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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.1

The identity to be verified is
Ve (YA) = YV-A + A VY (a)

First express the identity in index notation..
d9A
3 _ m oy
Ix [wAm] =V 3xm + Am axm (b)

The repeated subscript indicates summation. Thus, expanding the first term on
the left yields:
9A

_m Qg’_z «A e
\baxm-i-AmBXm_leA'i-AVlb (c)

PROBLEM 8.2
We wish to show that
BeV(yA) = YB-VA + ABVY (a)

First, the identity is expressed in index notation, considering the mth

component of this vector equation. Note that the equation relates two vectors.

(B-[V(YA)Y]) = (VB*[VA]) + A BTy (®)
Now, consider each term separately
@ (V@B D, = B, g—xk Wa) = A_ B %ﬁk— + yB, Z% e
3A
(YB[VA]), = VB, a—xf (d)
Amﬁ'Vw = A B [Vp], = AB %‘x"; (e)

The sum of (d) and (e) give (c) so that the identity is verified.
PROBLEM 8.3

. Part a
a5 is the cosine of the angle between the xi axis and the % axis
(see page 435). Thus for our geometry

1A

2 2

i o1

4% 172 2 0 (a)

0 0 1
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.3 (Continued)

Now, we may apply the transformation law for vectors (Eq. 8.2.10)

]
Ay = and

where the components of A in the (xl,xz,x3) system are given as

Ap =13 4,225 A=~ 1
Thus:
'= =
Ap = apdy = aphy ety tagghy
Ai = 1/2 + /3
V3
v _ = _ Y3
Ay = agy 7 + 1
'= = -
Ay = ag 1
Using matrix alegbra, we can write a more concise solution. That is:
1
1 —
A a); 315 340 A G+
V3
! = = - —
) 31 3 33 M -=+D
' —
A3 a3) 83, a33] |A4 D

Part b

The tensor a,, 1s associated with coordinate transforms involving the

ik

direction of force while the tensor ajl

forms involving the direction of the area normal vectors. The tensor

transformation is (Eq. 8.2.17), page 437;

' =
Tiy = 3k 250Tkg

For example,

' ==
Ti1 = 2n10 T = 211211711 212211721 t 213211Tn

+

+ a. ,a,T + a,.a

a11312T12 12712 22 13 12T32

+

71313713 + 31531973 + 3143;4T454

L L1,603
Ti=3%7
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(b)

(c)

(d)
(e)

(£)
(g)

(h)

is associated with coordinate trans-

(1)

1)

(k)



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.3 (Continued)

Similarly
3
] = - =
T2 2 t
1] —
Ty, = 0
; 3
! = o e
T 5+
v 3 _ 33
T22 =%~ 73
' =
T), = 0
' =
Ty, = 0
v =
T}, = 0
-
), = 1

=&

RIS

Written in matrix algebra, the problem is solved below:

1 1 ] 1]
T1r T2 Ty
] 1] ]
To1 Taz2 T4

] 1 1 B
T3y T3z Tag

Note that the third matrix on the right is the
multiplication of (t) gives

7

PROBLEM 8.4

el

3
Gr=7)

o

A X

b

13] {211 %21 23
Tosl 212 322 232
Tazl (213 223 233
transpose of aij' Matrix

The mth component of the force density at a point is (Eq. 8.1.10)

aT
I U1
i axj

-

Thus in the 11 direction,

)
(m)
(n)
(o)
(»
()
(r)
(s)

(t)

(uv)

(a)



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.4 (Continued)

2 2
T aT aT P P
_ 11 12 13y _ (o __o -
Fl= Gt v, ) gy -gxt0)=o0 ()
1 2 3 a a
-> >
Similarly in the 12 and 13 directions we find
v - (ZTzl . szz . :Tza] “ o ©)
*1 *2 X3
aT aT 3T
F 31 32 33) =0 (@)

= ( + +
3 Bxl sz 8x3
Hence, the total volume force density resulting from the given stress tensor is
zero.
PROBLEM 8.5

A%
2

3

[(\\) _ 3 N
__ -t _ - in region (1) E=E°(§ Il + 12)

in region (2) E=0

14—
(b)
X;. z ~5-x‘-+ 3
i N 2 -
(.-‘ A LW
Xs n’.\ xl
814
Tij = eEiEj - 5 €B R (a)
Thus in region (2)
T,, = [0] (b)

i3
in region (1)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.5 (Continued)

5 2 32
8% 7 o 0
- 3 2 _3 2
Tij - 2 €oFo 8 €oF0 0 (e)
13
i 0 0 -3 eoEod

The total contribution to the forces found by integrating the stress tensor
over surface (c) is zero, because surface (c¢) lies in region (2) where the
stress tensor is zero. By symmetry the sum of contributions to the force
resulting from integrations over the two surfaces perpendicular to the Xq axis
is zero. '

Now let us note the fact that:

area (a) = 2 (d)
area (b) = 3 (e)
Thus: .
£, = §T1j n, da (£)
f1 = ITllda + [leda + le3da
(b) (a)
5 2 3 2
=3 €°E°(3) + 3 EOEO(Z) (g)
i le g2
£, = 45 €.E, (h)
f2 = ITZIda + ITZZda + IT23da
(b) (a)
3 2 5 2
=3 eoEo(3) - §-€°EO(2) 1)
1 2
f,=3 % €% &)
f3 = IT31da + IT32da + [T33da

Hence, the total force is:

= 7 2 > 1 2 >
f=14 B eoEo 11 + 3 % eoEo 12 )
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.6

Part a

At point A, the electric field intensity is a superposition of the imposed
field and the field due to the surface charges; E = (of/EO)Iv. Thus at A,

g

= _ =z z £
E=1(E)+ iy(Eo + E;) (a)
while at B,
=1 (Eo) + 1y(no) )
Thus, from Eq. 8.3.10, at A,
N o, 2 o ]
< |1 2 _ _f _£
Tij T2 Eo[Eo (Eo + € )] eoEo(Eo + € ) 0
o (o]
g o, 2
f 1 f 2
EOEO(E0+ eo) 3 eo[ (Eo+ = ) - Eol 0 (c)
o, 2
. 1 2 £
0 0 - E—eo[Eo+(Eo+ eo) ]

while at B the components are given by (c) with Gf »> 0.

