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LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

PROBLEM 5.1


Part a 

The capacitance of the system of plane parallel electrodes is


C = (L+x)dEo/s 	 (a) 

1 2 
and since the co-energy W' of an electrically linear system is simply -CCv


(remember v is the terminal voltage of the capacitor, not the voltage of the


driving source)


fe 9W' I dEo 2

- --- v 	 (b)ax 22 

The plates tend to increase their area of overlap.


Part b


The force equation is


d2x 1 dEo 2 
M =-Kx + v 	 ( 

dtdt2 2 s 

while the electrical loop equation, written using the fact that the current


dq/dt through the resistance can be written as Cv, is


dE 
V(t) = R d-(L+x)- v]+ v (d) 

These are two equations in the dependent 	variables (x,v).


Part c


This problem illustrates the important point that unless a system


involving electromechanical components is either intrinsically or externally


biased, its response will not in general be a linear reproduction of the


input. The force is proportional to the square of the terminal voltage, which 

in the limit of small R is simply V2(t). Hence, the equation of motion is 

(c) 	 with 2 
V 

v 2 u2(t) u= (t) o (1-cos 2wt) (e) 

2 1 
where we have used the identity sin2t = (1-cos 2wt). For convenience 

the equation of motion is normalized




LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

PROBLEM 5.1 (Continued) 

d2x 2 
x = aul(t)(l-cos2wt)

d2 o
dt 

where 

2 = K/M ; a = V2 d E/4sM 
o 0 0


To solve this equation, we note that there are two parts to the particular


solution, one a constant


x= 2


o 

and the other a cosinusoid having the frequency 2w. To find this second


part solve the equation


2
dx 

+ 22 x=- Reae2jwt 

dt2 o 

for the particular solution


-acos 2wt

x = W2 _ 4 2 

o 

The general solution is then the sum of these two particular solutions and the


homogeneous solution t > 0


a a cos 2wt
x(t) a cos 2t + A sinw t + Bcosw t (j)

2 2 _ 2 o o

o O


The constants A and B are determined by the initial conditions. At t=0, 

dx/dt = 0, and this requires that A = 0. The spring determines that the initial 

position is x = 0, from which it follows that 

-B = a4w 2/w2 (W
2 4w2) 

o o 

Finally, the required response is (t > 0)


( -) cos o t 

x(t) = 2 
cos 2wt o 

1-( 2]
0


0




LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

PROBLEM 5.1 (Continued) 

Note that there are constant and double frequency components in this response,


reflecting the effect of the drive. In addition, there is the response


frequency w0 reflecting the natural response of the spring mass system. No


part of the response has the same frequency as the driving voltage.


PROBLEM 5.2


Part a


The field intensities are defined as in the figure 

t, 2 

Ampere's law, integrated around the outside magnetic circuit gives


2Nli = H1 (a+x) + H2 (a-x) 
(a)


and integrated around the left inner circuit gives


N1il - N2i2 H1 (a+x) - H3a (b) 

In addition, the net flux into the movable plunger must be zero 

0 = H1 - H2 + H3 (c)


These three equations can be solved for H1, H2 and H3 as functions of i1 and 

12 . Then, the required terminal fluxes are 

A, = NlPodW(H1+H2) (d) 

X2 = N2p dWH 3 (e) 

Hence, we have 

N o dW 

1 2 2 [il6aN1 + i22N2x] (f) 

12 = [ il2N1x + i22aN2 (g) 
2 2- 2 i 1 2 1 2 2


3a -x


Part b


To use the device as a differential transformer, it would be


excited at a frequency such that
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PROBLEM 5.2 (Continued)


2w
-- << T (h) 

where T is a period characterizing the movement of the plunger. This means


that in so far as the signal induced at the output terminals is concerned,


the effect of the motion can be ignored and the problem treated as though x


is a constant (a quasi-static situation, but not in the sense of Chap. 1).


Put another way, because the excitation is at a frequency such that (h) is


satisfied, we can ignore idL/dt compared to Ldi/dt and write


v 
dA2 w2N1N2 

o 
odWxI o sin wt

2 dt 2_x2
(3a -x ) 

At any instant, the amplitude is determined by x(t), but the phase remains


independent of x(t), with the voltage leading the current by 90%. By


design, the output signal is zero at x=0O and tends to be proportional to x over


a range of x << a. 

PROBLEM 5.3


Part a


The potential function which satisfies the boundary conditions along


constant 8 planes is


=vO (a) 

where differentiation shows that Laplaces equation is satisfied. The constant 

has been set so that the potential is V on the upper electrode where 8 = i, 

and zero on the lower electrode where 0 = 0. Then, the electric field is 

- 1 3 _-_ v 
=E- V =-i 

0 r ;3E 6 
Y 
ri 

(b) 

Part b


The charge on the upper electrode can he written as a function of (V,p)


by writing


b V DE V 
S= DE -dr - I(T) (c)

0 faip I 
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PROBLEM 5.3 	(Continued)


Part c 

Then, the energy stored in the electromechanical coupling follows as 

W = Vdq = dq q ) 	 (d) 
Deoln( ) DE ln( ) 

and hence


e aW 	 1 q2 
2T I 2Doln( b )	

(e) 

Part d


The mechanical torque equation for the movable plate requires that the


inertial torque be balanced by that due to the torsion spring and the electric


field

2 2


Jd29 1 2

2 a(*oo 1 2 b


dt Dc ln()


The electrical equation requires that currents sum to zero at the current node,


and makes use of the terminal equation (c).


dO dq + d qý 	 g)
dt dt dt ln( 

o a


Part e


With G = 0, 	Q(t) = q(t). (This is true to within a constant, corresponding 

to charge placed on the upper plate initially. We will assume that this constant


is zero.) Then, (f) reduces to


2 0O

d2+ a 1
a o

d2 J o (l+cos 2wt) (h)


dt JDE oln(-)a

2 1 	 is equation has awhere we have used the identity cos t =-2(1 + cos 20t). This equation has a


solution with a constant part 2


1 o

414SaDE ln () b (i)


o a


and a sinusoidal steady state part


2 
Q cos 2wt 

J4Dol n(b)[ - (2w)2

0 Ja 




LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

PROBLEM 5.3 (Continued)


as can be seen by direct substitution. The plate responds with a d-c part and a


part which has twice the frequency of the drive. As can be seen from the


mathematical description itself, this is because regardless of whether the upper


plate is positive or negative, it will be attracted toward the opposite plate


where the image charges reside. The plates always attract. Hence, if we wish


to obtain a mechanical response that is proportional to the driving signal, we


must bias the system with an additional source and.used the drive to simply


increase and decrease the amount of this force.


