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FIELDS AND MOVING MEDIA


PROBLEM 6.1 

Part a 

From Fig. 6P.1 we see the geometric relations 

r' = r, e' = e - Pt, z' = z, t' = t (a) 

There is also a set of back transformations 

r = r', e = 8' + st', z = z', t = t' (b) 

Part b 

Using the chain rule for partial derivatives 

, = () r) + (2j) (L ) + 2(- 3za) + () (-) (c) 

at ar atf ae at' 9 ( at at 

From (b) we learn that 

SO, ,= , ' =0O , = 1 (d) 

Hence, 

at' at + 0 ao (e) 

We note that the remaining partial derivatives of p are 

4, = a* 2t = * (f) 
3r' ar ' ae' ae ' az' a 

PROBLEM 6.2 

Part a 

The geometric transformation laws between the two inertial systems are 

x1 = x - Vt, x' x2, x = x3, t' = t (a) 

The inverse transformation laws are 

1 = x' + Vt', x 2 x=x, x 3 = x t t' (b) 

The transformation of the magnetic field when there is no electric field 

present in the laboratory faame is


P'= W (c) 

Hence the time rate of change of the magnetic field seen by the moving


observer is 

aB' =3B a B ax + 3B 2 + B )x a3B at


1 2 3

(d) 
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PROBLEM 6.2' (Continued)


From (b) we learn that 

3x2

atx' V, 

ax1
2 0, 

ax
t 3 = 0,I, 

at 
= 1 (e) 

While from the given field we learn that


aB . kB cos kx aB aB 
= 

aB
B 0 (f)

ax kBoo l -ax2 x 3 tt C 

Combining these results


aB' aB aB 
B' B, = V• = VVkB cos kx1 (g)at, t,' o 1 

which is just the convective derivative of B. 
Part b 

Now (b) becomes 

S = x' x2 2 x + Vt, x 3 = x;, t = t' (h)' 

When these equations are used with (d) we learn that


aB' S=aB , = V aB + aBt = 0 (i)
at, Tt ax2 at 

aB aB 
because both and - are naught. The convective derivative is zero. 

x2 at 

PROBLEM 6.3 

Part a


The quasistatic magnetic field transformation is


B' = B (a) 

The geometric transformation laws are 

x = x' + Vt' y', , Z z', t = t' (b) 

This means that 

' = E(t,x) = B(t', x' + Vt') = iyoB cos (wt' - k(x' + Vt')) 

= i B cos[(w - kV)t' - kx'] (c)
yo 

From (c) it is possible to conclude that 

w' = w - kV (d) 

Part b 

If w' = 0 the wave will appear stationary in time, although it will 

still have a spacial distribution; it will not appear to move. 
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PROBLEM 6.3 (Continued)


w' = 0 = w - kV; V = w/k = v (e)


The observer must move at the phase velocity v to make the wave appear


stationary.


PROBLEM 6.4


These three laws were determined in an inertial frame of reference, and


since there is no a priori reason to prefer one inertial frame more than


another, they should have the same form in the primed inertial frame.


We start with the geometric laws which relate the coordinates of the


two frames


r' r - v t, t = t', r = r' + v t' (a) 

We recall from Chapter 6 that as a consequence of (a) and the definitions of the 

operators 

t =-t'- r a'' t +tr 

In an inertial frame of reference moving with the velocity vr we expect the equation


to take the same form as in the fixed frame. Thus,


-v'

p'iat', + p'(v'*V')v' + V'p' = 0 (c) 

-' + V'*p'v' = 0 (d)at'

p', p,'(p) (e)


However, from (b) these become


'a + p'(v'+vr )+Vp' = 0 (f) 

+ V.p' (v'+v) = 0 (g) 

p' = p'(p') (h) 

where we have used the fact that v *Vp'=V*(v p'). Comparison of (1)-(3) with (f)-(h) 
shows that a self consistent transformation rthat leaves the equations invariant in 

form is 
p' = P; p' = p; vt - v - r 
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PROBLEM 6.5