Part b

In the x direction, because the fields are independent of x and z,

£ = (b-a)[(rxy) 'A —(Txy)‘B]D = (b-a)DE o, ()

or simply the area multiplied by the surface charge density and x component
of electric field intensity.

In the y direction
%
£, = (b-a) (Tyyl - Tyy‘ )D = (b-a)D[E 0, + 5~ (e)
A B o
Note that both (d) and (e) could be found by multiplying the surface
charge density by the average electric field intensity and the area, as

shown by Eq. 8.4.8.
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FIELD DESCRIPTION OF MAGNETIC AND ELECT IC FORCES

PROBLEM 8.7
A S S A S S S S S A el
| (2) t
1
al 1 x
i j : ¢3)l b
v/ / / / VA 1
e VR
[ 7 7 v/ P2 7 7 /7 V7 7
| *3 x‘
W= L
I_.____-_____'______v
(a)
Before finding the force, we must calculate the il field at X = L. To find
this field let us use
§ Benda = 0 (a)
over the dotted surface. At X = + L,

H(x1=L) = Hoi (b)
over surface (4) H = 0, and over surface (2), H is in the 1.1 direction, where
n = Iz. Thus over surface (2) Ben = 0.

Hence, the integral in (a) reduces to
- uoﬂoda + J uOH(x1 =4+ L)da = 0
1) (3)
- uoﬂoa + uOHb =0 per unit depth (d)
Thus:
H(x:l =+ L) =ga/b)Hoil (e)
§
= .5
Tij uoHiHj 2 uoH'ka (f)
Hence, the stress tensor over surfaces (1), (2) and (3) is:
= ]
u
o .2
5 Hl 0 0
u
o .2
'1'ij 0 — Hy 0 ()
!
o .2
L 0 0 - —2- H].-_
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.7 (Continued)

over surface (4)

TiJ = [0] (h)
Thus the force in the 1 direction is
fl = J Tij njda (i)
£, = - j T, da + f T,,da + I T,,da €))
(€)) 3 (2)
Thus, since the last integral makes no contribution,
u u 2 u
S o2 @y =242 .02
f,=- 5 H (@ +—FH () b= ZHOa{b 1} (k)

Since Tij = 0 over surface (4) there is no contribution to the force from
this surface. and by symmetry, there is no contribution to the force from the
surfaces perpendicular to the Xq axis. Thus, the force per unit depth in

1 direction is (k).

PROBLEM 8.8

The appropriate surface of integration is shown in the figure

i !

i A

I @ 1T L

I i : - = o _—\—“l *—!—\rt (3 y - '-;b‘. - ) 4 - i —i —
e 1 e _::'i_”) 3 ;T?_:c |y 20
‘—r‘":CI T i \‘4".-_.. A e e e - e -t

! T }

: —‘-.z-'o :_“ Vi

L - === -

The stresses acting in the x direction on the respective surfaces are as
shown. Because the plates are perfectly conducting, all shear stresses
required to complete the integration of Eq. 8.1.17 vanish. The only
contributions are from surfaces (1), (ii), (iii) and (iv), where the fields
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.8 (Continued)

are known to be

_ v, _ v, .
E=-a-1y 1) ;E=-riy (111)
i v ) v (a)
E = e iy (ii) ; E = 5 iy (iv)
Thus,
£, = (T,,) ad + (T,,) ad - (T,,) bd - (T,.) bd (b)
1 17y 17,y 17441 1y,
2 1 1
dvoeo['l; - a] (c)

The plate tends to be drawn to the right, where the fields are greater.

PROBLEM 8.9

Ve ' 3} o
v I i S S

\Cr > - = (iy)
~vv ‘TI..:-_L— T _—LA— T _L T }(—TCQ—‘ -

< ol

a1

The volume enclosing the half of the plate is arbitrary so long as it is
defined so that it does not include additional charge. Thus the volume shown
in the figure encloses no more than the desired distribution of charge. More-
over, surfaces (i) and (i{if) pass through the fringing fields half way
between the plates where by symmetry there is no X,y component of E. Thus surfaces
(1) and (iii) support no shear stress T21. There is no field at surface (iv)
and hence the only contribution is from surface (1), where the square of the

field is known to be
E =—7° (a)

and it follows that because T22 on (i) is --% EoEi and the normal vector is

negative

o %
£, = -5 (b)

~49-



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.9 (Continued)

The fringing field tends to pull the end of the plate in the + X,

direction.