PROBLEM 5.4


Part a


The equation of motion is found from (d) and (h) with i=Io, as given in


the solution to Prob. 3.4.


2


d2 12 (N vaw)dx 1 2 o(a)
M - = Mg- Io da(o da 2

dt (- + x) 

Part b


The mass M can be in static


equilibrium if the forces due to the 

field and gravity just balance, 

f = f 
g 

or 

=1 2 (N2 oaw) 
Mg =. 2 

2 o da 2 
(ý + x) Y X 

A solution to this equation is shown


graphically in the figure. The equilibrium is statically unstable because if


the mass moves in the positive x direction from xo, the gravitational force


exceeds the magnetic force and tends to carry it further from equilibrium.


Part c


Because small perturbations from equilibrium are being considered it is


appropriate to linearize. We assume x = x +x' (t) and expand the last term


in (a) to obtain
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PROBLEM 5.4 (Continued)


--1 I2 (N2 V aw) 	 + I2 (N
2 oaw) 

2 o (-da ++ X) 2 + 
o (--da + Xo) 3 

x' + ... 	 (c) 

b o b 0 

(see Sec. 5.1.2a). The constant terms in the equation of motion cancel out by


virtue of (b) and the equation of motion is


2d~x 2 I12 (N2 oaw) 
d x 2 x' = O; a - (d) 
dt 2 (-+ x )M 

Solutions are exp + at, and the linear combination which satisfies the given 

initial conditions is 

V 

x = ea- ea] 	 (e) 

PROBLEM 5.5 

Part a 

For small values 	of x relative to d, the equation of motion is


2 QO
d2x o 1 2x 1 2x

M 2 [ (a) 

dt d2 d3 d d' 

which reduces to


-d2x + 2 x = 0 where w 2 = Qo_1 
(b) 

dt 2 0 0 N•ed 3 

The equivalent spring constant will be positive if


QolQQ > 0 	 (c) 

rcd


and hence this is the condition for stability. The system is stable if the 

charges have like signs. 

Part b 

The solution to 	 (b) has the form 

x = A cos w t + B sin w t 	 (d)

o o 

and in view of the initial conditions, B = 0 and A = x . 

95 



LUMPED-PARAMETER ELECTRCOECHANICAL DYNAMICS 

PROBLEM 5.6


Part a 

Questions of equilibrium and stability are of interest. Therefore, the


equation of motion is written in the standard form


M d 2 
dt 

x2 V (a) 
ax


where 

V = Mgx - W' (b) 

Here the contribution of W' to the potential is negative because Fe = aw'/ax. 

The separate potentials are shown in the figure, together with the total 

potential. From this plot it is clear that there will be one point of static


equilibrium as indicated.


Part b


An analytical expression for the point of equilibrium follows by setting


the force equal to zero


2L X av 2LX 
~ Mg + 0 (c) 

3x b 4 

Solving for X, we have


4 
 1/3

x =- [ ] (d)


2L I

0 

Part c


It is clear from the potential plot that the equilibrium is stable.


PROBLEM 5.7 

From Prob. 3.15 the equation of motion is, for small 0 

J K+ DN2 In( )I2 46 (a)
dt2 2 o o )3 

Thus, the system will have a stable static equilibrium at 0 = 0 if the


effective spring constant is positive, or if


2
21 DN b 
K > - in( ) (b)

)3 a o 
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Figure for Prob. 5.6




LUMPED-PARAMETER ELECTRCMECHANICAL DYNAMICS 

PROBLEM 5.8


Part a 

The coenergy is 

W' = 1 )1(iO,x)di' + 12 X (il,i',x)di' (a) 
o o 

which can be evaluated using the given terminal relations


' = 	 [ i + Mil2 + L2i/( + x 3 (b) 

T-1 1 M1 2 2 L2i2


If follows that the force of electrical origin is


fe = 	 aW' 3 2 2i/ 

fe a[Llil + 2Mil2 
+ 2i/( + ) (c) 

Part b


The static force equation takes the form


_fe 	= Mg (d) 

or, 	with i2=02 and il1=I,


3 L1 1 

2a X 4 Mg 
[1 + --o 

Solution of this equation gives the 	required equilibrium position X 

1 1/4
Xo L I

-
a 

= [ 
2a 

_ 
Mg

_ ] - 1 	 (f) 

Part c 

For small perturbations from the equilibrium defined by (e), 

d2 x, 6L 1 
2 x'M 

o 
x2 6L 

X 5
= f(t) 	 (g) 

dt 2 + o) 
a 

where f(t) is an external force acting in the x direction on M. 

With the external force an impulse of magnitude I and the mass initially 

at rest, one initial condition is x(O) = 0. The second is given by integrating 

the 	equation of motion form 0 to 0+


+ 	 + + 

dt 0oddtl)dtdt - constant f0x'dt I. 0= .- 0 
(t)dt (h) 

0 0 0 0a 

The first term is the jump in momentum at t=0, while the second is zero if 

x is to remain continuous. By definition, the integral on the right is 0 

Hence, from (h) the second initial condition is 
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PROBLEM 5.8 (Continued)


MA ) = 

Mo 	 () = 0o x 

In view of these conditions, the response is


(e - e ) 
X'(t) 	= 


I2


where 	 117. 
x o 5~= 	 aLl2aM'sr 

a = LI2/a2M (1 + o 

Part d


With proportional feedback through the current 12, the mutual term in


the force equation makes a linear contribution and the force equation becomes


d2x' 6L12 "4t

M- 2 [ [ X - ]x' = f(t)
" 

0 dt a2 ( 1 + ao-)5- a 
The effective spring constant is positive if 

? X% 
aI > 2L I /a (1 + -- ) M 

1 a 

and hence this is the condition for stability. However, once initiated


oscillations remain undamped according to this model.