Part a


p'(r',t') P=(r,t) = p (1- -)=- o(1- C(a) 

J' = p'v' = 0 (b) 

Where we have chosen v =v i so that 
r oz 

v' v - v = 0 (c) 

Since there are no currents, there is only an electric field in the primed


frame


r r'2
E'= (po/o - )r (d) 

H O, B' = • •' = 0 (e) 

Part b


p(r,t) = p(1- ) (f) 

This charge distribution generates an electric field


2
r ­
(P/ r 3air (g)


In the stationary frame there is an electric current


S= pV = po(1-
r
)voiz 

-
(h) 

This current generates a magnetic field 

2 ir r
H= oVo( --a)io (i) 

Part c


5-= 5' - P'v = po(l---)Voi (j)

Pvr o a oz


E= '-vrxB' = E' = (po/Eo - 3 ir (k) 

SH'+ V xD r' r'2


r = oo 3a lie (1)


If we include the geometric transformation r' = r,(j), (k), and (1)


become (h), (g), and (i) of part (b) which we derived without using trans­


formation laws. The above equations apply for r<a. Similar reasoning gives


the fields in each frame for r>a.
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PROBLEM 6.6


Part a


In the frame rotating with the cylinder


E'(r') = -, I (a)r r 

H' = 0, B' = u•H' = O (b)


But then since r' = r, Vr(r) = rwi


E=' - v x ' = 2'=-i (c)

r r .r 

V = f Ed = b dr = K In(b/a) (d) 
a 

a 

V 1 V 1 (e) 
ln(b/a) r r In(b/a) r' r 

The surface charge density is then


- = o 1 (f)a' = i *8 E' = - = a 
a r o In(b/a) a a 

SE V 
a'= -i *E E' = - (g)
b r o In(b/a) b 

Part b


3 = J' + Vy p' (h) 

But in this problem we have only surface currents and charges


= '+ v ' =v a' (i)
r r 

awe V ) WE V 
O 0 

K(a) 1a iBe e (In(b/a) In(b/a) 

bwE V E V 
K(b) =-

b In(b/a) 6 In(b/a) 
i 
B 

(k) 

Part c

WE V


S(1)0 
In(b/a) z ( 

Part d


S=' + v x D v x D' (m)r r 

E V -+(n
Ox 1 
r'w(1n(bla) r x ir) H = 6)(i (n) 
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PROBLEM 6.6 (Continued)


we V

(


in(b/a) iz 


This result checks with the calculation of part (c).


PROBLEM 6.7


Part a


The equation of the top surface is


f(x,y,t) = y - a sin(wt) cos(kx) + d =0 (a)


The normal to this surface is then


Vf 

(b)n = v- ak sin(wt)sin(kx)ix + iy 
(b)


Applying the boundary condition n*4 = 0 at each surface and keeping only linear


terms, we learn that


A 
h (x,d,t) = -ak sin(wt)sin(kx) (c) 

h (x,O,t) = 0 (d) 

We look for a solution for h that satisfies 

V x =, V*h = 0 (e) 

Let h = V V22, = 0 (f) 

Now we must make an intelligent guess for a Laplacian * using the 

periodicity of the problem and the boundary condition hy •l/ay = 0 at 

y = 0. Try 

A cosh(ky)sin(kx)sin(wt) (g) 

h = A sin(wt)[cos(kx)cosh(ky)i + sin(kx)sinh(ky) y] (h) 

Equation (c) then requires the constant A to be 

-ak A 
sinh(kd)0od 

Part b


VE - E (j)
S •x ( ~-)-iy(---z)= (-) 

= p0tA cos(wt)[cos(kx)cosh(ky)ixx + 
sin(kx)sinh(ky)iy]y (k) 

o 
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PROBLEM 6.7 (Continued)


-_ A

E = - wU cos(wt)[cos(kx)sinh(ky)]i

0 K


Now we check the boundary conditions. Because v(y=O) = 0 

nx E = (n-v)B = 0 (y=0) 

But E(y=O) = 0, so (m) is satisfied. 

