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FIELDS AND MOVING MEDIA

PROBLEM 6.1
Part a

From Fig. 6P.1 we see the geometric relations
r'=1r, 08 =0-Qt, 2'=32,t'=t¢t (a)
There is also a set of back transformations
r=1', 0=06'+Qt'", z=2', t=t' (b)

Part b
Using the chain rule for partial derivatives

3 ) or 3 36 Y, 9z ) at
@ Er+dh Eo+dhZo+agH gty ©

From (b) we learn that

ar ) 9z 3t _

gt =0 = o =0 30 =1 (@
Hence,

W W, g

3t' = 3t T 30 (e)
We note that the remaining partial derivatives of Y are

LY VR VI R R -

dr'  dr * 236' 236 * 3z' 0z
PROBLEM 6.2
Part a

The geometric transformation laws between the two inertial systems are

X] = % vt, Xy = Xyy Xy = Xg, t t (a)

The inverse transformation laws are

» t=t' (b)

= ! v = 5! = w!
x1 x1 + vt', X, Xy x3 x3

The transformation of the magnetic field when there is no electric field
present in the laboratory faame is

B' = B (c)
Hence the time rate of change of the magnetic field seen by the moving

observer is

x
3B' _ 9B 3B 3 ,,°%2 3B 3 3B, ot
aer " ar T Gxp et Gy GE0 T Gy G G Ge)

(d)
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FIELDS AND MOVING MEDIA

PROBLEM 6.2 (Continued)

From (b) we learn that

Ix ox ax
1 2 3 _ ot _
Y v, at' o, 3c' o, at! 1 (e)
While from the given field we learn that
a8 )] JB 3B
3x; Mo % MX1 g T, "6 7 O ©
1 2 3
Combining these results
9B' _ 3B 3B
e~ 3¢ =V PR VkB cos kx1 (g)
which is just the convective derivative of B.
Part b
Now (b) becomes
x) = xi » Xy = xé + Vt, Xy = xs, t=t' (h)

When these equations are used with (d) we learn that

9B' _ 9B 9B 3B

ErA TR A T W
3B 9B
because both Ix and 3¢ are naught. The convective derivative is zero.
2
PROBLEM 6.3
Part a

The quasistatic magnetic field transformation 1is

B' = B (a)

The geometric transformation laws are

x=x"+Vt',y=y',z=2"', t = t' (b)
This means that
B' = B(t,x) = B(t', x' + Vt') = IyBo cos (wt' - k(x' + vt"))
= ino cos[(w - kV)t' - kx'] (c)
From (c) it is possible to conclude that

w' = w - kV (d)

Part b
If w' = 0 the wave will appear stationary in time, although it will
still have a spacial distribution; it will not appear to move.
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FIELDS AND MOVING MEDIA

PROBLEM 6.3 (Continued)
w =0=w-%kV; V=wks= vp » (e)

The observer must move at the phase velocity vp to make the wave appear

stationary.

PROBLEM 6.4

These three laws were determined in an inertial frame of reference, and
since there is no a priori reason to prefer one inertial frame more than
another, they should have the same form in the primed inertial frame.

We start with the geometric laws which relate the coordinates of the
two frames

rer-ve, t=t, T+t (a)

We recall from Chapter 6 that as a consequence of (a) and the definitions of the

operators

d 3 - 3 ) -
= ' Endil— - . ' — BN ——— [ 2

Ve, e -3 Ve Vo de Tt Ve v ®)

In an fpnertial frame of reference moving with the velocity ;r we expect the equation

to take the same form as in the fixed frame. Thus,

, v

) p' Hpr +O(VVIV +V'p' =0 (c)
%%: +V'ep'v' =0 (d)
p' =p'(p") (e)

However, from (b) these become
0! %%' + ' (347 FURHT )47p' = 0 (£)
304 vep' 545 )) = 0 (e)
p' =p'(p") (h)

where we have used the fact that v _*Vp's=Ve(v p'). Comparison of (1)-(3) with (£)-(h)
shows that a self consistent transFormation “that leaves the equations invariant in

form is

p'=p;p' =p; V' =V -V
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FIELDS AND MOVING MEDIA