PROBLEM 8.10

iﬁ Q

1 = S =

[
A S =

S a@_

4
F 0 5 [VE i 1
Part a

Consider the surface shown in Figure 1. The total force in the x

direction is:
f = f T _da - J T _ da + f T _ da - I T _ da + j T _ da
X Xy Xy XX XX XX
1,3 5,7 4 8 2,6
The first four integrals disappear because:

T =¢EE =0on1l, 3, 5 and 7 because we are next
xy Xy

to the conducting plates (Ex = 0)

Txx = 0 an 4 and 8 because the E field = 0 there

Hence
f = I T _da = [ -1 E2 da
X XX 2 'y
2,6 2,6
where Tij is evaluated wusing Eq. 8.3.10.
E =2
y s

and hence:

...50_

(a)

(b)

(c)



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.10 (Continued)

2
E vV _ _£gd 2
£ f-2(3> da= -y @
2,6 :
Part b
The coenergy of the system is

W' = -;_—"C(x)v2 (e)

where C(x) = 215:5225 (£)

Thus, (see Sec. 3.1.2b)

aW'_ 1 3C(x) 2 de v2

T T2 Y T s (@)
which is the same value determined in part (a).
Part c
The equation of motion of the plate is:
2
Mg—-’%+l((x—a)=f = - de 2 (h)
X s o
de
When the system reaches equilibrium with the switch closed,
__de 2
K(Xo—a) = - Vo (1)
thus
de 2
xo a- sK Vo @
After the switch is opened,
2
M LE 4 k(x-a) = - & GPee) ()
s
dt
The electrical circuit is like an R-C circuit with time varying elements
+
\_r‘[ R(x)
v + R(x)1i(t) = 0O )
d ,
v+ R(x) g7 [C(x)v] =0 (m)
dv dC(x) dx _ _
v f R(x)C(x%) it + R(x) = acV 0 ) (n)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.10 (Continued)

where:
. - 2d(a-x)e
R(x) = 35d(a-x) and C(x) S
Hence
e dv [e 1 dx
v"-CJdt:m[(!(a—x) d;lv—O
Part d

Dropping the inertial term from (h) leaves:

de 2

K(x-a) = - sV (t) from (k)

But we may write the identity

1 dx___ 1 4 _
" (ax) dt - R(xa) at ‘(-2
and then, from (q)
o1 dx_ __ s g_.[_gs:_ z(t)]
(a-x) dt de 2(t) dt s

1 d 2 2 dv

= Vv (t) == —

vz(t) dt v dt

Substituting back into (p) we have

€ dv 2€ dv

+
V¥oa ¥ o d

Solving we find
v=yv e (9/3€)t
o

and substituting back into (q),

Along relaxation time is consistent with neglecting the inertial terms, as

then x(t) varies slowly.

Part e

(o)

(p)

(9)

(r)

(s)

(t)

(u)

)

Proceed as in (c), and record the time constant T of a-x(t) by measuring

the mechanical displacement. Then,

€ 2
= = £ 1
ag 3

~52-
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.10 (Continued)

This problem should raise questions as to the appropriate form Of.Tij
used in (b). Note that the surface of integration encloses liquid as well
as the plate. We want only the force on the plate, so our calculation is
correct only if there is no net force on the enclosed liquid. The electrical
force dens{ty in the liquid is given by Eq. 8.5.45. There is no free charge
or gradient of permittivity in the bulk of the 1iquid and hence the first
two of the three contributions to this force density vanish in the liquid.
However, there remains the electrostriction force density. Note that it is
ignored in our calculation because the electrostriction term was not included
in the stress tensor (we used Fq. 8.3.10 rather than 8.5.46). Our reason for
ignoring the electrostriction is this: it gives rise to a force density that
takes the form of the gradient of a pressure. Hence, it simply alters the
distribution of 1iquid pressure around the plate. Because each element of the
liquid is in static equilibrium and can give way to motions of the plate without
changing its volume, the '"hydrostatic pressure" of the liquid is altered by
the electric field so as to exactly cancel the effect of the electrostriction force
density. Hence, to correctly include the effect of electrostriction in integrat-
ing the stresses over the surface, we must also include the hydrostatic pressure
of the liquid. If this is done, the effect of the electrostriction will cancel
out, leaving the force on the plate we have derived by two alternative methods

here.

PROBLEM 8.11

depth ©
A F .
= v

a | a-b
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FIELD DESCRIPTION OF MAGNETIC AND FLECTRIC FORCES

PROBLEM 8.11 (Continued)

First, let us note the F fields on each of the surfaces of the figure
over surfaces (1), (3), (5) and (7), El = ()
over surface v
o
(6) E2 2 El 0
vo
(4) E2=r E1=0
vo
2) E2=—c—' El’—'O
From Eq. 8.3.10,
)
T,,'= € E,E 43

13 - %ot T 73 Sl

Hence, over surfaces (1), (3), (5) and (7)

le =0
and over surfaces
e v 2
© T, -7 G
e v 2
@ 1y = -5 G
e Vv 2
@ 1= -7

Now;
f1 = ITijnjda = lelnlda + [lenzda + fT13n3da

[T13n3da = 0 because the problem is two dimensional.

Let us consider each of the other integrals:

Ilenzda =0
because the surfaces which have normal n, are (1), (3), (5) and (7) and by
(f) we have shown that T,, = 0 over these surfaces. Also, we get no

12
contribution to the force over surface (8), because E + 0 faster than the

area *» <,

Hence the calculation of the force reduces tc

~54-

(a)

(b)
(c)

(d)

(e)

(f)

(g)

(h)

(1)

&)

(k)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.11 (Continued)

- (6) 4) (2)
fl = [ T11 d36 - J T11 dah - I T11 d32 (m)
(6) ) (4) (2)
€ DV
1 1 1
£ == {g-grdd (n)

Note: by symmetry, there is no contribution to the force from the surfaces

perpendicular to the X4 axis.