If a particle is on the top surface, its coordinates x,y,t must satisfy 

(a). It follows that 

Df 3fD• = - + v*V f = 0 

Vf 
Since n = -Fwe have that


-1 af

(n.v) = i1 t awcos(wt)cos(kx) 

Now we can check the boundary condition at the top surface


-- A­nxiE f - o 
o 

cos(wt)cos(kx)sinh(kd)[i 
x 

-ak sin(wt)sin(kx)i 
y 

] 

(n.v)B = awcos(wt)cos(kx) inh(kd) Ai +ak x 

poA sin(wt)sin(kx)sinh(kd)i ] 

Comparing (p) and (q) we see that the boundary condition is satisfied at the top 

surface. 

PROBLEM 6.8


Part a


Since the plug is perfectly 

conducting we expect that the current 

I will return as a surface current on 

the left side of the plug. Also E', H' 

will be zero in the plug and the trans- I, Ntformation laws imply that E,H will then


also be zero.


Using ampere's law


-I 
2 ir 
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PROBLEM 6.8 (Continued)


Also we know that


V*E = 0, Vx E - 0 0 < z < 5 (b) 

We choose a simple Laplacian E field consistent with the perfectly conduct­


ing boundary conditions


E =- i (c)r r 

K can be evaluated from


E"ddi = dt da (d) 

C

S 

If we use the deforming contour shown above which has a fixed left leg at z = z


and a moving right leg in the conductor. The notation E" means the electric


field measured in a frame of reference which is stationary with respect to the


local element of the deforming contour. Here


E"(z) = E(z), E"(C+A) = E'(C+A) = 0 (e) 

JE"*d = - E(z,r)dr = -K In(b/a) (f) 

The contour contains a flux


JB-da = (E-z) %oHedr = - V I• ln(b/a)(E-z) (g) 

S 
So that


-K n(b/a) a = + n(b/a) d-- (h)
-K = dtIn(b/a) dt 

= 
-
Since v 

'dt


vI


2w r r 

0 <z


Part b 

The voltage across the line at z = 0 is 

b vpo0 I 
V = - Erdr = ln(b/a) (k) 

a 
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PROBLEM 6.8 (Continued)


vi
o


I(R + o In(b/a)) = V (1)2o 

V 
I = o (m)


vi


R + 27r In(b/a)


V 2wR +1 (n) 

vp ln(b/a)° 

_V S0 < z < 

R + 2 n(b/a) 

H: (o) 

Vo 1<z 

f 
i 0 < z < 

vy2R r rV11V+ o+(inb/a) rr 
E= (p)


0 <
<z


Part c 

Since E = 0 to the right of the plug the voltmeter reads zero. The terminal 

voltage V is not zero because of the net change of magnetic flux in the loop 

connecting these two voltage points.


Part d


Using the results of part (b)


SVI= In(b/a) i 1 V2 
= 
Pin 27r 0 0 

Rn + lIn(b/a) 

Tr 

dWm H2


d= v fa H (r) 21Tr dr 

R + V n(b/a) 
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PROBLEM 6.8 (Continued) 

There is a net electrical force on the block, the mechanical system that keeps 

the block traveling at constant velocity receives power at the rate 

1 V1o In(b/a) 1 2 2--	 V
2 27 [ v O In(b/a) o 

2w 

from the electrical system.


Part e 
0H(r,I)x dr U0 

L(x) = I d= IT n (b/a)x 

e awlm W 1 2 
fe w •x ;W' =2 L(x)i 

fe 1 3L 2 1 o In(bla)i 2 

f=fi T 2- In(b/a)T
2 3x 2 2 U 

The power converted from electrical to mechanical is then 

v V 2 
f' = f v In(b/a) [ ] 

e dt e 2 2w v o 
R + o In(b/a) 

as predicted in Part (d).