PROBLEM 6.5

Part a
eELE) =0 = p (- D= p -5 (a)

J'=p'v' =0 (b)
Where we have chosen -‘;r = voiz so that

5'=;-\_rr=0 (c)

Since there are no currents, there is only an electric field in the primed

frame
B = (o fe)E - 9T @
=0, 5 = u ' =0 (e)
Part b | |
plr,e) = p (1= D) €3

This charge distribution generates an electric field

2
E= (p,/edz - 31

. (g)

In the stationary frame there is an electric current

J=pvs= a- Hv i (h)

o . Po a’ o'z

This current generates a magnetic field

- r ‘r - -

H = povo(-Z- - ?a-) 1 C
Part c ) )

- _" .- r' - .

J=J3"-p'v. = p (A-J)v i 1

5 BT LR e r' r'z I

E=E —erB = E' = (DO/EAXE_.— 3;—)ir (k)

T oo I r' f'z g

H=H + vrxD = vopo(-z- .- 3T)ie (1)

If we include the geometric transformation r' = r,(j), (k), and (1)
become (h), (g), and (1) of part (b) which we derived without using trans-
formation laws. The above equations apply for r<a. Similar reasoning gives

the fields in each frame for r>a.
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FIELDS AND MOVING MEDIA

PROBLEM 6.6

Part a

But then since r' = r, ;r(r) = rwi

In the frame rotating with the cylinder

0
E=f -V xB =EF =57
r r.r
b _ b K
Vs E+d? = < dr = K In(b/a)
a a
FoV 1% _F oY 17
e /o r " " Wl £
The surface charge density is then
eV
'=-’o -'=._2____lg
Oa 1r eoE In(b/a) a Ua
Eov 1

> -
'= - L] A IR e  e—— 3
ob 1r €oE In(b/a) b 05

Part b

But in

T = 1 hod '
J J'" + vr o}
this problem we have only surface currents and charges
K=K'"+v_ o'=v_ o'
r r
_ awsov - weov >
X(a) = i, = i
a In(b/a) 0 In(b/a) 6
_ bue V > we Vo o
K(b)=——°———-i=——i
b In(b/a) 6 In(b/a) @

Part ¢

weV
=-—92 4
In(b/a) "z

Part d

H=H+v_xD =v_xD'
r r

- , Eov 1.,* ->
H=r w(m;,)(ie X ir)
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FIELDS AND MOVING MEDIA

PROBLEM 6.6 (Continued)
w€°V ->
~ 1n(b/a) iz (0)

H=

This result checks with the calculation of part (c).

PROBLEM 6.7
Part a

The equation of the top surface is

f(x,y,t) =y - a sin(uwt) cos(kx) + d =0 (a)

The normal to this surface is then

= _ _Vf 4 - oy

n TVET n ak sin(wt)sin(kx)ix + 1y (b)
Applying the boundary condition n*B = 0 at each surface and keeping only linear
terms, we learn that

hy(x,d,t) = -ak sin(t)sin(kx) ﬁfa (c)

hy(x,o,t) =0 (d)
We look for a solution for h that satisfies

Vxh=0, Vh=0 (e)
Let i = Yy, V2 = 0 (£)

Now we must make an intelligent guess for a Laplacian ¥ using the

periodicity of the problem and the boundary condition hy = 3y/dy = 0 at
y = 0. Try
P = %-cosh(ky)sin(kx)sin(wt) (g)

- - -
h=A sin(wt)[cos(kx)cosh(ky)ix + sin(kx)sinh(ky)iy] (h)
Equation (c) then requires the constant A to be

-ak A

A = STah(kdu_d (1)
Part b
= =+ QE . 7 2E 3B
VxE-= ix(gz)—iy(g};zﬁ’ " 3¢ &)
%% = oA cos(wt)[cos(kx)cosh(ky)ix + sin(kx)sinh(ky)iy] (k)
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FIELDS AND MOVING MEDIA

PROBLEM 6.7 (Continued)

E=- wuo -{} cos(wt)[c:os(kx)sinh(ky)]Iz (1)