PROBLEM 8.12

Part a

—t
Q= fosinBrs
Q

tﬁ
o L T T T e e T T T S S TS m e =m ==
v L L s 7T L L L L < L4
X, N )
X3
From elementary field theory, we find that

™ - ﬂxlla

¢ = ¢° sin e (a)

satisfies V2¢ = 0 in the region between the plates and the required boundary
conditions. The distribution of E follows from

E=-Y (b)
Hence,
T - mx,/a T ™
Fae 0 1 _2 3 _ 273
E= ol ':sin . 11 cos — iz:l (e)

The sketch of the E field is obtained by recognizing that E is directed

perpendicular to contours of constant ¢.
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.12 (Continued)

Part b

To find the force as the bottom plate, we use surface (2). E=0 every-

where except on the upper side where the normal n = IZ (d)
and the field is
™ - 7mx,/a
- o 1 -
E= - ol 12 (e)
Hence,
fl=f'rij n, da=0 ()
f2 = szj nj da = JTZZ n, da2 (g)
per unit Xq5 this reduces to
£, = r T,,dx; yru (h)
° 2.2 1
1 1 T ¢o T Ta
but, 'I'22 =3 EOE2E2 =3 Eo az e (i)
and thus - anl
Eo" ¢o T a
f2 = 7 Jm e dx1 ()
2a o
2
€
£, = -2 (k)
4a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.12 (Continued)

Part ¢
On the top plate, use surface (1). Only the sign of the normal changes,

and the result is

f.1 =0 ®)

f. = -

2 4a (m)

or the force is equal and opposite to that on the bottom plate.

PROBLEM 8.13

Part a
8
= S | —
‘1‘1j eEiEj 5 EEkEk (a)
Hence: 2
2v
_1 "o 2 _ 2
Ty =3 & (% - %) (®)
3a
v 2
Ty = SoFaF = = & (3) %%, (e)
3a
Part b
Consider the surface of integration shown in the figure.
R Tt R B EERERRLE RN Q!
| |
! |
' |
A\ |
|
3
AN\ © .
all
¢]
f2 = Isznjda = I T21n1da + J T22n2da + J/}ggi;da (d)
(2)(3) (1) (4) by symmetry
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued) ‘
Let us look at each of these integrals separately

T22n2da = I Tzzda1 - I T22d34 (e)
(1) (4) (1) )]

over surface (1), E = 0 5 T22 = 0 and hence, the integral is merely:

£ o 2Vo ’ 2 2
—f T,,da, = - - ;—— (xz - xl) wdx1

22774 x.=—a 2 a2
(4) 1 R
x = ‘-a
2 9
eovow
44 (£)
= - — a
7
Thus, 2
T,,n,da = - 44 EOVOW (g)
22™2 27 a g
(1) (&)
Let us now evaluate:
I T21n1da
(2)(3)

Consider the surface shown.

in this region field = 0
\ __—~—t—" hence, no contribution to the

integral over this area.

X, TRA
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued)

Thus; -
x, a/5 zvo 2
f T, day = . ;23 - €, (;;5) awxzdx2
(3) 2
x,=a
. 2 eoviw
=797 a ®)
Over surface (2), we have essentially the same thing, except n=- 11
and X = - a. Hence:
2 Eoviw
Ty198 = -9 73 S
(2)
Therefore, the total force in the fz direction is
f = - ..5£ eovcz,w ( )
2 27 a 3
Part c
20
£, = I Tllnlda + Ilenzda + Jzzgﬁ:da (k)
(2)(3) (1) (4) by symmetry
lenzda = - J leda4 over (1) we get
(1) (4) 4) 0 as before
2Vo 2 a
=€, (——5) J xlxzwdx1 =0 Q)
3a -a
x2=2a
Now, over surfaces, 2 and 3
Tllnlda = - J Tllda2 + J Tllda3 =0 (m)
(2)(3) (2) (3)
because,
T =T
‘ 11'2 11|3
hence fl = 0. (n)
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued)

Part d
O.=n¢*€F (o)

at the lower surface of the movable conductor. The functional relation,

f(xrgz), for the lower surface if the movable conductor is given as
f(xlxz) = v4a2 + xi - x, = 0 ()

the outward unit normal to this surface is

VE(x,x,) X
= L2 o rio-ffl—2——0 (@)
TVE(xx.) | x, 1~ "2 1
172 2 i ox, 2
1
— +1
*2
at x, = déaz + x2 R
2 1 - -
2 2 2112
ZVOEO ) ba” + X1
o, =€ [nE, +nE ] =—-2|—=+x —_— (r)
f o171 272 3a2 X, 2 4a2 + 2xi
The surface force density (see Eq. 8.4.8) is equal to:
=b  =-a
=_ _ E +FE
T=0, —5— (s)
where, Eb = field just below the charge sheet
E® = field just above the charge sheet
Since
=a = 1l =b
E =20, T—io'fE ()
thus - 1/2
_ & (ZVO)Z xi _ _ 4a2 + xi
T=— [—+ — + x x,1i,-x,1 — (u)
2 3a2 X, 2 171 272 4a2 + zxi

To find the total force, the surface force density must be integrated over the

surface. Hence, we find

vola L, U2, 172
£, = - 2 (;5) [a {2x] + 42"} {x] + 42"} dx; (v)

1f the student wishes, he may carry out this integral, but the complexity of

the integration shows the value of the stress tensor in calculating such a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.13 (Continued)

force. We realize

that by using the stress tensor, we have essentially

carried out this difficult integral by an integration by parts.