PROBLEM 6.9


The surface current circulating in the system must remain


B

K = (a)


o


Hence 	the electric field in the finitely conducting plate is


B 
E' 	 o (b) 

oOs 

But then 

E= E' - V x (c) 

= B ( - v) 
os 

v must be chosen so that E = 0 to comply with the shorted end, hence 

v -	 (d)

os 
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PROBLEM 6.10


Part a 

Ignoring the effect of the induced field we must conclude that 

= 0 (a) 

everywhere in the stationary frame. But then 

E' =E+ V xB= xB (b) 

Since the platejis conducting 

J' = J aV x (c) 

The force on the plate is then 

F = 3 x B dv = DWd(oV x B)x B (d) 

F = - DWd av B2 (e)

x o 

Part b 

M -v + (DWdoB )v = 0 (f)dt o


DWdoB2 t

o


M 
v = v e (g) 

Part c 

The additional induced field must be small. From (e) 

J' - OB v (h) 
oo


Hence K' = oB dv (i)

o o


The induced field then has a magnitude


K '

B' o 

-- =Iadv 1 ()i)<<

o o


ad << 1 (k) 
mustItbe0thinorplate0poorly conducting one.a
avery 


It must be a very thin plate or a poorly conducting one.




-- 
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PROBLEM 6.11


Part a

i


The condition - << H means that the field 
W o 

induced by the current can be ignored. Then the K(I H+ 

magnetic field in the stationary frame is


H = -H i 	 everywhere outside the perfect

conductors


The surface currents on the sliding conductor are such that


K1 + K2 = i/W 

The force on 	the conductor is then


[(- +) x B W

F = x B dv = [(K1 + K2 )i x Bi ]WD1 2 yoz 

= p H di i 

Part b


The circuit equation is


dX

Ri +d- = V

dt o

dX
 H dv

dt oo 

Since F = M dv
dt 

MR dv 
(---H d-)- + 	(o H d)v = V 

00 

(o H d) 
V 	 t 
o MR 

v = (1 - e )u_ (t) 
oo


PROBLEM 6.12


Part a


We assume the simple magnetic field


i 0 < x < x 

0 x< x1


A(x) = fE*a 	= i 

Part b 

L(x) = X(x,) = 
i D 
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PROBLEM 6.12 (Continued) 

Since the system is linear 

1 2 1lo1Wx 2
W'(i,x) 1 L(x)i2 1 i


f = Wo i 
ex 2 D 

Part d


The mechanical equation is


M 
dt 2 +B i

dt 2 D 

The electrical circuit, equation is


dX d 0WX 
~ (-5-- i) = V dtdt o 

Part e 

From (f) we learn that


dx o 2

i = const

dt 2BD 

while from (g)we learn that 

PWi dx 
= V

D dt o


Solving these two simultaneously 

[DV2 

dt 2 oWBEJ0

Part f 

From (e)

2BD dx D 2/3 1/3 1/3 

= (ý (2B) V 
w dt 0o 

Part g


As in part (a)


i - i(t)i 3 O<X <X3 1 

x < x 

Part h 

The surface current K is 
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PROBLEM 6.12 (Continued)


K= i(t) (m)D 12 

The force on the short is


S dv = DW ix ( 0 2 (n)f3x 

poW 2 2 

2120 01(t)'l 

Part i 
xdVx E (o) 

-7ýx - D dt 131 5t 

_o di _ 

E2 = [D- x A + C]i (P) 

=o di V(t)I 
D dt W 3 

Part i 

Choosing a contour with the right leg in the moving short, the left leg


fixed at xl = 0' 

a*d dt B*da (q) 