Now we check the boundary conditions. Because \-r(y=0) =0

nxE= (nv)B=0 (§=0) (m)

But E(y=0) = 0, so (m) is satisfied.
If a particle is on the top surface, its coordinates x,y,t must satisfy

(a). It follows that

Df—ﬁ -. =
T.)-E—at+va 0 (n)

- Ve
Since n = W we have that

(n*v) = -[%- g—: ~ awcos (wt) cos (kx) (o)

Now we can check the boundary condition at the top surface

nxE = - W f:‘- cos(wt)cos(kx)sinh(kd)[Ix—ak sin(wt)sin(kx)iy] (r)
(R*9)B = awcos (wt) cos (kx) (210kd) Al + (@)

qu sin(wt)sin(kx)sinh(kd) iy ]

Comparing (p) and (q) we see that the boundary condition is satisfied at the top

surface.
PROBLEM 6.8 X
Part a .r-- 1|
Since the plug is perfectly Ei e[.\ 1 K '
conducting we expect that the current
I will return as a surface current on %_—“Z
the left side of the plug. Also E', H'
will be zero in the plug and the trans- l @ Ka
formation laws imply that E,H will then N
also be zero. = % b
Using ampere's law
z%i i, 0<z<E
H= (a)
0 £ <2
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FIELDS AND MOVING MEDIA

PROBLEM 6.8 (Continued)

Also we know that
_ o8
) ot
We choose a simple Laplacian E field consistent with the perfectly conduct-~

VE=0, VXxE= =0 0<z<E§g (b)

ing boundary conditions

-
E=_1_ (o)

"=

K can be evaluated from

e 1 = - i— —o
{E df TS JB da (d)

S
If we use the deforming contour shown above which has a fixed left leg at z = 2z
and a moving right leg in the conductor. The notation E" means the electric
field measured in a frame of reference which is stationary with respect to the

local element of the deforming contour. Here

E"(z) = E(z), E"(£&+d) = E'(E+A) =0 (e)
b

¢E"*dl = - J E(z,r)dr = =K 1n(b/a) (£)
a

The contour contains a flux
b

- - I
[5-da = & Luoﬂedr = - 1, = Ine/a) (-2) @
S
So that
=-3 | 3T = L 48
K in®/a) = - & [ BT = +u, 5 ne/a) )
= 4§ s
Since v =49t °
vu I
= o 1
E= |-t Ir 0<z<t
)
0 £ <z
Part b
The voltage across the line at z = 0 is
b vuOI ) .
V=- Ja Erdr = 57 In(b/a) (k)
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FIELDS AND MOVING MEDIA

PROBLEM 6.8 (Continued)

W
I(R + T In(b/a)) = Vo (1)
Vo
1= vi_ (m)
R + 'ZT' In(b/a)
_ 1
V= [ 27R +1 J Yo ’ (n)
vii_ 1n(b/a)
o
A L
i e e 0czc<t
R + .:'Z‘IT— In(b/a)
iz (o)
0 £ <z
r 1 ] Vo -+
— 1 0 <z <Eg
[ZI§(+ (Inb/ayd T T
1 Yo
E= (r)
5 0 £ <z

Part ¢

Since E = 0 to the right of the plug the voltmeter reads zero. The terminal
voltage V is not zero because of the net change of magnetic flux in the loop
connecting these two voltage points.
Part d

Using the results of part (b)

R v, In(b/a) 1 o2
in 27 vuo o
R + ZT In(b/a)
dw b u
m o .2
T - J - H (r)2nr dr
a
1 [Wo In(b/a) ( 1 )2 v2]
2 2n vuo o
R + — 1n(b/a)

2%
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FIELDS AND MOVING MEDIA

PROBLEM 6.8 (Continued)

There is a net electrical force on the block, the mechanical system that keeps

the block traveling at constant velocity receives power at the rate

1 W In(b/a) r 1 .2 o2
2 2T l vu_ 1n(b/a) o
o]
R+ ]
2m

from the electrical system.