Part e &5ee \• ) 

With a damping term introduced by the feedback, the mechanical


equation becomes


d2 x' 	3MI4 dx'

M + - + K x' = f(t)

Sdt a t e


where


K 3MIa 6L 1 
2 3 3:,4 -GLtI 

2suX 5 


a


This equation hias soluttns of the form exp st, where substitution shows that


e a the fho


s = 	 3MIB3M + (3MVI61 e (n) 
2aM - 2aMo, Mo 

For the response to decay, K must be positive (the system must be stable with­

e 

out damping) and 6 must be positive. 

23~4 n~IT 
> I-Ohc-

Ic~ic~P tFo 

'7
'7 



LUMPED-PARAMETER ELECTRCMECHANICAL DYNAMICS 

PROBLEM 5.9 

Part a


The mechanical equation of motion is


M d 2 x = K(x-£ )-B + fe (a) 
dt S2 o dt 

Part b


where the force fe is found from the coenergy function which is (because 
1 2 1 32 

the system is electrically linear) W' = Li2 = Ax i 

fe = 3W'= 3 Ax 2 (b)
f - = Ax i (b)

ax 2


Part c


We can both find the equilibrium points X and determine if they are stable 
0


by writing the linearized equation at the outset. Hence, we let x(t)=X +x'(t)


and (a) and (b) combine to give 

dd2 x'x dx' 3 2 2M - K(Xo-Po)-Kx' - B + - AI (X + 2X x') (c) 
dtdt

2 0 0 dt 2 o + 0 

With the given condition on 1o, the constant (equilibrium) part of this equation


is 3X2 

X - o (d)
o o 16Z 

0


which can be solved for X /Z, to obtain

o o 

x 12/3 
o 1/3 (e) 

That is, there are two possible equilibrium positions. The perturbation part


of (c) tells whether or not these are stable. That equation, upon substitution


of Xo and the given value of Io, becomes


d2 x' 3/2 dx'
M 
_2 
- -K[l- ( 

1/2
)]x' - B 

dt (f) 
dt 

where the two possibilities correspond to the two equilibrium noints. Hence, 

we conclude that the effective spring constant is positive (and the system is 

stable) at XO/k = 4/3 and the effective spring constant is negative (and hence 

the equilibrium is unstable) at X /0o = 4. 

Part d 

The same conclusions as to the stability of the equilibrium noints can be


made from the figure.
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PROBLEM 5.9 (Continued)


T 

Consider the equilibrium at Xo = 4. A small displacement to the right makes 

the force fe dominate the spring force, and this tends to carry the mass


further in the x direction. Hence, this point is unstable. Similar arguments


show that the other point is stable.


PROBLEM 5.10 

Part a 

The terminals are constrained to constant potential, so use coenergy found 

from terminal equation as 

W' = qdv = -4 (l + cos 2e)V2
2o o 

Then, since Te = aW'/ae and there are no other torques acting on the shaft, the 

total torque can be found by taking the negative derivative of a potential 

V =-W', where V is the potential well. A sketch of this well is as shown in 

the figure. 



JUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

PROBLEM 5.10 (Continued) 

I 
V 

SSa~b\C 

~c~-.$ c~;~lb~;a 

Here it is clear that there are points of zero slope (and hence zero torque 

and possible static equilibrium) at 

e= o0o 7, 3r 

Part b 

From the potential well it is clear that the first and third equilibria


are stable, while the second and fourth are unstable.


PROBLEM 5.11


Part a


From the terminal pair relation, the coenergy is given by


Wm (ii,i2'e)= (Lo+M cos 20)il + (Lo-M cos 20) 2 + M sin 2i ili2


so that the torque of electrical origin is


Te = M[sin 20(i 2-i1 ) + 2 cos 26 ili2
2 1 1 21


Part b 

For the two phase currents, as given,


2 2 12

i _ i1 I cos 2w t 
2 1 s 

i1 2 1 sin 2w t 
1 2 s


so that the torque Te becomes
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PROBLEM 5.11 (Continued) 

Te = MI2 [-sin 20 cos 2w t + sin 2wst cos 20] (d) 

or


Te = MI2sin(2 s t - 20) (e) 

Substitution of 6 w t + 6 obtains 
m 

Te 2 

T= - MI sin[2(wm-w)t + 2] (f) 

and for this torque to be constant, we must have the frequency condition


W 
m 
=W 

s (g) 

under which condition, the torque can be written as


Te = - MI2sin 26 (h) 

Part c


To determine the possible equilibrium angles 60, the perturbations and 

time derivatives are set to zero in the mechanical equations of motion. 

T = MI 2 sin 26 (i)o o 

Here, we have written the time dependence in a form that is convenient if


cos 260 > 0, as it is at the points marked (s) in the figure. Hence, these 

points are stable. At the points marked (u), the argument of the sin function 

and the denominator are,imaginary, and the response takes the form of a sinh 

function. Hence, the/equilibrium points indicated by (u) are unstable.


Graphical solutions of this expression are shown in the figure. For there 

to be equilibrium values of 6 the currents must be large enough that the torque 

can be maintained with the rotor in synchronism with the rotating field. 

(MI > T ) 

MAI 2 
r 

76 maa 

VIA 



LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

PROBLEM 5.11 (Continued)


Returning to the perturbation part of the equation of motion with wm = us, 

J 2 (Wt + 6 + 6') = T + T' - MI2 sin(26 + 26') (j) 
dt 2 m o o o
dt


linearization gives


J A-+ (2MI2 cos 26~)6' = T' (k) 
dt 2 

where the constant terms cancel out by virtue of (i). With T' = Tuo(t) and 

initial rest conditions,the initial conditions are 

* ( 0
+ ) = -o (1)

dt J


6'(0 + ) = 0 (m) 

and hence the solution for 6'(t) is


S2MI 2 cos 26 
6'(t) = o sin o t (n) 

2MI2cos 26


PROBLEM 5.12


Part a


The magnitude of the field intensity\ (H) in the gaps is the same. Hence,


from Ampere's law,


H = Ni/2x (a) 

and the flux linked by the terminals is N times that passing across either 

of the gaps. 

~ adN2 

= i = L(x)i (b)
2x


Because the system is electrically linear, W'(i,x) = 
1 

Li 
2 
2 , and we have. 

2 

fe = N2ad=o i 2 (c)
ax 2

4x


as the required force of electrical origin acting in the x direction.


Part b


Taking into account the forces due to the springs, gravity and the


magnetic field, the force equation becomes


104
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PROBLEM 5.12 (Continued)


2 N2ado 

M 2 = - 2Kx + Mg 2 i + f(t) (d) 
dt 4x 2 

where the last term accounts for the driving force.