C S 
Since E' = 0 in the short and we are only considering quasistatic fields 

H dx 
'*dt = V(t) W x o o2 Wd H (r)

oxat dt oo 
P Wx 

= d ( i(t)) (s) 

Part k 

nx (Eb) = V b (t) 

Here 

l n dt D 3 

= 
b 

.o x 

D 
di 
dt 

V(t) 
W 

dx 
dt 

oo 
D i)i2 

)
(v) 

dxW dx o 
dt D = 0D 

Part 1 

Equations (n) and (e) are identical. Equations (s) and (g) are 

identical if V(t) = V . Since we used (e) and (g) to solve the first part 
o 

we would get the same answer using (n) and (s) in the second part. 
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PROBLEM 6.12 (Continued)


Part m

di


Sinced= 0,
dt 

V(t) 4. VoE2(x) = i- = - t- iy (x) 

PROBLEM 6.13


Part a


K 2 Te() + T2( ) (a) 
dt 

Part b

ii oHio


1Ir - 001H 1 
1 D2r ;1 J1 D2aR e (b) 

Similarly

S oHoi 2 * 

F 0 0 i (c)

2 D2R (c)


Part c


T = [f(r xf)dv]z = oHo(R2-Rl)il (d)


Te oHo(R2-R1)i2 (e)


Part d


1 = E1 (R2 -R 1); V2 = E2 (R2 -RI) ( 

Part e


= = =
1 J GE H (E1+iB) = (EI+RUoHo -) (g) 

E 
1 

-ii 
-2aDR 0Ho 

d 
dt 

(h) 

V a 2a R 1 - pHR(R -R1 ) -- (i) 

2 

1R2 - R 

a 2aRD 2- HR(R 2-R 1) dt 

Part f 

2KoHo(R
dt 

2-R1 )i0 u-l(t) (k) 

v2 (t) = 

K(t)= -(R2-R1) 0 
t2 

2R 
(poHo(R2R1))27200 2 11m) 

u-(t) 

t u-(t) (t) 

(1) 

(m) 
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PROBLEM 6.13 (Continued)


1 (R2-R1) 2R 
v (t) = [ 2RD + ( H (R2-R ) K t]ioU- (t)

1 a 2aRD 0oo 2 1 K 0 -1 

Part g 2 
K

2 
- oHo (R 2-R 1 )i 1

dtdt2 

SoHo(R2-R1)O2aRD Hd 
SR2R1) (R2-R 1) o 

d2 d2 + KI dt K2 l(t) 
dt2 2dt 


K1 = [( HoR)2 2aD(R2-R )a]/K 

p H 2aDR Y 

2 K 

Find the particular solution


-JK2 o jt]

P (, t) = R 2 e 

K2 o K 
-= 2o sin(wt+tan (t) 

K+w 

B -Kt 
(t) = A -K1e + p(w,t)


We must choose A and B so that


(o0) = 0 (0) = 0 

K2 K2m 
A =- v B = v 

KIW o (K2 + 2 ) 
1 (K~1 + 
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PROBLEM 6.13(Continued)


Wct)~


Part h


The secondary terminals are constrained so that v2=-i2R2. Thus, (j) becomes


~ dt R3 i ; R = 1 (R2-RI) =R + RD K pH (R -Rl) (w)
dt RK4 2 3 0 2 RD 4 2 1 

Then, it follows from (a), (d) and (e) that 

di RK2 K2 Ri
2 4 4 o+ i cos wt 

dt KR3 2 KR3


from which it follows that 

ji21 S K2RKR4 R I 
0 RK 2 22 

R3 KR
3 

PROBLEM 6.14 

Part a 

The electric field in the moving laminations is 

J' J i * 
E' 

a a 
. 

OA i z (a) 

The electric field in the stationary frame is 

i ­
E = E'-VxB (- + rwB )i (b) 

1 Ni CA y z 

B (c) 
y S 

2D o12Dz•N 
V = (A - -)i (d) 
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PROBLEM 6.14 (Continued)


Now we have the V-i characteristic of the device. The device is in series with an


inductance and a load resistor Rt=RL+Rint.