Part e
uoH(r,I)x dr uo
L(x) = [ —F =3y In (b/a)x
'
e _ _m. -1 2
f cyad Wm 5 L(x)1
u
e 193L .2 170 2
£ =3% 1 =77 ln®/a)d
The power converted from electrical to mechanical is then
2
3 uv \'j
Frodx _ =1 9o o
fe dat fe V=3 on In(b/a) [ i ]
R + T In(b/a)
as predicted in Part (d).
PROBLEM 6.9
The surface current circulating in the system must remain
B-o
K=-— (a)
Yo
Hence the electric field in the finitely conducting plate is
Bo
E'= (b)
Yo%
But then
E=FE -Vx8B (c)
1
=B ( - v)
CATCH
v must be chosen so that E = 0 to comply with the shorted end, hence
1
v = (d)
uocs

144



FIELDS AND MOVING MEDIA

PROBLEM 6.10
Part a

Ignoring the effect of the induced field we must conclude that
E=0 (a)
everywhere in the stationary frame. But then
E'=E+VxB=Vx8B (b)
Since the plate _is conducting
J'=J=0dVxB (c)

The force on the plate is then

F=Iijdv=DWd(o-\-lx§)xI_5 (d)
F = - DWd ov B2 (e)
, X o
Part b ////
e
dv 2
M d—t- + (DWdUBo)V 0 " (£)
DWdOB2 t
-
M
v=v e _ (g)
Part ¢

The additional induced field must be small. From (e)

' o~
J' = 0B v (h)
Hence K' = 0B dv 1)
o o
The induced field then has a magnitude
Kl
B' . uo _
B.TB - MY, <1 &)
o] 0
1
od << Ty . (k)
oo

It must be a very thin plate or a poorly conducting one.
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FIELDS AND MOVING MEDIA

PROBLEM 6.11

Part a f %

The condition %-<< Ho means that the field

¥
induced by the current can be ignored. Then the Ky 1%
magnetic field in the stationary frame is ‘;x
->
H = -Hoi everywhere outside the perfect (a)
conductors
The surface currents on the sliding conductor are such that
K, +K, = 1/W (b)
The force on the conductor is then
- - - -»>
F = f JxB dv = [(K1 + Kz)iy x Boiz]WD
<>
= uHdl i (e)
Part b
The circuit equation is
da
RL+ 2=V (d)
dA
i uoHOdv (e)
Since F = M dv (£)
dat
MR dv
(u 7 a g T (v =V, (g)
oo
2
(u H d)
00
Yo " Twr ot
vV=UWd (1 -e du_, (t) (h)
oo
PROBLEM 6.12
Part a
We assume the simple magnetic field
i? 0
- = < <
} D 13 xl X
H= (8)
0 x < X,
S U wx
A(x) = IB°da =5 1 (b)
Part b
H_Wx
oo = M - 2= @



FIELDS AND MOVING MEDIA

PROBLEM 6.12.(Continued)

Since the system is linear

uon

D

2 2

1

' =1 =1
Wm(i,x) =3 L(x)1i" = 5

Part ¢ 3’
m

3x

u ¥

D

2

e 1

f =

N

Part d
The mechanical equation is

2 uw
dx dx 1 "'0o ,2
" ta2zn

The electrical circuit, equation is

.d_)‘zi_(uowxi)=v
dt dt D o

Part e
' From (f) we learn that
u v
dx (]

2
it = 78D i® = const

while from (g) we learn that

uOWi dx _ v
D dt o

Solving these two simultaneously

Y3
2

ax [ X

dt 2uOWB

Part f
From (e) 2/3
’_21329_5 _ D 1/3, 1/3
1= U Wdt _(uw) (2B) Yo
o o
Part g
As in part (a)
->
-_££F)13 0 < Xy < x
i= D
(4] x < X,

Part h

The surface current K is
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(e)
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FIELDS AND MOVING MEDIA

PROBLEM 6.12 (Continued)

R=-l0 7

D 2 (m)
The force on the short is _ _
_ L _ uWH +ud
F=IJ'dev=DWKx(°1 ° 2, (n)
uw
o 2 e
Di(t)i1
Part 1
JE_ =» - U
% 2{_ _ 3B _Todi7
VEES TR ¥ D t 1 (0)
u >
- ‘0 di
E2=[D xd—t+C]i3 (r)
u
- [0 ¢ 4 _ V()
5~ *ac ~ 7w 143
Partj