The electrical equation requires that the currents sum to zero at the


electrical node, where the voltage is dA/dt, with X given by (b).


I adN2

I 

R dt 
[ • 

2x 
i] + i (e) 

Part c


In static equilibrium, the electrical equation reduces to i=I, while


the mechanical equation which takes the form fl f2 is satisfied if

2 2

N2adj o12 

-2KX + Mg = (f) 
4X 

Here, f2 is the negative of the force of electrical origin and therefore 

(if positive) acts in the - x direction. The respective sides of (f) are 

shown in the sketch, where the points of possible static equilibrium are 

indicated. Point (1) is stable, because a small excursion to the right makes 

f2 dominate over fl and this tends to return the mass in the minus x direction 

toward the equilibrium point. By contrast, equilibrium point (2) is 

characterized by having a larger force f2 and fl for small excursions to the 

left. Hence, the dominate force tends to carry the mass even further from the 

point of equilibrium and the situation is unstable. In what follows, x = X 

will be used to indicate the position of stable static equilibrium (1). 
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PROBLEM 5.12 (Continued)


Part d


If R is very large, then


i : I 

even under dynamic conditions. This approximation allows the removal of


the characteristic time L/R from the analysis as reflected in the


reduction in the order of differential equation required to define the


dynamics. The mechanical response is determined by the mechanical


equation (x = X + x')


M-d
2 
2 x x' = - 2Kx' + 

N adpo
0I 

22 x' + f(t) (g) 
dt2 2X3


where the constant terms have been balanced out and small perturbations are 

assumed. In view of the form taken by the excitation, assume x = Re x ejet 
.and define Ke E 2K - N2adoI2/2X3 Then, (g) shows that 

S= f/(Ke-0M) (h) 

To compute the output voltage


S p 0a d N2 1 dx'd 

o dt i= 22 dti=I =i 

or

upor adN2 I


=2 x (0) 
o2X


Then, from (h), the transfer function is


2

v w0 adN I 

o o 
j (k)


f 2X2 (Ke2jM)


PROBLEM 5.13


Part a


The system is electrically linear. Hence, the coenergy takes the


standard form


W' 
1 
L 1

22 +L ii + 11 
L 122 (a)

2 111 1212 2 222(a) 

and it follows that the force of electrical origin on the plunger is 

Sx 
= i + i l22 + 2i2 (b)
ax 2 1 x 1 2 3x 2 2 ax 
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PROBLEM 5.13 (Continued)


which, for the particular terminal relations of this problem becomes


2 2
-if ilix2 i


fe L { (+ x_ 	 1 2x 2 ( x (c)o d d d d d dc) 

Finally, 	in terms of this force, the mechanical equation of motion is


2

d2
--2 = -Kx - B T- + fe 	 (d)


dt

dt


The circuit connections show that the currents i1 and 12 are related to the 

source currents by 

i = I + i (e) 
1 =o -i 

Part b


If we use (e) in (b) and linearize, it follows that


4L I 4L 12

fe 	 oo oo (f) 

d d d 

and the equation of motion is


dx dx 2

2 + a -	 +wx= - Ci (g)dt dt o


where 

4L 12 
ao = [K + ]/M

2 
o 


a = B/M


C = 4L 	I /dM 

Part c 

Both the spring constant and damping in the equation of motion are


positive, and hence the system is always stable.


Part d


The homogeneous equation has solutions of the form ept where


p 2 + ap + 2 = 0 	 (h)
0 

or, since the system is underdamped 

a 2 
2 a)• 

p = - 2 + J -	 (i)2 - 02 	 p 
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PROBLE~ 5.13 (Continued)


The general solution is


CI t 
x(t) = - + e [A sin w t + D cos w t] (j)

2 p p 
o 

where the constants are determined by the initial conditions x(O) = 0 and 

dx/dt(O) = 0 

CI tCI 
D =--

o 
; A = 

o 
(k) 

w 2w w 
o po


Part e 

With a sinusoidal steady state condition, assume x = Re x e and write 

i(t) = Re(-jI )ej t and (g) becomes 

- 2 2 )x(-w + jwa + = Cj (1) 

Thus, the required solution is


RejCI e t 

x(t) ( 2 2 (m) 

0 

PROBLEM 5.14


Part a


From the terminal equations, the current ii is determined by Kirchhoff's


current law

di 

G L di+ i = I + CMI sin Pt (a)

G1 dt 1 2 

The first term in this expression is the current which flows through G because 

of the voltage developed across the self inductance of the coil, while the last 

is a current through G induced bhv the rotational motion. The terms on the right 

are known functions of time, and constitute a driving function for the linear 

equation. 

Part b 

We can divide the solution into particular solutions due to the two driving


terms and a homogeneous solution. From the constant drive I we have the solution


i I = I (b) 

Because sin Pt = Re(-jej t), if we assume a particular solution for the 

) we havesinusoidal drive of the form i1 = Re(Ie(I ), we have 
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PROBLEK 5.14 (Continued)


11 	 (jDGL 1 + 1) = - J~GMI 2 (c) 

or, rearranging 

-OGMI 2 (GCL1 + j) 
1 +( 1) 2 (d) 

We now multiply this complex amplitude by ejot and take the real .part to 

obtain the particular solution due to the sinusoidal drive 

-GMI2l
1 1 2 (QGL1 cos Pt - sin Qt) (e) 

1+(PGLI) 

The homogeneous solution is


-t/GL 1


t1 	= Ae (f)


and the total solution is the sum of (b), (e) and (f)with the constant A


determined by the initial conditions.


In view of the initial conditions, the complete solution for il, normalized


to the value necessary to produce a flux equal to the maximum mutual flux, is


then


Llil 1e 
LMI Q(tGLI) 1

MI 	 2 
2 1+(GL ) 2­


+ 	 GL1R 2 (sin t - GGL L1I 
L+(QG2L1 ) 

11 
cos Qt) + 

MI2 
(g) 

Part c 

The terminal relation is used to find the flux linking coil 1 
l GLI) 2 LI 1 

MI2 I+I(GL ) M 2 t 

GLIQ 	 LI

G~1R cos Rt 1 

2 ( L 2 MI
1+(QGLI) 1+( GL1) 2 

The flux has been normalized with respect to the maximum mutual flux (MI2).
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Part d


In order to identify the limiting cases and the appropriate approximations


it is useful to plot (g) and (h) as functions of time. These equations contain


two constants, QGL1 and L I/MI2 . The time required for one rotation is 2r/S and


GL1 is the time constant of the inductance L1 and conductance G in series. Thus,


QGL1 is essentially the ratio of an electrical time constant to the time required


for the coil to traverse the applied field one time. The quantity MI2 is the 

maximum flux of the externally applied field that can link the rotatable coil and 

I1I is the self flux of the coil due to current I acting alone. Thus, I1I/MI 2 

is' the ratio of self excitation to mutual excitation.