2D p2DrN jN2 aD 
[R + _Y o ]i + d 0 (e)
t uA S S dt 

Part b


Let 2 2D ON 2aDrNw 


R1 = Rt +AaA S
S 

, L S (f) 

1 = I e 
~ 1/L) t 

(g) 

= 
Pd i/ - [e t 

If

2D 2DjorNw 

R = R + 2D o < 0 (h) 

the power delivered is unbounded as t 4 o. 

Part c


As the current becomes large, the electrical nonlinearity of the magnetic


circuit will limit the exponential growth and determine a level of stable


steady state operation (see Fig. 6.4.12).


PROBLEM 6.15


After the switch is closed, the armature circuit equation is#


diL i (a)

(RL + Ra)i L + La - = GOi (a) 

Since Ghif is a constant and iL(0) = 0 we can solve for the load current and 

shaft torque 

(RL+R a) 

Gif L

iL(t) = (R+Ra) (l-e )u_(t) (b) 

Te(t) = iL(t) Gif

(RL+Ra)

2 , - t 
(R+Rai)= (l-e a )u_(t) (c)
(RL+R ) 1 

L 
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PROBLEM 6.15 (Continued)


From the data given


T = La/RL+Ra= 2.5 x 10 - 3 sec (d) 

Gef 
iL = R+R 628 amps (e) 
max RL+Ra 

T (Gif) 1695 newton-meters (f)
max 
 RL+Ra


£ -j 

428­

-1~ - t 

1~7 cl~o·, - ~) 

/67s~ 

PROBLEM 6.16


Part a


With S1 closed the equation of the field circuit is

di


Rfif + Lf dt Vf (a)


Since if(0) = 0 R 

f f

if(t) =RP (1-e )u_1(t) (b)


Since the armature circuit is open

Rf 

SVf C - f t 

a Gif R (1-e )u-1(t) (c) 
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PROBLEM 6.16 (Continued)


From the given data


T = Lf/Rf = 0.4 sec 

Vf G6 
V = = 254 volts 
a R
max f 

t 
o. 4-	 . 

Part b


Since there is no coupling of the armature circuit to the field circuit


if is 	still given by (b).


Because S2 is closed, the armature circuit equation is


dVL 

(RL+Ra)VL + La - - = RLG f 	 (d)


Since the field current rises with a time constant 

T = 0.4 sec (e) 

while 	the time constant of the armature circuit is


T = La/RL+Ra = 0.0025 sec 	 (f) 

we will only need the particular solution for VL(t)

R 

RG f t 
RL G RL Vf Lf 

VL(t) = RL+Ra i = ( a)G (1-e )ul(t) (g) 

VL 	 = RL (j-)Vf = 242 volts (h) 
max L a f


4?_

1!l~


fY 
0.4 sec 
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PROBLEM 6.17


The equation of motion of the shaft is


T 
Jr + o = T + T (t) (a) 

r dt W o e 
o 

If Te(t) is thought of as a driving term, the response time of the mechanical 

circuit is 
J 
ro


T = = 0.0785 sec (b)
T 

o 

In Probs. 6.15 to 6.16 we have already calculated the armature circuit time


constant to be 
L 

T • a -=2.5 x 10 -3 sec (c)
R +R s
Ra+R L 

We conclude that therise time of the armature circuit may be neglected, this is


equivalent to ignoring the armature inductance. The circuit equation for the


armature is then 

(Ra + RL)iL = Gwif (d) 