Choosing a contour with the right leg in the moving short, the left leg
fixed at x, = 0

1
§iredi = - & | Beda (a)
dt
c s
Since E' = 0 in the short and we are only considering quasistatic fields
' I aHO dx
'. = == ————— ——
§E dl = v(e) = W xu_ 5>+ W GE uH (r)
U Wx
d o
T 5 1) (s)
Part k
ax B)=v B (t)
Here
u i
dx =zb o 7
n=il,v —d—t,B =—Ti3 (u)
U x HW
= _ 0 di _ V()T _ . dx o T
B= e~ w0 Cae vV )
uw ui
dx "o dx o
- E 1= (P ()
Part 1

Equations (n) and (e) are identical. Equations (s) and (g) are
identical 1f V(t) = Vo. Since we used (e) and (g) to solve the first part

we would get the same answer using (n) and (s) in the second part.
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FIELDS AND MOVING MEDIA

PROBLEM 6.12 (Continued)

Part m
di
Since it - o,
v
v(t) T o
PROBLEM 6.13
Part a
¢ & _
5 =TI + T,(0)
dt
Part b >
P S S B
1 D2ur ’* "1 1 D2aR )
Similarly
Fow - uoHoiZ I
2 D2aR 78
Part c
e - -
T1 [I(r X f)dv]z = - UOHO(RZ-Rl)i1
T = - u H (R -R )1
2 o002 1°72
Part d i
V1 = By (Ry=Ry)5 vy = By (Ry-Ry)
Part e
= ! = ' 2 E VR =
J1 J1 cEl 0(E1+VxB) c(E1+Ru H
i
=1 1 | a4
E1 o 2aDR R oHo dt
(R, - R)
I e e LA ny dU
Y1 ° 5 ZarD 1) = HHRRy-RY) G
R, - R
12 1, _ry S
V2 = T am 12 T MooR(RyRy) Gy
Part f 2
a4y _ -
K . 2 UOHO(RZ Rl)io u_l(t)
t
u H
P(t) = =« —— ZK (R R)i t u_ (t:)
wit) = WHER-RNZ2 4w ()
2 oo 271 K 0 -1
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FIELDS AND MOVING MEDIA

PROBLEM 6.13 (Continued)

(R,-R,)
vl(t) = %m_gn—l— + (uoHo(RZ_Rl)2 % ti]iou-l(t)
B
V. (¢)
R
- y(¢)
Part g dzq,
K d—tz' = - uOHO(RZ-Rl)il
u H (R,-R,)02aRD
oo 2 1 &y
®,R)) (v HuHR(Ry=Ry )]
2
v v _
d—tz' + Kl E szl(t)

K, = [(uonon)z 20D (R,~R,)0]/K

u H 2aDRT
K. =-20
2 K
Find the particular solution

AR
VY (w,t) = R,[—5——e" "]
P ¢ wz..](lju

K vo -1 Kl
= ——————  gin(wt+tan w—)u_l(t)

qu + (.l)2

B —Klt
b(t) = A +-ﬁz e + \bp(w,t)

N

=N

We must choose A and B so that

=g+ -

W) = 03¢ (@ =0

K K,w
A=‘L v B =+ 2

—— Y
Klw o (Ki + wz) o
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(o)
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(r)
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FIELDS AND MOVING MEDIA

PROBLEM 6.13(Continued)

» ¢
i)}
Part h
The secondary terminals are constrained so that v2=-12R2. Thus, (j) becomes
R3 1 (R2-R ) '
at "/, PP "Rt o 2 roat K4 T Hollo Ry~R) )
Then, it follows from (a), (d) and (e) that
di, RK> K2R4
B R R
dt KR, 2 KR
3 3
from which it follows that - \
" 2
i K,R 0
14, = 4 i
1 72 il
9 RK4 o
KRN0+ GR)
3 P
PROBLEM 6.14 «
Part a
The electric field in the moving laminations is
J' J _ i ?
' 2 e B e 5 e—
B =5 "o~ m;l; (2)
The electric field in the stationary frame is
B = PUxB = (& 4 ruB )1
~Vx 5t rw y) 2 (b)
uoNi
By =~ =3 (c)
U 2DreN
2D o
VeGr- s @
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FIELDS AND MOVING MEDIA

