2ut + 40¢ + 48)+ 3 sin(40t - 2ut + 48)
+ sin(2wt + 80t + 88)+ sin(80t - 2wt + 86)]

This can only have a non-zero average value when # 0 and a coefficient of

t in one argument is zero. This gives 4 conditions

S 1
w
When Q = + 5 o2
e )
{ar ]avg - 8L° sin 46
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PROBLEM 4.23 (Continued)

andwhen§2=i%
an?

(o]
2 - —

[or®} =2 sin 88
N

PROBLEM 4.24

It will be helpful to express the given ratings in alternative ways.
Rated output power = 6000 HP = 4480 KW at 0.8 p.f. this is

4480

0.8 = 5600 KVA total

or
2800 KVA per phase

The rated phase current is then

3

_ 2800 x 10

3 x 103

I
s

Given:

= 933 amps rms = 1320 amps pk.

Direct axis reactance w(Lo+L2) = 4.0 ohms

Quadrature axis reactance w(Lo-LZ) = 2.2 ohms

wL_ = 3.1 ohms
o

The number of poles is not given in the problem statement.

Part a

wL, = 0.9 ohms

2

We assume 2 poles.

Rated field current can be found in several ways, all involving cut-and-try

procedures.
Fig. 4.2.5(a), thus

MAGNARY  AXis
A

2%

<>

Our method will be based on a vector diagram like that of

[
JU>QJ;
Note : \5<O) 5-40) AND
6 s MEASU@ED
Feemt Ig To VL AND
is fPosiTIVE AS

1

' S Howw.
> — Real
Is Mis
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PROBLEM 4.24 (Continued)

Evaluating the horizontal and vertical components of Vs we have (remember that

Yy < 0)

A

T T
Vs cos 8 = Eg cos(i +v) + wLZISCOS(§'+ 2y)

T T
Vs sin 6 = E sin(§-+ Y) + wLZIssin(i»+ 2y) + wLoIs

£

Using trigonometric identities we rewrite these as

Vs cos 6 = -E_ sin v - wL Is sin 2y

2
I cos 2y + wL I
s o's

f

Vs sin 6 = E_ cos Y + wL

f 2
Next, it will be convenient to normalize these equations to Vs,
wL,I
2°s
cos © -es sin vy - Vs sin 2y

mLZIs wL I
cos 2y + ——
v
s s

sin 0 = e; cosyY +

where

Solution of these two equations for‘ef yields

wLZIs wLOIs
sin 0 ~ v cos 2y - v
e = s s
£ cos Y
wL IS
-cos 0 - v sin 2y
e_ = 8
f sin v

For rated conditions as given the constants are:
cos 0 = p.f. = 0.8
sin 6 = - 0.6 (negative sign for leading p.f.)

wL, I wL I

2's o's
v - 0.280; v
8 s

= 0.964

Solution by trial and error for a value of Yy that satisfies both equations

simultaneously yields

Y = - 148°
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PROBLEM 4.24 '(Continued)

and the resulting value for ee is

e = 1.99

yielding for the rated field current

1 = vsef
r

= 24,1 amps.

where Vs is in volts peak.
Part b

The V-curves can be calculated in several ways. Our choice here is to
first relate power converted to terminal voltage and field generated voltage
by multiplying (4.2.46) by w, thus

2
EV (X=X )v
P = oI® = - fs sin § - d S sin 26
2X, X
d d q
where Xd = w(L°+L2)

Xq = m(LO-LZ)

We normalize this expression with respect to vi/xd, then

Efﬂ = - ¢e_ 8in § - (xd-x )
2 f 2X
Vs q

gin 26

Pull-out torque occurs when the derivative of this power with respect to § goes

to zero. Thus pull-out torque angle is defined by

PX X.,-X)
2—6 [vz—d)= -e. cos § - ——;q—L cos 26 =0
s

The use of (4.2.44) and (4.2.45) then yield the armature (stator) current

amplitude as

Vs 2 Vs Ef 2
I, = (—x—-sin 6) +()—(— cosé—x—)
q d d

A more useful form is

v [x
- _8 d 2 _ 2
Is = xd \/(xq sin 6)° + (cos 6 ef)

The computation procedure used here was to fix the power and assume values of
6 over a range going from either rated armature current or rated field current

to pull-out. For each value of §, the necessary value of ec is calculated
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PROBLEM 4.24 (Continued)

from the expression for power as

PX (X,-X)
d d
v2 + 7% sin 26
e, =2 :
f -gin &

and then the armature current magnitude is calculated from

' X
s d 2 2
Is T \/(Y— sin 6)° + (cos § - ef)
d q
For zero load power, Y = 0 and § = 0 and, from the vector diagram given earlier,

the armature current amplitude is

with pull-out still defined as before. The required V-curves are shown in the
followinggraph. Note that pull-out conditions are never reached because range of

operation 1s limited by rated field current and rated armature current.