To first consider the limiting case that can be approximated by a current


source we require that 

L1I 
QGL <<

1 
1 and GL << MI 

1 MI2 
(i) 

To demonstrate this set 

LI 
WGL = 0.1 and -- = 1 (j) 

1 MI 

and plot current and flux as shown in Fig. (a). We note first that the


transient dies out very quickly compared to the time of one rotation. Further­


more, -the flux varies appreciably while the current varies very little compared


to its average value. In the ideal limit (GqO) the transient would die out


instantaneously and the current would be constant. Thus the approximation of


the situation by an ideal current-source excitation would involve a small


error; however, the saving in analytical time is often well worth the decrease


in accuracy resulting from the approximation.


Part e


We next consider the limiting case that can be approximated by a constant-


flux constraint. This requires that


QGL1 >> 1 (k)


To study this case, set


CGL1 = 50 and I = 0 (1)


The resulting curves of flux and current are shown plotted in Fig. (b).


Note that with this constraint the current varies drastically but the flux


pulsates only slightly about a value that decays slowly compared to a rotational


period. Thus, when considering events that occur in a time interval comparable
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Di
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PROBLEM 5.14 (Continued)


with the rotational period, we can approximate this system with a constant-flux


constraint. In the ideal, limiting 6ase, which can be approached with super­


conductors, G-m and X1 stays constant at its initial value. This initial value


is the flux that links the coil at the instant the switch S is closed.


In the limiting cases of constant-current and constant flux constraints


the losses in the electrical circuit go to zero. This fact allows us to take


advantage of the conservative character of lossless systems, as discussed in


Sec. 5.2.1.


Part f


Between the two limiting cases of constant-current and constant flux


constraints the conductance G is finite and provides electrical damping on


the mechanical system. We can show this by demonstrating that mechanical


power supplied by the speed source is dissipated in the conductance G. For


this purpose we need to evaluate the torque supplied by the speed source.


Because the rotational velocity is constant, we have


Tm= - Te (m) 

The torque of electrical origin Te is in turn 

aW'(il, i 22, ) 
Te = (n) 

Because the system is electrically linear, the coenergy W' is


W' Li + M i + L2 (o)
2 1 1 1 2 2 2 2 Co)


and therefore, 

Te = - M i 12 sin 6 (p) 

The power supplied by the torque T
m to rotate the coil is


Pin - T d = I sin Qt (W)Mil2 


Part g 

Hence, from (p) and (q), it follows that in the sinusoidal steady state 

the average power <P. > supplied by the external toraue is 
in


<Pin > = 
1 (r) 

in 2 
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PROBLFM 5.14 (Continued) 

This power, which is dissipated in the conductance G, is plotted as a function 

of ~2GL 1 in Fig. (c). Note that because 0 and L1 are used as normalizing 

constants, ?GL 1 can only be varied bhv varving G. Note that for both large and 

small values of fGT.1 the average mechanical power dissipated in G becomes small.


The maximum in <Pin > occurs at GCL 1 = 1. 

PROBLEM 5.15 

Part a


The coenergy of the capacitor is


= C(x) V2 = 1 (EA )V2 
e 2 2 ox 

The electric force in the x direction is 

aW' EA 
e 1 o 2 

e ýx 2 2 
x 

If this force is linearized around x = xo, V = V 

f (x)
e 

=0 
1 
2 

1 AV' 
o o 

2 

1)2 
E AV v 

o o
0

2 
+ 

2 
E AV x 

o o0 0
3 

x x x 
O O O 

The linearized equation of motion is then


AV 2 

dx ++ (K-
E 

)xo) -
c A 

0V v + f(t)B -ý0 ' = V 

dt 3 2 o 
x x

0 0 

The equation for the electric circuit is


d 
V + R -6 (C(x)V) = V 

Part b


We can keep the voltage constant if


R -- 0 

In this case AV2 

B dx + K'x = f(t) = F ul(t); K' = K 0 3 
x 

The particular solution is 

=
x(t) F/K'
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The natural frequency S is the solution to


SB +K'x = 0 $ = - K'/B 

Notice that since 
Z


E AV


X'/B = (K- 3)/B X(t)

x
0 F 

Sr- /d 
there is voltage V above which the 

system is unstable. Assuming V is

O 

less than this voltage t 

-
x(t) = F/K' (1-e (K ' / B)t) 

Now we can be more specific about the size of R. We want the time


constant of the RC circuit to be small compared to the "action time" of the


mechanical system 

RC(xo) << B/K'


B 

R << B

K'C(xo)


Part c


From part a we suspect that 

RC(xo) >> Tmech


where Tmech can be found by letting R + m. Since the charge will be constant 

d = 0 q = C(x )V = C(X +X)(V +V)
dt 00 0 0 

dC

- C(xo)V + C(xo)v + Vo 4-c (xo)x


V Vx EA 
v (oo dC- (x 

) x - + 
oo o x Vx x 

C(x) dxxo)X E A 2 ox 
o 

Using this expression for induced v, the linearized equation of motion


becomes

SAV2 A
dxo o o0 2


B + (K- )x - V x +f(t)
dt 3 3 o 

x x 
o o 

dx

B dx + Kx = f(t)

dt
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The electric effect disappears because the force of a capacitor with 

constant charge is independent of the plate separation. The solutions are the 

same as part (a) except that K' = K. The constraint on the resistor is then 

R >> 1 B/K

C(xo)


PROBLEM 5.16


We wish to write the sum of the forces in the form


f f + f 
aV 

(a)
1 2 3x


For x > 0, this is done by making


1 2

V Kx + Fx (b)