Then -- (Gif)2 

T = ii = (e)
Te f-Gif = RL (e)L Ra + 

Plugging into (a)


de =J d+ Kw T (f)
r dt o 

Here 
T (Gi )2 V 

K (-R - ) ; i = f (g)
W R +R f R 

Using the initial condition that w(0) = wo 
T T0 /J) 

w(t) + (w - -)e t > 0 (h)
K o K 

From which we can calculate the net torque on the shaft as 

T= Jrdt = (T -KW )e u (t) (i)r dt o o 1 

and the armature current iL(t) 

Gi 

iL(t) = (R l)(t) t >0 (j) 
a L* 



FIELDS' AND MOVING MEDIA 

PROBLEM 6.17 (Continued) 

From the given data 
T 

w = = 119.0 rad/sec = 1133 RPM 
final K 

Tma x = (To-Kw) 1890 newton-m 

Gi 
i w0 700 amps 

Gi 
it = (R ) fna 793 amps 

L R +R, final 
max a L 

K = 134.5 newton-meters, T = Jr/K = 0.09 sec 

• 1 

(k) 

(1) 

(m) 

(n) 

(o) 

1i/33 
/Ood 

,÷ 

i8 O 

713 
700 



- -

FIELDS AND MOVING MEDIA 

PROBLEM 6.18 

Part a 

Let the coulomb torque be C, then the equation of motion is


d0

dt 

Since w(0) = wt 

w(t) - 0 (1- t) 0 < t <O/C) to 

Part b 

Now the equation of motion is 

dw
J -+ Bw = 0
dt


w(t) = 0 e•) 
-. \


wCe


Part c 

Let C = Bwo, the equation of motion is now 

J 
dw
d
dt 

+ BLc= -Bw 
o 
B 

-- 

-JE{(t)-w + 2w e0o o 

t 

< t < Ji 
B 

2 



FIELDS AND MOVING MEDIA


PROBLEM 6.18 (Continued)


( Ct ) 

'r = z/0 

PROBLEM 6.19


Part a


The armature circuit equation is


diL 
Ri L + La- = Gwif - Va U- (t)aL a dt f a -1 

Differentiating

2

dL diL dw


La - + R -d = Gi Vu (t)
a dt2 a dt f dt ao


The mechanical equation of motion is


dw

J -4-= - Gi i r dt L f 

Thus, (b) becomes 2 2 

L diL di (Gif)

a- +R -+-L---- i -Vu(t)


2 a dt J L ao

dt


Initial conditions are


VdiL + a 
iLfrom(d) = , (0 La

and it follows from (d) that 
a -at 

iL(t) = (- e-esinBt)ul(t) 
a 

where R 
a 7.5/sec 

a 

(Gif) Ra 
8 ('-L) = 19.9 rad/sec 

r a a 



FIELDS AND MOVING MEDIA


PROBLEM 6.19 (Continued) 

a 
LAB - 1160 amps 

V 
w(t) = 

a 
-Gi Se tsin t + (e-at cos 8t-l)] 

f 

V a 
Gi = 153.3 rad/sec I (k) 

IN


Part b 

Now we replace Ra by R+RL in part (a). Because of the additional


damping


Ir ~r\~ 

iL(t) 2L-Y 
a 

(e )u1(t) 

where R +R 

= a L
2L 

75/sec 
a 

R + RL2 (Gi ) 
y = a ) = 10.6/sec.

2L Jr La




FIELDS AND MOVING MEDIA


PROBLEM 6.19 (Continued)


2
a Gif 1 -(a-Y)t 1 -(a+y)t
W(t) = [2Ly e + + +e ] 

a r c-Y o) 

ii 
I 

AL. 