PROBLEM 4.25
Equation (4.2.41) is (assuming arbitrary phase for Is)

~

- I I 32y 32y
Vo= Jul, I+ juL, Iel®' + JuMI_e

With v = 0 as specified

~ ~

Vo = Ju(LHL,)T + JuMI

The two vector diagrams required are
A

Vs 1} jw(“ofl‘7'>r5 A
\, 44 jwMIy
jwﬂﬁrr
A
A L
» s -
Laoverive CAPACITWVE
\é >wMLy N&‘1LUAA‘Ir 3w0¢4€9;v
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V= CURVES For PRoBLEM 4-,2.4_

ARMATUEE
CuBLRENT
(Amps KMms)

A
1000 /ﬂ/}m AemArulE cogeenr = 933 Ames RMS

600+

T

4001

T

200

© 7 16 15
Fieedp cukeenT L. (AMPS)

PATED FIELD
CURLENT = 241 AMPs.
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PROBLEM 4.26

Part a
From Fig. 4P.26(a)
o 1 10
v._._ X
v 1 3¢
Vs jxs + Y e

from which the ratio of the magnitudes is
1

vl ___ ¥
‘Vsl \/(% cos¢) 2+(% sing + Xs)z

For the values Y = 0.01 mho, Xs = 10 ohms

[v] 100

Vel /(200 cos$)? + (100 sin¢+10)2
Then, for ¢ = 0

vl ___100 = 0.995

|v_| /10,000 + 100
S

and, for ¢ = 45°

vl 100 = 0.932

[Vl [(I00y2 (100 2
\/(ﬁ)uﬁno)

Part b
It is instructive to represent the synchronous condenser as a susceptance
jB, then when B is positive the synchronous condenser appears capacitive. Now the

circuit is

i*s
2L —o
1_
+ .
A A .~
\é Vv Y e B
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PROBLEM 4.26 (Continued)

Now the voltage ratio is

1
_v_ = Ye_J¢+ JB = 1
~ 1 -j¢
v —— + X 1+ jX Ye - BX
8 ye ity 4p s s s
v 1
v 1—Bxs+st sin¢+szY cosd
Then
v _ 1
| Vs | \/ (1-BX_+X_Ysin¢) 2, (X Ycosd) 2
For ¢ = 0
v . 1

1v_| .2 2
o Yam)?+ «n
If this is to be unity
2 2
(1—BXS) + (XSY) =1

v 2
l—BXs = 1-(X_Y)

1- 1-(XSY)

X
s

B =

for the constants given

B = 1- V1-0.01 - 0.005 _ 0.0005 mho

10 10

Volt-amperes required from synchronous condenser

wa = [7]% = 0" (5)10™) = 10,000 KkvA

Real power supplied to load

P, = |97 cos ¢ = [¥]% for ¢ = 0

Then
(VA)sc

L

For ¢ = 0 the synchronous condenser needs to supply reactive volt amperes equal to

0.0005

0.01 - 0-05

I
|

5 percent of the load power to regulate the voltage perfectly.
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PROBLEM 4.26 (Continued)

For ¢ = 45°

tvi . 1
v )

IvS| X Y\Z XY
(1-Bx . +(L)
") T\

In order for this to be unity

XY2Z XYy
foaw, + =) +(2) -1
V2 \v2
XY X Y\2
LY __s_)

X
s

B =

For the constants given

. 1+0.0707 -~ v1-0.005

B 10

= 0.00732 mho

Volt-amperes required from synchronous condenser

'

o, = |7]% = 2) 21019 (7.32) (1073 = 146,400 KkvA

Real power supplied to load
~ v 2
P, = |V|2Y cos ¢ = i!l—!-for ¢ = 45°
V2

Then

(Wee _ B2 _ 0/2)(0.00132) _, ,,
. :

PL 0.01

Thus for a load having power factor of 0.707 lagging a synchronous condenser needs
to supply reactive volt-amperes equal to 1.04 times the power supplied to the
load to regulate the voltage perfectly.

These results, of course, depend on the internal impedance of the source.

That given is typical of large power systems.