PROBLEM 6.14 (Continued)
Now we have the V-1 characteristic of the device. The device is in series with an

inductance and a load resistor Rt=RL+Rint'2

U _2DrN U N"aD
2D 0 0 di
[Rt +'6K - 3 wl]i + 5 a& 0 (e)
Part b '
Let 2Du_rNw u NzaD
R =R +2__9° -0 (£)
1 t oA S ’ S
R, /1)t
1=1e ! (g)
2 r
p, = 1%/ =I_°[—@1/[)tJ
d RL RL e
1f 2D 2Duoer
Ri=Re*a~- "5 <0 (h)

the power delivered is unbounded as t + <.

Part c

As the current becomes large, the electrical nonlinearity of the magnetic
circuit will limit the exponential growth and determine a level of stable
steady state operation (see Fig. 6.4.12).

PROBLEM 6.15

After the switch is closed, the armature circuit equation 1s%

diL .
(RL + Ra)iL + La T = Geif (a)

Since Géif is a constant and iL(O) = 0 we can solve for the load current and

shaft torque

(R #R )
GOt T TI t
iL(t) = W (1-e )U_l(t) ()
L a
™(t) = 1, (t) Gi
L £ (R +R))
(Gif)z 6 "~ °¢
= ——— (l-e Yu (t) (c)
(R R ) -1

Wolee Lo = -t
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FIELDS AND MOVING MEDIA

- PROBLEM 6.15 (Continued)

From the data given

- -3
T La/RL-i.-Ra = 2.5 x 10 ~ sec (d)
Go1
iL =T R 628 amps (e)
max L a
(1) %
Tmax = —izxﬁ—— * 1695 newton-meters (£)
a
Jk (’L (Okmi’i)
628t ——— - mm o m oo - - -
/
/
/
/
T £
c
AT <n0w+ ‘“‘)
/695 L - - - e
R
,
/
Z
7 ~¢
PROBLEM 6.16
Part a
With S1 closed the equation of the field circuit is
di
f
Rfif + Lf EE_ Vf (a)
Since if(O) = 0 Rf
ve  TLC
i(t) = == (1-e Ju_.(¢t) (b)
f Rf -1
Since the armature circuit is open
R
v - _f t
. vV, GO L
v, =681, = R (1-e Ju_, () ()
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FIELDS AND MOVING MEDIA

PROBLEM 6.16 (Continued)

From the given data

T=1L /Rf = 0.4 sec
v Ge
v =

amax Rf

= 254 volts

0.4 ALt

Part b
Since there is no coupling 6f the armature circuit to the field circuit
is still given by (b).
Because S2 is closed, the armature circuit equation is
dVL
(RL+Ra)VL + La T

i

o
= RLGSif (d)

Since the field current rises with a time constant

T = 0.4 sec (e)

while the time constant of the armature circuit is

T = La/RL+Ra = 0.0025 sec )
we will only need the particular solution for VL(t)
R
£
: -=t
R, GO RL v L
L f f
v, (t) = 1, = ()60 = (1-e Yu_, (t) (2
RL+R £ RL+R f 1
VL = (R +R ) ( )V = 242 volts (h)
max
242 MU -t T T === - -
7/
t%. ’
Voris 2
_ + >t
- 0.4 sec
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FIELDS AND MOVING MEDIA

PROBLEM 6.17
The equation of motion of the shaft is
dw To
Jr I +'a; w = To + Te(t) (a)

If Te(t) is thought of as a driving term, the response time of the mechanical

circuit is

J w
r o

T= = 0,0785 sec (b)