PROBLEM 8.14

Part a

hence, v

E=1
a

and, from Eq. 8.3.10

€
Tyq = €EsFy - 64y 7 BB

Thus, the stress tensor becomes:

Vv 2¢
) 5 &)
a
vO
Ty = (;27) €o(*1%;)
0
l

Part b

v
L Cax) i 5 x)
a

( 2] eo(xlx2 0
a
vo 2 so 2
() 5 &) 0
a
V 2¢
0 -9 S6deg)

Consider the surface shown, bounded by the line segment X, = 2a, X, =

and X, = a/2 and x, = a.

Xoh
./¢:v»
ga - - - N\
@ /©
ol — = @\

-61-
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLLEM 8.14 (Continued)

As before, because the geometry and fields are two-dimensional, the force in
the 33 direction is zero. Also, since along surface (1) ¢ = constant, then

the E field = 0, and hence T,, = 0 along this surface. Thus the calculation

ij
of the force on AB reduces to:
f£,=- J T,,da - I T,,da (£)
(2) (3)
f2 = - I T21da - J T22da (g)
2) 3
Vo 2 1 2a 2 a 2 a
£,=- () €D 5[ [x; - &) lax, +J x adx; (h)
a a a/?
and hence
v 2
- O 3.7
£=-¢, () pa’ (53 1)
a
Similarly:
v 2 2a a
- - (O a 1 2_,2
f2 = - ( 2) Dso J 3 xzdx2 + 2 J (x1 a )dxl )
a a a/?
and hence
v 2
- - 3 (9 (31
f,=-¢€Da (az) (73] (k)
Thus, vz
= ) = 17 = 31
f=—€o-a—D[ill—2+12m] ()

PROBLEM 8.15
Part a

The E field in the laboratory frame is zero since the two perfectly
conducting plates are shorted. This can be seen by integrating E around a
fixed contour through the block and short and recognizing that the enclosed

flux is constant. Hence,

+vxB, E=0 (a)

=

B -

and thus
= L= = _ -
E vxB Vuo}loi2 (b)

Therefore we may now calculate J in the moving block.
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PROBLEM 8.15 (Continued)

J OE ou, VH 1, (c)
Thus:

F=3xB=-op vi’l (d)

o o1l
E= | @ xBrav = - 12 ove?(abD)T (e)
(] [} 1
volume '

Part b

The closed surface of integration is shown in the figure below.

r

P
w
i %
»

Xy
Since the field is uniform everywhere, the only non-zero components of the stress

tensor are the diagonal elements

1 1, .2
T11=Typ = - i-uoﬂo T33 = 7 Mo, ()
Thus
£, 2] Tipday = | Tpqpdey
(3) 2)
u u
=9 p2 4 10 02
= — H_ bD - — HbD = 0 (g)
Similarly \
f2 = T22dal - I T22d84 =0 (h)
6V (4)
f3 = I T33da5 - I T33da6 =0 (i)
(5) (6)
Hence:
f=0 1)
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PROBLEM 8.15 (Continued)
Part ¢

The magnetic field strength and the current density are inconsistant. The
quasi-static magnetic field cannot be uniform and irrotational in a region where
a finite current density exists. The Maxwell stress tensor was developed with
the aid of Ampere's Law (quasi-static) which relates current density and magnetic
field rotation.

J=VxH (k)

= uo J xH= uo(VxH)x H )

o]

For this case, we have assumed that

VxH=0 (m)
In the limit of small magnetic Reynold's number, (Rm << 1), the motion does not
appreciably affect the field, and the answer found in part a is a good
approximation. There are some problems more easily handled with the stress tensor.
This problem illustrates tﬁat in other cases it is easiest to use the force
density J x B directly. Note that we could compute the field induced by J and
then use the Maxwell stress tensor and the self-consistent fields to find the

same force as given by (e).

PROBLEM 8.16
To find the force on the block, we will use the stress tensor over the

surface shown in the figure. Note that the surface is just outside the block.
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PROBLEM 8.16 (Continued)
In the region to the left of the block

I
H=- D—° 13 , and to the right H=0
Thus:
fl = f Tllnlda + I lenzda + I T13n3da (a)
but, since
Hl = H2 = 0; T12 = Tl3 =0 (b)
hence,
f1 = - f Tllda5 + [ Tlldal (c)
(5) v
on surface (5), uo Ig
T,, = - &5 —& (d)
11 2 D2
on surface (1) .
Ty =0 (e)
therefore
gl
f =+ 3 D=t g )
D
Similarly, f2 reduces to
£y = I Typday = f Typdag (8)
2 6
But, since T22 is a function of Xy alone (i is a function of X alone) the

two surface integrals are identical, and hence f2 = 0. Similar reasoning
shows that f. = 0 and thus the total force is

3
u Izd
F-—2°21
2D 1
PROBLEM 8.17
Part a
2= oH
V°H BO A% (a)

Assume a solution of the form:

= R (H (0" ] (b)
3%H

— = Juog K, (e
9x
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PROBLEM 8.17 (Continued)

Try
_ Kx
H(x) =H e (d)
where
2
K™ = juou (e)
and hence )
wh O
K=+ 2 (1+3) (£)
Let us define the skin depth as:
2
§ = (g)
wH O
And
nd thus -3 HFa|
H= ﬂl e + 52 e e iz (h)