PROBLEM 4.27
Part a
This part of this problem is very much like part a of Prob. 4.24. Using

results from that problem we define
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PROBLEM 4.27 (Continued)

where Vs is in volts peak. Then
wL,I wL I
sin 0 -

From the constants given

cos 6 =1,0; sin 6 =0

wL = 2.5 ohms wL, = 0.5 ohm
o 2

Rated power

P, = 1000 P = 746 xw

Armature current at rated load is

Is - 746,000 _ 527 amps peak = 373 amps RMS
/2 1000
Then
wL, I wL I
= 0.186; 7 = 0.932
s s
Using the constants
e = -0.186 cos 2y - 0.932
f cos Y
e, = -1 - 0.186 sin 2y
f sin v

The use of trial-and-error to find a value of Yy that satisfies these two

equations simultaneously yields

Y =-127° and e; = 1.48

Using the given constants we obtain

I = °f's _ (1.48) (/2) (1000)
r  uM 150

= 14.0 amps
For Lf/Rf very large compared to a half period of the supply voltage the field
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PROBLEM 4.27 (Continued)
current will essentially be equal to the peak of the supply voltage divided by
the field current; thus, the required value of Rf is

v
_ s _ /2 (1000),,
Re =T " a0 v 1000

Part b
We can use (4.2.46) multiplied by the rotational speed w to write the

output power as

e Ee XXV
P, = T = - sin § - ———3 3 g5in 25
L Xd Zde
q
where
Xd = m(Lo+L2) = direct axis reactance

Xq = w(Lo—LZ) = quadrature axis reactance
With the full-wave rectifier supplying the field winding we can express

WM
B = uMI, = 3%

f

Then oM V2 (X X )VZ

P =- R 8 sin & - 2; S gin 26
L fxd dxq
Factoring out Vi yields

X X))
PL = Vz [l RwM sin § - —5%—23— sin 2%}

_ fxd dq

Substitution of given constants yields

3

746 x 107 = Vg [-0.500 sin 6§ - 0.083 sin 248]

To find the required curve it is easiest to assume § and calculate the required

Vs’ the range of § being limited by pull-out which occurs when

BPL
3 = 0= - 0,500 cos§ - 0.166 cos 2§

The resulting curve of § as a function of Vs is shown in the attached graph.
Note that the voltage can only drop 15.5% before the motor pulls out

of step.

BN
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PROBLEM 4.27 (Continued)

A
80..
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N

Although it was not required for this ﬁioblem}caléhlations will show that
operation at reduced voltage will lead to excessive armature current, thus,

operation in this range must be limited to transient conditions.
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PROBLEM 4.28
Part a

This is similar to part a of Prob. 4.24 except that now we are considering
a number of pole pairs greater than two and we are treating a generator. Consider-
ing first the problem of pole pairs, reference to Sec. 4.1.8 and 4.2.4 shows that

when we define electrical angles Yo and Ge as
Y, = PY and §_ = pd
where p is number of pole pairs (36 in this problem) and when we realize that the

electromagnetic torque was obtained as a derivative of inductances with respect to

angle we get the results

2
VE p(X~-X )V
™=-2_3 £ sin § -~ d 8 sin 26
w X e w2X X e
d dq
where Xd = w(L°+L2) and Xq = m(Lo—Lz), and, because the synchronous speed is w/p
(see 4.1.95) the electrical power output from the generator is
W e stf (xd_x )Vz
P=-27"2 5 Lgins +—S—31 3gin 25
Xd e 2Xqu e

Next, we are dealing with a generator so it is convenient to replace IS
by -IS in the equations. To make clear what is involved we redraw Fig. 4.2.5(a)

with the sign of the current reversed.

ImAGNARY AX1S
A

JWkols
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>
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ROTATING MACHINES

PROBLEM 4.28 (Continued)

Now, evaluating horizontal and vertical components of Vs we have
Vs cos 0 - wLZIs sin 2Ye = Ef sin Yo
-Vs sin 0 = wLOIs + szls cos 2Ye + Ef cos Y,

From these equations we obtain

wLZIs
cos 6 - Vs sin 2Ye
e=
f sin Ye
wLoIs wLZIs
~-gin B—T- v cos ZYe
e = s |
cos Y,
where
E wMI
£ Vv v
8 8
with Vs in volts peak

Is in amps peak

w is the electrical frequency
For the given constants
cos O = p.f. = 0,850 sin & = 0.528

wL,I wL I

25 < 0.200 —25 = 1.00
s s
and
0.850 - 0.200 sin ZYe
e =
f sin Yo
-1.528 -~ 0.200 cos ZYe
e =
f cos Y,

Trial-and-error solution of these two equations to find a positive value of

Yo that satisfies both equations simultaneously yields

= ° =
Y, = 147.5° and e = 1.92

From the definition of er we have

;< of's _ (1.92) (¢/2)(10,000)
r wM  (120)(m) (0.125)

= 576 amps
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PROBLEM 4.28 (Continued)
Part b
From Prob. 4.14 the definition of complex power is

AA*:
VSIs P + jQ
where Vs and Is are complex amplitudes.
The capability curve is not as easy to calculate for a salient-pole

machine as it was for a smooth-air-gap machine in Prob. 4.14. It will be easiest

to calculate the curve using the power output expression of part a

V.E, (XX V2
P= sin § + ——3- % gin 26
d e 2Xqu e

the facts that

P

VsIs cos O

Q
and that Is is given from (4.2.44) and (4.2.45) as

VI sin 0
s's

7V E. 2

\Y
s s f
I \/(X sin Ge] + (X cos § i—)
q d d
First, assuming operation at rated field current the power is
6 6

P = 320 x 10" sin Ge + 41.7 x 10" sin 26e watts.