]
In Probs. 6.15 to 6.16 we have already calculated the armature circuit time

constant to be
; La -3
T = 'E—_"_-R— ~*2,5x%x 10 sec (c)
a L .
We conclude that therise time of the armature circuit may be neglectea, this is
equivalent to ignoring the armature inductance. The circuit equation for the

armature is then

(Ra + RL)iL = Gwif (d)
Then - -(Gif)zw
T =6Gi il =—o——F—7 (e)
e f'L Ra + RL
Plugging into (a)
dw
Jr T + Kw = To (£)
Here 2
To (Gif) Vf :
K= G Y = x (e)
o a L f :
Using the initial condition that w(0) = wo
T T -@(/Jl)t
=2 -9
w(t) = =+ (W - e t>0 (h)
From which we can calculate the net torque on the shaft ag
/3 ) -
dw
T=J 4" (To-Kwo)e u_l(t) ‘ 1)
and the armature current iL(t)
Gif
s (—— >
10 = Ggdu®  t20 W
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PROBLEM 6.17 (Continued)

From the given data
T

0
Weinal = K 119.0 rad/sec = 1133 RPM

T = (T -Kw_) = 1890 newton-m
max o o

Gif
i = w_ = 700 amps
Lm:ln Rzf"R‘l.. °
. Gi £
i, = (FTR) Yfina = 793 avps
max a L

K = 134.5 newton-meters, T = Jr/K = 0.09 sec

1/33'7_;_‘—;-‘—“—"————:_——— - —
/000 1 ~ )

1840
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FIELDS AND MOVING MEDIA

PROBLEM 6.18

Part a

Let the coulomb torque be C, then the equation of motion is

J % +C=0 (a)
Since w(0) = W,
w(t) = w_(1- ﬁ B 0<e<f/Ow, (b)
LA w(®)

W

ol A
.SWO/C
Part b )
Now the equation of motion is
dw
J m + Bw=20 (c)
w(t) = B/ (@
\ wlt)
- 7
Part c
let C = Bmo, the equation of motion is now
dw
J g+ Bw= -Bu, t (e)
-5 3, .}
{w(e) = - w, + 20 e 0<t<yln2 (£)
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PROBLEM 6.18 (Continued)

w(t)

We =3/8
~T /

PR I PO U
PROBLEM 6.19

Part a

The armature circuit equation is

diL
RaiL + La ac = Gwif - Va u_l(t)
Differentiating
di di
L L dw
L2 Raac = G ge ~ Vat%h(®

dt

The mechanical equation of motion 1is

dw

Jr at = - GiLif
Thus, (b) becomes 2 2
L diL diL (Gif)
a——+R —+——1_=-V u (t)
2 a dt J L ao
dt Y
Initial conditions are
di v
1,07 =0, 37 (0 = - ¢
and it follows from (d) thet a
a -0t
1L(t) (- LaB e sin Bt)u_l(t)
where Ra
o= Ef; = 7.5/sec

2 )
Gi
B = \/-(—f)— - RL?' ~ 19,9 rad/sec
J_ L 2L °
r a a
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PROBLEM 6.19 (Continued)

v
a8 .
LaB =: 1160 amps (1)

v
w(t) = - 2 [% e sin Bt + (e *tcos Bt-1)]
£

\')
—G:—f = 153.3 rad/sec (k)
ALL‘L
/’\
\\\\\\\\ i//////////’ e ———
Lw(t)
AR e
A

Part b

Now we replace Ra by Ra+RL in part (a). Because of the additional
damping

v
a -(a-y)t __~-(otY)t
1(0 = - 3y Ce - Yu_y (8) w
where R +RL
a-= —aZL—— = 75/sec (m)
a
R +R 2 (6l )2
a ) £

v =\ ¢ ST -1 = 10.6/sec. (n)
a r a
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FIELDS AND MOVING MEDIA

PROBLEM 6.19 (Continued)

va Gif e-(a—y)t + 1
2Ly J
a r

w(e) = .