Because the skin depth § is assumed to be small, and the excitation 1s on the

left,

Hz(large x) +0 which implies H, =0
Hence, _Xx
fAi(x,t) = H, e 5(1+j)ej‘°ti (1)
—71 -1 z
But, our boundary condition at x = 0 is
- “jut 7 _ _ I jwt s
H(x=0,t) ReHle iz Re > e 12 1
and thus x
- 5(1+3)
= S § $ jut =
ﬂ(xlf) =-3ge e i, (k)
3 F(1+9)
- = zvy - _ 1 (1+)) 5 jot =
J=VxH vy iy 5 5 iy (2)
Part b
f=[3xB4V=IunHdV (m)
[ B [
£ = Re[—zo—_— dv] + Rel; > e2ut dV] (n)
Now, solving each of these integrals:
- = 2x
fun H* .2 - 2X
=" o~ 1 IV 1 § =
——2——— dv = 'i‘ uoaD(B) g (1+j) E e dx ix
ua
1 %o 2 -
5 i ()
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PROBLEM 8.17 (Continued)

- -~ 2%
[Ixu H 2 - 24
5 %y = 2y ap (D) %—(l+j)e2jwt r e ® dx I
o
u._a
1 "0 .2 2jwt -
= Z- ———D I e j ix (P)
Hence, taking the real part, the force as in equation (n) is:
u.a
= 1l 0o 2 -
f 7 D I"(1 + cos 2wt)ix (q)

Part ¢

Using the Maxwell stress tensor, we choose the surface shown in the

I

figure,

2
fx = [ijnjda = I Txxnxda + I Txynyda (r)
(1) (3) (2) (4)

Along surfaces (2) and (4), Hx = 0 along the interface between the perfect

conductors and the finite conductivity block. Thus,
Txy = uonHy =0 (s)
At surface (3), the field is zero since all current filaments complete a

closed loop circuit with the source through the block. Hence
Txx = 0 on surface (3) (t)

Therefore the calculation of the force reduces to

fx = - [ Txxda (u)
1
M

= .- _242
TxX = 7 Hz (v)
And thus,
abu

o .2

fx 2 Hz )
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PROBLEM 8.17 (Continued)
where the field Hz is evaluated on surface 1, i.e. x = Oland is simply given
by the boundary condition (j). Thus it follows

f= ;’% 12 {1 + cos 20t}1_ (x)
which checks with (q). Note that the distribution of J and H, as found in
part (a), are not required to find the total force in this problem. Even more,
(x) 1is not limited to § << x block dimension, while the detailed integration is.

Note: We have made use of the rule for products, namely of:

jwt, Aejwt + A*e-jwt

a(t) = Rel[Ae ] = 7
jwt " jut
b(t) = Re[Bejwt] - Be ; B*e
then
a(tyb(t) = ABX + A%B ABeZIVt | pxpxe2IWE

4 4

%
= Re[% ]+ Re[ﬁg— e2iuty

\—r—)\—”_\“—)
avg. value time varying part

PROBLEM 8.18

Choose the surface shown in the figure.

(5>
R | O T T A T T
, N R
X ) i@ ® N @
| | I i
I ! | 1
U — - = e e . )
@
%) ng\ Vi )‘a @ X;_
Si<&q V.Qw
X_; x\
fI =.JT1jnjda = J Tllnlda + I lenzda + J T13n3da (a)
3,4 5,6 1,2

Since the plates are perfectly conducting, E1 = 0 at surfaces (5) and (6)
and .hence T12 = 0 on surfaces (5) and (6). Surfaces (1), (2), (3) and (4)

are far from the body so
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PROBLEM 8.18 (Continued)
A

§=?°-iz (b)

at each of them, and thus, on surfaces (1) and (3), T13 = 0, Therefore,

f; = - J Tllda3 + I Tllda4 (c)
(3) 4)

3y . _ % Yo,2

=Ty =" @@ (d)

and a; = a, (areas). Hence,

f1 =0 (e)

PROBLEM 8.19
Part a

Since the system is electrically linear,

B =By + Br (a)
where 32 and Er are respectively the fields from the left and right wires.

The force on a unit length of the right wire is

fr = [Jr x B da = JJI b4 Bz da + IJr X Br da (b)
but,
er X Br da=0 (c)
ane hence,
fr = Jr x Bl da ’ (d)

Since, we don't need the fields near the wire,

r-— -
5 . ESE x211 - (xl+a)1;] ©
L 2m (x +a)2+ 2
L M1 *
-z T
= . BQE xzil + (x1 a)i2 -
r 2w (x -a)2+x2
71 2
Hence,
fr = Jr X Bzda = Ii3 x Bz (x1=a, x2=0) (g)
u 1% a)i u 12
F =-0° 1__o i (h)
r 2m 4ma "1

(2a)2
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PROBLEM 8.19 (Continued)
Part b

Along the symmetry plane of the surface shown in the figure

_ MI - -
B =5 § 2;) 1, 1)
(a +x2)
The terms of Tij go as B2, but B2a 15 and the surface area goes as 2TR on surface
(2), hence the contributions of theR stress tensor will vanish on surface (2) as

R*o; we need only compute the integral on surface (1). Because Hl = 0 in the

plane Xy =0
£, J_Tllda - Jt: 7 9%
o da)’ rﬂ . &)
2 . (az+x§)2
Solving this integral, we find
u 12
£, %ma (k)
also
f2 = f3 =0 L)
since
Tyy = T31 =0 (m)

and hence the total force is that of (k) and it agrees with that determined
in part (a).
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PROBLEM 8.20 X4
A
= <
lf“’
| AN
l oo \
\
< |
\®
4"3 © ! A+? { -
T A4 T I'X‘
h— o — o a —»
: /
@ /
| /
{ lo i
| -
v ’/’
Part a

Use the contour indicated in the figure. At infinity the fields will go
to zero, and hence there will be no contribution to the force from the semi-
circular part of the area, i.e. surface (2).