2 o


as shown in the figure. The potential is symmetric about the origin. The largest


value of vo that can be contained by the potential well is determined by the peak


value of potential which, from (b), comes at


x = Fo/K (c)


where the potential is


V = 1 F2/K (d)
2 o 

Because the minimum value of the potential is zero, this means that the kinetic 

energy must exceed this peak value to surmount the barrier. Hence, 

SMv2 I F2/K (e)
2 o 2 o 

or F2 

vo= (f)
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PROBLEM 5.17 

Part a 

The electric field intensities 

defined in the figure are 

E2 = (v2-v1)/(d-x) 
/ 

I E\ 

E 
1 

= v,/(d+x)
1 

Hence, the total charge on the 

respective electrodes is 

q= S 

`2 

A2E o 
v1 [. 0+
Vl[d+x + 

AIC (v2-v 

d-x 

A 

) 

o 
0 
-x]-  

v2A1E o 
o

d-x 

Part b 

Conservation of energy requires 

vldq1 + v2dq2 = dW + fedx 



LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

and since the charge q1 and voltage v2 are constrained, we make the 

transformation v2dq2 = d(v2q2)-q2 dv2 to obtain 

v1 dql-q 2 dv 2 = dW" + fedx 	 (f) 

It follows from 	this form of the conservation of energy equation that

fe W 
fe= - • and hence W" H U. To find the desired function we integrate 

(f) using the terminal relations.


U = W"= dql 	- q2dv 2 (g) 

The integration on q1 makes no contribution since ql is constrained to be


zero. We require v2(ql=0,v 2) to evaluate the remaining integral


v2A1i Io1 1 (h) 
q 2 (q 1 0,v 2) d-x 1- A2(dx ) (h) 

SAl(d+x) 

Then, from (g),


U 1 0 1 o 1U V 1 	 (i)
2 d-x 	 A2 (d-x) 

A5(d+x) 1 

PROBLEM 5.18 

Part a 
I 

Because the two 	outer plates are X 

constrained differently once the switch 

is opened, it is convenient to work in


terms of two electrical terminal pairs, 

defined as shown in the figure. The 

plane parallel geometry makes it 

straightforward 	to compute the


terminal relations as being those for


simple parallel plate capacitors, with


no mutual capacitance.


ql 1 x 	 (a)VlEoA/a + 


q2 V2 oA/a-x 	 (b) 

+, 
~o 2)~ '4 00 
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PROBLEM 5.18 (Continued)


Conservation of energy for the electromechanical coupling requires


v1dql+ v2 dq2 = dW + fedx (c) 

This is written in a form where q1 and v2 are the independent variables by


using the transformation v2dq2 = d(v2q2)-q2dv2 and defining W"qW-v2q 2 

v1dq1 - 2dv2 dW" + fedx (d) 

This is done because after the switch is opened it is these variables that


are conserved. In fact, for t > 0,


v2 = V and (from (a))ql = VoeoA/a (e) 

The energy function W" follows from (d) and the terminal conditions, as


W" = vldql- fq2 dv 2 (f) 

or


c Av2 
1 (a+x) 2 1 oAV2 

q -(g)2 cA q1 2 a-x

o


Hence, for t > 0, we have (from (e))


AV2 
E AV22

1 (a+x) 1 oAV

2 2 o A 2 a-x 

a

Part b


e aW"
The electrical force on the plate is fe W" Hence, the force


equation is (assuming a mass M for the plate)


2, EoAV2 E AV2
dx 1 o o 1 o o

M - Kx + (i)


dt a (a-x)


For small excursions about the origin, this can be written as 
2 cAV2 EAV2 cAV2 

dx 1 o 0 o o 01o o
M- 2 -Kx-2 2 + 2 2 + 3 x (j)

dt a a a 

The constant terms balance, showing that a static equilibrium at the origin


is possible. Then, the system is stable if the effective spring constant


is positive.


K > c AV2/a3 (k)
0 0 

Part c


The total potential V(x) for the system is the sum of W" and the


potential energy stored in the springs. That is,
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PROBLEM 5.18 (Continued)

2


1 2 1 (a+x) AV 1 
E AV

o 
2 2 2 o o 2 a-x 

a 

2 2 EAV 2 
aKK1 oo x 1 

2 ( 2 a a x 
(1- )


a 

This is sketched in the figure for a2K/2 = 2 and 1/2 c AV2/a = 1. In addition

o o 

to the point of stable equilibrium at the origin, there is also an unstable 

equilibrium point just to the right of the origin. 

PROBLEM 5.19


Part a


The coenergy is


W' Li = i /1 - -4
2 2 ao 

and hence the fbrce of electrical origin is 

' 

e dw4f = 2L iL/a[l ­x o a 

Hence, the mechanical equation of motion, written as a function of (i,x) is 

S21,2

2 2L _i 

d x

M = - Mg +


dt a[1- -a a 
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PROBLEM 5.19 (Continued)


while the electrical loop equation, written in terms of these same variables


(using the terminal relation for X) is


VVo + v = Ri + dt - [ (1-- )(d) (d) 

a


These last two expressions are the equations of motion for the mass.


Part b


In static equilibrium, the above equations are satisfied by (x,v,i) having


the respective values (Xo,VoIo). Hence, we assume that


x = Xo + x'(t): v = Vo + v(t): i = Io + i'(t) (e)


The equilibrium part of (c) is then


2L 12 X 5 
0 - Mg + a o/(1 - o) (f)a a


while the perturbations from this equilibrium are governed by


2 x 10 L 12 x' 4 LI i' 
M d 


2 
+ 

X 6 + X 5 (g) 

a (l- -) a(l- 0-)a a


The equilibrium part of (d) is simply Vo = I R, and the perturbation part is 

L di* 4 LI 
v = Ri' + 0 d+ 00 (h)X 4 dt X 5 dt


[1- •-1] al- -o]a a 

Equations (g) and (h) are the linearized equations of motion for the system which


can be solved given the driving function v(t) and (if the transient is of interest)


the initial conditions.


PROBLEM 5.20


Part a


The electric field intensities, defined as shown, are


E1 = (V 1-V2 )/s; E2 = v2/s (a) 

121
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PROBLEM 5.20 (Continued)


In terms of these quantities, the charges are


= 
q 1 Eo( - x)dE1 ; q2 - o( -x)dE + o( + x)dE2 (b) 

Combining (a) and (b), we have the required terminal relations 

q = V1C11 - v2C12  (c)


q2 =V 1 12 
+ V2C22


where

Ed E ad 
o a o


C11 = - (- x); C22
ii s 22 s 
Ed 
o a


C12  s (


For the next part it is convenient to write these as q1(vl,q2) and v2(v ,q 2).