We assume values of Ge starting from zero and calculate P; then we calculate Is

for the same values of Ge from

1_ = 11,800 V?i.so sin se)z + (cos 63-1.92)2 amps peak

Next, because we know P, VS, and IS we find 6 from

P

viI
ss

cos O =

From O we then find Q from
Q= VSIs gin 0.

This process 1s continued until rated armature current
I, = YZ 10,000 amps peak

is reached.

The next part of the capability curve 1s limited by rated armature

current which defines the trajectory
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PROBLEM 4.28 (Continued)

d 2 2
P” +Q VsIs
where VS and Is are rated values.

For Q < 0, the capability curve is limited by pull-out conditions
defined by the condition

2
VE X.-X )V
dP ( d ) s
—=— =0 = cos § + cos 26
dé e X e
e d d'q

To evaluate this part of the curve we evaluate es in terms of 6e from the power

and current expressions

PX X,~X)
d d
v2 - % sin 26
e, = —> :
f sin §
IX, 2 X 2
s d d
e, = cos Ge - ( Vs ] - (i— sin Ge]

For each level of power at a given power factor we find the value of Ge that
simultaneously satisfies both equations. The.resulting values of ec and Ge are

used in the stability criterion

2 2
Ve X,-X )V
dP s f ( d ) s
=5 = cos § + cos 26 >0
dé X e X, X e —
e d d "q

When this condition is no longer met (equal sign holds) the stability limit is

reached. For the given constants

P 6" 0.25 sin 26e
e = 167 x 10
f sin Se

I 2
S 2
ef = cos Ge - \/(m) - (1.5 sin Ge)

dP

—_—=a

dée cos Ge + 0.5 cos 26e >0

f

The results of this calculation along with the preceding two are shown on the
attached graph. Note that the steady-state stability never limits the capability,
In practice, however, more margin of stability is required and the capability in
the fourth quadrant is limited accordingly.
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PROBLEM 4.29
Part a

For this electrically linear system the electric coenergy is

Wé(vl,v ,0) = Co(l + cos 26)vi

2
+ Co(l + sin 26)v2
The torque of electric origin is

GW' (V 'V ’e)
¢ = __E__%giL——-= qo(vg cos 26 - vi sin 20)

Part b

With v. =V cos wt; v, = V_ sin wt
1 o o

2

e

T = C°V§(sin2 wt cos 20 - cos2 wt sin 20)

Using trig identities

2
\'/
™ = g 0[cos 20 - cos 2wt cos 20 - sin 20 - cos 2wt cos?26]
e Covi Covi
T = 2 (cos 26 - sin 26) - 2 .[cos(2wt-20) + cos(2uwt + 26)]

Three possibilities for time-average torque:
Case I:

Shaft sitting still at fixed angle @
Case II:

Shaft turning in positive 6 direction

6 = wt + v

where Y is a constant
Case III:
Shaft turning in negative 6 direction

0=-wt+3§

where 8 is a constant.

Part ¢
The time average torques are:
Case I:0 = const. 2
Covo
<% = 3 (cos .26 - sin 20)
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PROBLEM 4.29 (Continued)

Case II: 0 = wt + v

e Covi

<T™> = - 5 Ccos 2y
Case III: 6 = - wt + § 9
Covo

<% = - 5 cos 26

PROBLEM 4.30
For an applied voltage v(t) the electric coenergy for this electrically

linear system is -

' -1 2
we(v,e) 2(Co + C1 cos 20)v
The torque of electric origin is then
W' (v,0)
e e 2
T 3§ -Clsinzev
For v = V° sin wt
™==-c V2 sinzwt sin 26
lo
e %%
T = -~ 2 (sin 26 - cos 2wt cos 268)
Clv2 clvi
T = - 20 sin 260 + A [cos (2wt-28) + cos (2wt+26)]

For rotational velocity w, we write

0= wt +y

and then 2
o

sin Z(wmt + v)

2
c,v
+ 'Z = {eos[2(w-w )e-2y] + cos[2(whu )t + 2v1}

This device can behave as a motor if it can produce a time-average torque for

wm = constant. This can occur when

w =+uw
m -
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