Along the line Xy = o, E2 = 0 by symmetry and

2 A

El = "E—o' (m)sine (a)
t2 = 82 + xi (b)

x X :
sing = = = —2L ()

r

az+x2
1
Hence x

A 1
B =t7 2,2 (d)

o a +x

1
£, = szjnjda = ITZInlda + ITzznzda + JT23n3da (e)
' (1) 1) (1)
first and last integrals = 0, El and 53 = 0 on surface 1
2
T =-f:gE2=-E.9.()‘2\ *1 (f)
22 21 2 V22 2..2.2
€T (a +x1)
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PROBLEM 8.20 (Continued)
Thus 2
£ -9 AZ fm x1 dx1
2 2¢ “2 o (a2+xi)2
A2
f, = —
2 4me a
0
Part b

From electrostatics,

f = AE
From the figure, we see that
E(x,=a) = 52— 1
2 Zneo(Za) 2
Hence,
= _ AZ I
4Te a "2
o

(2)

(h)

(1)

(3)

which is the same as we obtained using the stress tensor -~ (see equation (h)).

PROBLEM 8.21
Part a
From Eq. 8.1.11,

B B_B
21 (BZ-BZ) Xy
Uo Xy uo
B B
1 2 .2
T, =—% ——(-B°+B
ij ¥, 2“0( X y)
1
0 0
b zuo

where the components of B are given in the pr

Part b

oblem,

(a)

The appropriate surface of integration, which is fixed with respect to the

fixed frame, is shown in the figure.
We compute the time average force,
and hence contributions from surfaces
(1) and (3) cancel.

zero on surface (2), which is at

Fields go to

" y#o, Thus, there remains the stress

on surface (4). The time average

value of the surface force density T
-72-
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PROBLEM 8.21 (Continued)

is independent of x. Hence,
T = - <T =0)> b.
y y},(}' ) (b)

1 2 2
T = - — <-B° + B>
y 2 X y (e)

Observe that

-jkUt -ijt

<ReAe ReB E%Rexﬁ* (4

where B* is complex conjugate of B, and (c) becomes

Ty i l‘u Ref- (hoK ejkx) (uoKoe_jkx)+ ﬂ&ﬂ ejkx (jk::l(o—) e_ij}
et ;
4 ook
Finally, use the given definition of a to write (f) as
ung 1
RN (g)

Note that Ty is positive so that the train is supported by the magnetic field.

However, as U+*0 (the train 1is stopped) the levitation force goes to zero.
Part ¢

For the force per unit area in the x direction;

1
T = - 5;; <BxBy(y=0)> (h)
Jku
R Jkx (%) -jkx
= 2110 Re l:uol(oe (——-a * )Koe :} )
Thus
K U ou
T = - °0 Re § \|1 - 3(=2 1
X H,OU 2 1/2 ‘( )
2[1 + ( ]

As must be expected, the force on the train in the x directions vanishes as
U20. Note that in any case the force always tends to retard the motion and

hence could hardly be used to propel the train.

The identity sin(8/2) = + /(1 - cos8)/2 is helpful in reducing (j) to

the form
- uoKi u O'U 2
x (k)
uocU 241/2

2[1+(k

3
It

=73~



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.22
This problem makes the same point as Probs. 8.16 and 8.17, with the
additional effect of material motion included. Regardless of the motion,
with the current constrained as given, the magnetic field intensity is zero
to the right of the block and uniform into the paper (z direction) to the left

of the block, where
I

= _= o0

=1 - (a)
The only contribution to an integration of the stress tensor over a surface
enclosing the block is on the left surface. Thus

- 142
fx ds Txx = ds u Hz (b)

2 "o
2

ds Io
Tt Y% ) ()

The magnetic force is to the right and independent of the mégnetic Reynolds
number.

PROBLEM 8.23
In plane geometry, a knowledge of the charge on the upper plate is equivalent
to knowing the electric field intensity on the surface of the plate. Thus, the

surface charge density on the upper plate is

1 t Io
O =2 fo Io coswt dt = o sin wt (a)
and Of Io
Ex(x=a) = - =- Aeow sin wt )

Now, we enclose the upper plate with a surface just outside the electrode
surface. The only contribution to the integration of Eq. 8.1.17 using the

stress tensor 8.3.10 is

Aeo 2
fx = - ATxx(x=a) == Ex(x=a) : (e)
which we can evaluate from (b) as
Aeo Io 2 2
fx = - (Aeow)sin wt (d)

The force of attraction between the conducting slab and upper electrode is not

dependent on o, oro_.
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PROBLEM 8.24
The force on the lower electrode in the x direction is zero, as can be seen

by integrating the Maxwell stress tensor over the surface shown.

The fields are zero on surfaces (2), (3) and (4). Hence, the total force per

unit depth into the paper is

fx = E Txydx (a)

where contributions from surfaces in the plane of the paper cancel because the
problem is two-dimensional. Moreover, by symmetry the electric field intensity
on the surface (1), even in the fringing regions, 'is in the y direction only

and T = eoExEy in (a) is zero. Thus, the total x directed force 1is zero.