2


1 v1 [C1 1  C2 2 C2 
q 22 22 

q 2 C12 (d)v + v ­
2 C 1 C22 22 

Part b


Conservation of energy for the coupling requires


v1dql + v2dq2 = dW + fedx (e) 

To treat v1 and q2 as independent variables (since they are constrained to be 

constant) we let vldq1 = d(vlql)-q dvl, and write (e) as 

-ql dv1 + v2dq2 = - dW" + fe dx (f) 

From this expression it is clear that fe = aW"/,x as required. In particular, 

the function W" is found by integrating (f) 

W" = o l(,O)dv' - v 2 (Vo,q)dq2 (g) 
o o 

to obtain


C2 2 V OC 
= 1 V2[C _ Q o 12 (h)

2 o 11 
C1 2 ] 2C22C22 C22


Of course, C1 1, C22 and C12 are functions of x as defined in (c).
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Part a


The equation of motion as developed in Prob. 3.8 but with I(t)=Io=constant, 

is 
2 I L2 1

J 
dt2 

d - m 
L2 

(1-cos 6) sine (a) 
dt 2 

This has the required form if we define 

IL 
m 1 2


V L (cos 0 + sin 0) (b) 

as can be seen by differentiating (b) and recovering the equation of motion. This


potential function could also have been obtained by starting directly with the


thermodynamic energy equation and finding a hybred energy function (one having


il' X2,6 as independent variables). See Example 5.2.2 for this more fundamental


approach.


Part b


A sketch of the potential well is as shown below. The rotor can be in 

stable static equilibrium at e = 0 (s) and unstable static equilibrium at 

S= r(u). 

Part c


For the rotor to execute continuous rotory motion from an initial rest 

position at 0 = 0, it must have sufficient kinetic energy to surmount the peak 

in potential at 8 = W. To do this, 

2 2IL21

1 j (Lmo 
2 

Jt 
dt 

-
- L

•> (c) 

- c 
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PROBLEM 5.22


Part a


The coenergy stored in the magnetic coupling is simply


W'= Lo(l + 0.2 cos 0 + 0.05 cos 268) 2 (a) 

Since the gravitational field exerts a torque on the pendulum given by


T = (-Mg X cose) (b)
p ae 

and the torque of electrical origin is Te = ~W'/~8, the mechanical equation of


motion is


d ro 
[t 2 2 + V =0 (c) 

where (because I 2 Lo 6MgZ) 

V = Mgt[0.4 cos e - 0.15 cos 20 - 3] 

Part b


The potential distribution V is plotted in the figure, where it is evident 

that there is a point of stable static equilibrium at 0 = 0 (the pendulum 

straight up) and two points of unstable static equilibrium to either side of 

center. The constant contribution has been ignored in the plot because it is 

arbitrary. 

strale


I \ ­

C/h ~ta I 
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PROBLEM 5.23


Part a


The magnetic field intensity is uniform over the cross section and equal


to the surface current flowing around the circuit. Define H as into the paper 

and H = i/D. Then X is H multiplied by Uo and the area xd. 

p xd 
-- i (a) 

The system is electrically linear and so the energy is W X2 L. Then, since


fe = _ aW/ax, the equation of motion is 

d2x 1 A2D

M d 2 x 

dt2 
= f f - Kx + D (b)

2 2


Part b


Let x = X + x'where x' is small and (b) becomes approximately 

d2x' 1 A2 D A2Dx'

M 

dt
2 x 
2 = -KX - Kx' + (c)

o 2 2d oX3d 
00


The constant terms define the static equilibrium


1 A2D 1/3
X° = [ ]K- (d) 

o 

and if we use this expression for Xo, the perturbation equation becomes,


d22x'
M = -Kx' - 2Kx' (e)

dt2


Hence, the point of equilibrium at Xo as given by (d) is stable, and the magnetic 

field is equivalent to the spring constant 2K. 

Part c 

The total force is the negative derivative with respect to x of V where


1 2 1 A2D
V = Kx + A-D (f)


2 2jixd


This makes it possible to integrate the equation of motion (b) once to obtain


d= + 2 (E-V) (g)dt -M 

The potential well is as shown in figure (a). Here again it is apparent that 

the equilibrium point is one where the mass can be static and stable. The constant 

of integration E is established physically by releasing the mass from static 
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PROBLEM 5.23 (Continued) 

positions such as (1) or (2) shown in Fig. (a). Then the bounded excursions of


the mass can be pictured as having the level E shown in the diagram. The motions


are periodic in nature regardless of the initial position or velocity.


Part d


The constant flux dynamics can be contrasted with those occurring at 

constant current simply by replacing the energy function with the coenergy 

function. That is, with the constant current constraint, it is appropriate to find 

the electrical force from W' = Li2 ' where fe = W'/ax. Hence, in this case 

1 2 1 oxd 2 (h) 
2 2 D 

A plot of this potential well is shown in Fig. (b). Once again there is a point 

X of stable static equilibrium given by 

X 1 d 2 (i)
o 2 DK 

However, note that if oscillations of sufficiently large amplitude are initiated 

that it is now possible for the plate to hit the bottom of the parallel plate 

system at x = 0. 

PROBLEM 5.25 

Part a 

Force on the capacitor plate is simply 

wa2 2 
fe 3W' 3 1 o (a)

f • x x 21 x 

due to the electric field and a force f due to the attached string.


Part b


With the mass M1 rotating at a constant angular velocity, the force fe


must balance the centrifugal force Wm rM1 transmitted to the capacitor plate


by the string.


wa2E V2 
1 oo = 2 (b) 
2 2 m 1 

or \Ia a2 V2 

= 0 (c)
m 2 £3M1 

where t is both the equilibrium spacing of the plates and the equilibrium radius


of the trajectory for M1.




LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS 

(0,) 

OA x---aco s 
%~ -0 

oY\­

V~x 
r 

(b) 
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PROBLEM 5.25 (Continued) 

Part c 

The e directed force equation is (see Prob. 2.8) for the accleration 

on a particle in circular coordinates) 

d2 e
M 1[r d2 + 2 

dr d6
dt dt = 0 (d) 

dt 

which can be written as 

d 2 dO

dt [M1r d- 1= 0 (e) 

This shows that the angular momentum is constant even as the mass M1 moves in and 

out 

2 de 2 
M1d m =M r = . constant of the motion (f) 

This result simply shows that if the radius increases, the angular velocity must


decrease accordingly


de 2 
dt 2 ()

r 

Part d 

The radial component of the force equation for M1 is 

2 2 
Ml[d - r-) ]= - f (h) 

dt 

where f is the force transmitted by the string, as shown in the figure. 

S( 
i grv\, 

The force equation for the capacitor plate is


Mdr e(i) 
dt 

where fe is supplied by (a) with v = V = constant. Hence, these last two 
o 

expressions can be added to eliminate f and obtain 



--
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PROBLEM 5.25 (Continued)


2 a 2C 2V2 d w
(M1++ 2 - r ) = 1 o oa (j)1 2. 

dt 
1 Tr ro 0, 

If we further use (g) to eliminate d6/dt, we obtain an expression for r(t) 

that can be written in the standard form


2

(M1 2 2 V = 0 (k) 

2 dt


where M 4 2 7a2 2 

V = 2 (1)
2 r


2r


Of course, (k) can be multiplied by dr/dt and written in the form


d 1 dr

1 S(M + V] =0 (m)2)( 


to show that V is a potential well for the combined mass of the rotating particle


and the plate.


Part e


The potential well of (1) has the shape shown in the figure. The minimum


represents the equilibrium position found in (c), as can be seen by differentiat­


ing (1) with respect to r, equating the expression to zero and solving for w
m 
assuming that r =£. In this example, the potential well is the result of


a combination of the negative coenergy for the electromechanical system,


constrained to constant potential, and the dynamic system with angular momentum


conserved.
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PROBLEM 5.26


Part a


To begin the analysis we first write the Kirchhoff voltage equations for


the two electric circuits with switch S closed


dX 
V = ilR1 + (a) 

dX
20 = i2R 2 dt
d),

(b) 

To obtain the electrical terminal relations for the system we neglect fringing


fields and assume infinite permeability for the magnetic material to obtain*


1 = N1 ' 2 = N24 (c) 

where the flux $ through the coils is given by


21o wd (N1 1 + N2i2)

$ = (d)


g(l + -)


We can also use (c) and (d) to calculate the stored magnetic energy as**


g(l + x) 2 
W = (e)

m 4 ° wd 

We now multiply (a) by N1/R1 and (b) by N 2/R2, add the results and use


(c) and (d) to obtain


x 2 2

NV g(l+ -) N N

1V1 + (- + 2) (f) 
R1 21 wd R1 R2 dt 

Note that we have only one electrical unknown, the flux 0, and if the plunger is


at rest (x = constant) this equation has constant coefficients.


The neglect of fringing fields makes the two windings unity coupled. In practice

there will be small fringing fields that cause leakage inductances. However,

these leakage inductances affect only the initial part of the transient and

neglecting them causes negligible error when calculating the closing time of


the relay.


**Here we have used the equation QplPg)b 
W =iL 2 +L i i2 + L i22 
m 2 1 1 12 1 2 2 2 2
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PROBLEM 5.26 	(Continued)


Part b


Use the given definitions to write (f) in the form


S = (1 + ) 	 + dt (g) 

Part c


During interval 1 the flux is determined by (g) with x = xo and the


initial condition is * = 0. Thus the flux undergoes the transient


o-(1 + x-) t 

SI - e 0 (h) 

1+ 

To determine 	the time at which interval 1 ends and to describe the dynamics


of interval 2 we must write the equation of motion for the mechanical node.


Neglecting inertia and damping forces this equation is


K(x - Z) = fe 	 (i) 

In view of (c) (Al and X2 are the independent variables implicit in *) we can 

use (e) to evaluate the force fe as


fe awm( 	' x2 x) 2 ) 
ax 41 wd 

Thus, the mechanical equation of motion becomes


2 
K(x - t) = - (k)

41 wd 
o 

The flux level 1 at which interval 1 ends is given by 

2 

K(x - - ) 4 (1) 

Part d 

During interval 2, flux and displacement are related by (k), thus we 

eliminate x between (k) and (g) and obtain 

F iE-x 2 d 
*= (1 +) - o T dt (m) 

were we have used (k) to write the equation in terms of 1." This is the nonlinear 

differential equation that must be solved to find the dynamical behavior during 

interval 2. 
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PROBLEM 5.26 (Continued)


To illustrate the solution of (m) it is convenient to normalize the equation


as follows


d(o) _-x o 2 
o 0 ( )3 - (1 +) + 1


d(- g 1 o

o 

We can now write the necessary integral formally as


t 
o d(-) 

S-x 2 3 ,)to 
o d(A) 

(- ) ( ) - (1 + ) +0 
o 

1 1
 (o)


where we are measuring time t from the start of interval 2.


Using the given parameter values,


o 	 d(-o) 
t 
T 

o 
•o ao


400 -) - 9 + 

0.1


We factor the cubic in the 	denominator into a first order and a quadratic factor


and do a partial-fraction expansion* to obtain


(-2.23 - + 0.844) 
o0.156 

•Jt	 d(o ) = 
0 0


75.7 ( -) - 14.3 + 1 
o


Integraticn of this expression yields


. . . .. .... . t •m q

Phillips, H.B., Analytic Geometry and Calculus, second edition, John Wiley 

and Sons, New York, 1946, pp. 250-253. 
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PROBLEM 5.26 (Continued) 

2 
t 0.0295 In [3.46 ( -) + 0.654] - 0.0147 In [231 (-) - 43.5 (-) + 3.05]
T0O


+ 0.127 tan- 1 [15.1 (--) - 1.43] - 0.0108 

Part e


During interval 3, the differential equation is (g)with x = 0, for which


the solution is t

T


1
4 = 02 + (%o - 02)( - e 0) (s) 

where t is measured from the start of interval 3 and where 2 is the value of flux 

at the start of interval 3 and is given by (k)with x = 0 
2 

KZ = (t)
41 wd


Part f


For the assumed constants in this problem


01


The transients in flux and position are plotted in Fig. (a) as functions


of time. Note that the mechanical transient occupies only a fraction of the time


interval of the electrical transient. Thus, this example represents a case in


which the electrical time constant is purposely made longer than the mechanical


transient time.
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