1
[(Y'G)

A CL(t)

e-(a+y)t + 22x2]
=Y (o)

|

b N3
’r—
=<

<

LENe

0
oA |

PROBLEM 6.20
Part a

The armature circuit equation is

)

v =R1i +GI
a aa f

The equation of motion is

dw
J it GIfia

Which may be integrated to yield
gr
J -00

w(t) = ia(t)
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PROBLEM 6.20 (Continued)

Combining (e) with (a)

c1)? gt
v.=Ri1i + [ i (t) (d)
a Jr PR -
We recognize that
J
r
C - )2 (e)
f
Part b-
J
Cs= r . _(0.5) = 0.22 farads

©p? Wi

PROBLEM 6.21
According to (6.4.30) the torque of electromagnetic origin is

e

T =611

fa

For operation on a~-c, maximum torque is produced when 1f and ia are in phase,
a situation assured for all loading conditions by a series connection of field
and armature. Parallel operation, on the other hand, will yield a phase relation
between if and ia that varies with loading. This gives reduced performance unless
phase connecting means are employed. This is so troublesome and expensive that
the series connection is used almost exclusively.
PROBLEM 6.22

From (6.4.50) et. seq. the homopolar machine, viewed from the disk terminals

in the steady state, has the volt ampere relation

e —— e

v, = Raia + Gmif P S
q
a 2mod _1i N ‘f‘so éu
2d | Ijzzlr
For definition of v_ and 1 _{_ ‘o
a a . ;

shown to the right and with the
interconnection with the coil
shown in Fig. 6P.22

e e e e e T e

B = uoNia
0 2d
Then from (6.4.52)
wB wu Ni
o ,2 2 o a,2 2
Gmif == (b"-a") = %d (b -a")
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PROBLEM 6.22 (Continued)

Substitution of this into the voltage equation yields for steady state (because

the coll resistance is zero).
wuoNia (b2_82
4d

for self-excitation with 1 #0

0=R1 + )
a a

wu N
—2a ¢

Because all terms on the left are positive except for w, we specify w < 0

b2—a2) = ~R
a

(it rotates in the direction opposite to that shown). With this provi;;pnjthe
number of turns must be S

4dR 4diln(b/a)
N = =
|w|uo(b2—a2) -2ﬂod|w|uo(b2-a2)

21n(b/a)
nouolwl(bz-az)

PROBLEM 6.23
Part a

Denoting the left disk and magnet as 1 and the right one as 2, the flux

densities defined as positive upward are B
™
Y, N s
= - —-—— Y <
Bl (i 2) e
B Bl il
i Y v

Adding up voltage drops around the loop carrying current 11 we have: . %?

dB dB N
2 z 21 B2 2 -
-Nma’ -2 -Nma® L+ R HLR @ (b*-a") = 0 : -
- lnéb&ao
where Ra “omoh

Part b
Substitution of the expression for Bl and 32 into this voltage expression
and simplification yield

di
1
L rTS + il(R.L+Ra) - GQil + GQiz 0

Ney ,

o }

A [
.M Ay
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FIELDS AND MOVING MEDIA

PROBLEM 6.23 (Continued)
where ) )
éuoNz'naz
L=—g—
-l N(bz-az)
G = .°_2£__
The equation for the circuit carrying current ié can be written similarly as
d12

L T + iz(RL+Ra)—GQiz—Gﬂil =0

These are linear differential equations with constant coefficients, hence, assume

" st, - st
il = Ile H 12 12e

Then
[Ls + R.L+Ra-GS2]Il + sz =0
[Ls + R.L-G-Ra--GQ]I2 - GQII =0

Eliminagion of I1 yields

2
[ [Ls + R +R_-GO]

0 +GQ]I=0

2

If I2 # 0 as it must be if we are to supply current to the load resistances,

then
2 2
[Ls + RL+Ra-GQ] + (G° =0

For steady-state sinusoidal operation s must be purely imaginary. This requires

R, + R -G =0
L a le

B A 2_2 1n (bed
¢ ot Rt mon
22 f

This is the condition required.

or

Part ¢ )
-When the condition of (b) is satisfied

co <

L -
2 2 “(i -1)§

—u NG -2 2

W = LN

212,110N21ra2 2 2T S

8=+ jus=+

o
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PROBLEM 6.23 (Continued)

Thus the system will operate in the sinusoidal steady-state with amplitudes

determined by initial conditions. With the condition of part (b) satisfied the
voltage equations show that

L =3

and the currents form a balanced two-phase set.
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