PROBLEM 8.25

The force density in the dielectric slab is Eq. 8.5.45. Not only is the
first term zero, but because the block moves as a rigid body (we are interested
only in the net force giving rise to a rigid body displacement) the last term,
which originates in changes in volume of the material, does not give a

contribution. Hence, the force density is

Fe=-21ae (a)
and the stress tensor is
8
= S §
'ri:l eEiEj 5>~ EBF (b)

Note that, from (a), the force density in the X3 direction is confined to the
right edge of the block, where it acts as a surface force. Thus, we obtain the

total force by simply integrating over a surface that encloses the right edge;
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PROBLEM 8.25 (Continued)

1 a2 1 b,2
where a and b are to the right and left of the right edge of the slab. Also
2 = Eb = - V /a. Hence (c) becomes
2 2 o v 2
= 3D oy (o

The force acts to the right, as could be computed by the energy method.

PROBLEM 8.26
Part a

The force density for polarizable materials is:

= _ 1== l =z 0€ ;
F = 2 E*E Ve + > V(E*E p ap) ! (a)
\
The second term on the right side represents electrogtriction. Note that

this is a case where the material volume must change, and Hgnce the effect of
electrostriction is important. Sinceé free space and the elastic bulk are homogeneous
changes in permittivity and de/dp occur only at the boundarvy where

the permittivity is discontinuous. The upper and lower elastic bulk surfaces

are constrained by the plates. Thus only the Xy component of force is pertinent.
Since the left-hand edge is fixed, any stress arising from the discontinuity in
permittivity at that boundary is counterbalanced Ey the rigidity of the wall,
Therefore, all of the force arises at the right-hand boundary which is free to

move.

The closed surface of integration is shown in the figure.

1= = =7
T
)

SAN N

® N

-76-



FIELD DESCRIPTION ON MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.26 (Continued)

1 9€
'rij eEiEj -3 613 [e- p 5-5]Ekﬂk (b)
Since a/c << 1 and b %-a,the field at the dielectric interface is essentially
uniform. ) ) vo
E= -~ 12 -8—~ (C)
The relevant components of the stress tensor are:
=-E g2, 1 3.2 ~
Th=-28*+3°P5 5 ()
T,y = €E4E, =.o (e)
0
fl = I Tllnlda + [ T 5 2da (£)
(1) (3) (4)
Hence
f1° [Tuda:s g [Tlldal
(3) (1) .
€ VvV 2 €, V 2 v 2
e .0 (O S O ) p 3 (o
=-—= 3 @ {2 (a](an)+2.(,p(a)(an)] ()
Thus;
2 2
f,:(el_e)von_g_a_g(von) -
1 2a 2 p a ’
Part b

In order to use lumped parameter energy methods, the charge on the upper
plate will be found. The permittivity of the dielectric bulk is a junction of
the displacement of the right<hand edge. That is, if mass conservation is to
hold,

p, abD = (p, + Bp)aD(b+£) (1)
where
p=op,+ho, 8p=04f £=10 (&)
Thus, if Ap << Py and § << b, to first order
= -p &
Ap = Po i (k)

(see Eqs. 8.5.9 and 8.5.10)

Furthermore, to first order, using a Taylor serles,

-77-



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.26 (Continued)

ce Po 3¢
e=e +ybo=e -k ()

D‘IO

Also, the electric field will be assumed as uni form everywhere between the
plates. Hence; in the block

= - Vo 3€
D= - 12 {'2—— [S Ap]} (m)
to the right of the block
V
D=-1, = eo (n)

By employing Gauss's law, we find the charge on the upper plate as:
P
o
( ey -

_°
b
J dw' = Jqdv I (p)

integrating we find

9€ g}(b+g)u +¢e (——)(c-b -E)D (o)

wl

V2 p V2
v 21 (o _ 03¢ 1. 0 e
ve =5 (F]e) - 3 5 &|®HID + 5 5 (eb-E)D (a)
Thus,
ow' (e,-€ )VZD V2
f =_e_ =_.L_°__o__l _opD_a£ (t)
e 9§ v=V° 2a 2 a o 3p

Second order terms have been dropped in the co-energy expression (alternatively,
first order terms can be dropped in the force expression).
Part c
If the result of part (a) is written for p = 3 + Ap, where R >> Ap,
then the answers to part (a) and (b) are identical to first order. This
should be expected since the lumped parameter approach assumed a value for
permittivity which was correct only to first order.
PROBLEM 8.27

The surface force density is

a b
m [Tmn = Ton! (a)
For this problem, we require m = 1 and n = iz. Thus
a b
Ty = (Tp = Tpp) ()

From Eq. 8.5.46,

-78-



FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES

PROBLEM 8.27 (Continued)

g2 b.b
T) = €,E1Ep - €EE, (0
Note that Eg E (see Eq. 6.2.31). Moreover, because there is no free charge
eoEl 2 (see Eq. 6.2.33). Thus, (c) becomes

T, = E;[E E2 - €E (d)

1 ol 1]
That the shear surface force density 1s zero in the Xq direction follows the

same reasoning.

PROBLEM 8.28
The force density, Eq. 8.5.45, written in component form, is
dcE
- j_1 €
Fg=F o, 2 ERRTH x1 & BB ap 5 °) (a)

The first term can be rewritten as two terms, one of which is in the

desired form

3E
F =-a—-(eEE)£E 1 1lpp 3

17 ax CFPPTER B T2 Bieaeg ax (ZEk‘kap) (b)

Because V x E = 0, BEiIBxj = 3K /Bxi, so that the second term can be rewritten

3
and combined with the third. (Note the j is a dummy summation varilable.)

d 195
Fy = ':E (€E;Fy) - 5 3%, (eE B + (2 Pk 3 p) ()
Finally, we introduce Gij (see Eq. 8.1.7) to write (c) in the required form
3T
x
h|
where
1 J€
Tyy = €BEy - 5 8RB (e-p 5p) (e)

This is identical to Fq. 8.5.46.
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