. ir" 
(A 1.t/


vcL 

r 

PROBLEM 6.20


Part a 

The armature circuit equation is


v = R i + GIfw a aa f


The equation of motion is


dw

J i = GI i


dt fa


Which may be integrated to yield


w(t) G=J i(t)
wt J 'a 



FIELDS AND MOVING MEDIA


PROBLEM 6.20 (Continued)


Combining (c) with (a) 2 

S=Rai + ia(t) (d)
a asa Jr


We recognize that

J


C = -(e)

(GI ) 2 

Part b


J

C = (0.5) 0.22 farads


(GIf)2 (1.5)2(1)


PROBLEM 6.21


According to (6.4.30) the torque of electromagnetic origin is


Te = Gi i

fa 

For operation on a-c, maximum torque is produced when if and is are in phase, 

a situation assured for all loading conditions by a series connection of field 

and armature. Parallel operation, on the other hand, will yield a phase relation 

between if and is that varies with loading. This gives reduced performance unless 

phase connecting means are employed. This is so troublesome and expensive that 

the series connection is used almost exclusively. 

PROBLEM 6.22 

From (6.4.50) et. seq. the homopolar machine, viewed from the disk terminals


in the steady state, has the volt ampere relation


v Ri + Gwif 

iln(b/a) T
Ra 2Oad


For definition of v and i


shown to the right and with the 

interconnection with the coil


snhown in rig. or.L2


1 Nia 
B ­

o 2d 

Then from (6.4.52)


BoNi 
o 22 2 o a 2 2

Gwi (b -a ) = a (b -a)
f 4d




FIELDS AND MOVING MEDIA


PROBLEM 6.22 (Continued)


Substitution of this into the voltage equation yields for steady state (because


the coil resistance is zero). 
• Ni 

0 = Ri + (b -a2 ) 

asa 4d 

for self-excitation with i -a 0 0 

W1oN 2 2

(b -a ) = -R


Because all terms on the left are positive except for w, we specify w < 0 

(it rotates in the direction opposite to that shown). With this prov4sion'ithe 

number of turns must be 

4dR 4dln(b/a) 

M1lo (b2-a2) -2rodwjI p(b 2-a 2) 

N = 	 21n(b/a)


oralowj(b 2 -a 2 )


PROBLEM 6.23 

Part a 

Denoting the left disk and magnet as 1 and the right one as 2, the flux 

densities defined as positive upward are


BoN 

B2 - (i+i 2) 

Adding up voltage drops around the loop carrying current i we have:. M


dB dB QB	 ­

2 2dB 2 dBil+ ilRa 2 _B2a 	 ,1 

In( 	 )
where R = 

a 2nah


Part b


Substitution of the expression for B1 and B2 into this voltage expression 

and simplification yield 

di 
L d + il(R+Ra) - Gil + Gi 2 = 0 

162




FIELDS AND MOVING MEDIA


PROBLEM 6.23 (Continued)


where

2 2 2N2na


- o N (b -a ) 

2Z 

The equation for the circuit carrying current 12 can he written similarly as 

di 

L ti +2(R (+Ra)-Gi2-GOil = 0 

These are linear differential equations with constant coefficients, hence, assume


i Ilest 2 I2est


Then


[Ls + RL+Ra-GG]I
1 + GOI 2 = 0


[Ls + RL+R -G]lI2 - GoI1 = 0 

EliminatCon of I1 yields 

[Ls + RL+ R a- GSJ]2 +GS] 0

+ GO I = 0 

If 12 0 0 as it must be if we are to supply current to the load resistances,


then


[LI + RL+Ra-G]C 2 + (Ga)2 = 0 

For steady-state sinusoidal operation a must be purely imaginary. This requires 

RL + R - G = 0 

or 2 2 I n(W4e--U N(b -a) RL + 2rh 
G = 21G =


This is the condition required.


Part c 

-When the condition of (b) is satisfied

-


GSG

e+J + +JL b2 

b2

PN(b -a )j• a -)
2 2 22 (-2 -1)Q 

29oN2N2 2 2*2N
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FIELDS AND MOVING MEDIA


PROBLEM 6.23 (Continued)


Thus the system will operate in the sinusoidal steady-state with amplitudes


determined by initial conditions. With the condition of part (b) satisfied the


voltage equations show that


1 1fi 
2


and the currents form a balanced two-phase set.
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