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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.1 

The identity to be verified is 

V-(iýA) = 4IV.A + R-*VI 

First express the identity in index notation.. 

aA 
I = + A[PA] ý 

x m x m ax 
m m m 

The repeated subscript indicates summation. Thus, expanding the first term on 

the left yields: 

3A 
m

"x 
+ AA 

m ax 
0iV.A + A.V (c) 

m m 

PROBLEM 8.2 

We wish to show that 

B-v(ipA) = iBviA + AB.V 

First, the identity is expressed in index notation, conssidering the mth 

component of this vector equation. Note that the equat:ion relates two vectors. 

(B.[V(pA)]) m = (B*.[VAI) m + A B.Vm	 (b) 

Now, consider each term separately 

(BE[V(1A)])m = Bk (A m ) = Am Bk axk +PBk 

aA 
(iB*[VA]) =B B 

Am*V = AmBk[Vi k = AmBk


The sum of (d) and (e) give (c) so that the identity is verified.


PROBLEM 8.3


Part 	a 

aik is the cosine of the angle between the x axis and the xk axis 

(see 	page 435). Thus for our geometry 

/1 1 
aik


o 	 o 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.3 (Continued)


Now, we may apply the transformation law for vectors (Eq. 8.2.10)


Ai = aikAk (b) 

where the components of A in the (xl,x2 ,x3) system are given as 

Al = 1; A2 = 2; A 3 - 1 (c) 

Thus:


A' =alk =allA + al2A 2 + a13A3 (d)


A' = 1/2 + /Y (e) 

A a2kAk 2 + 1 (f)


A3 a3kAk = - 1 (g) 

Using matrix alegbra, we can write a more concise solution. That is:


A1 a11  12 13 A1yl 

A2 = a 2 1 a2 2 a23 A2 - ! + 1) (h) 

L3j La31 3 2  a 3 3  3 1) 

Part b


The tensor aik is associated with coordinate transforms involving the


direction of force while the tensor a is associated with coordinate trans­


forms involving the direction of the area normal vectors. The tensor


transformation is (Eq. 8.2.17), page 437;


T'j = aik ajTk£ (i) 

For example, 

T11 = allk Tkt = allallT1 + al2allT21 + al3allT31 

+ alla12T12 + a12a12T22 + a13a12T32 (


+ alla13T13 + a12a13T23 + a13a13T33


Thus:


T11= + (k)
11 4 4 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.3 (Continued)


Similarly


T2 3 +/3

12 2 4 

T' = 0

13


3 +r
21 2 4 

5 3/

22 4 2


T' = 0

23


T' = 0


T' = 0 

T'3 1
33 

Written in matrix algebra, the problem is solved below: 

T' T' T] a a11 12 13 11 12 T12 a21 a31


Tl T' T2'a a T22 a22 a32
21 T22 T23 21 22


T'31 T'32 33 a 31 a32 T32 a23 a33


Note that the third matrix on the right i.s the transpose of aij. Matrix 

multiplication of (t) gives


7 6 3 

+ 2 ) (- 2 + r34 
3 5 3r


ij


PROBLEM 8.4


th

The m component of the force density at a point is (Eq. 8.1.10)


F =


i 
 dax


Thus in the 11 direction, 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.4 (Continued)


2 2


aF aT12 3T 

F + + T = ( xI 
-0 o x +0 = 0

X2 
1 2 3 a a 

Similarly in the 12 and 13 directions we find 

aT aT aT 
2F= (axi 22 x1 =0


2 1 a2 X3

aT aT aT 

Fj3 = 3x1
1 

+x2 
32 

+x3 

3 

Hence, the total volume force density resulting from the given stress tensor is 

zero. 

PROBLEM 8.5


I__.e i~> in region (1) E=Eo 3 1+ i ) 

in region (2) E = 0 
ii> 

I 0b)


3 

Tij =E EiE - EoEEk 

Thus in region (2) 

Tij = 10] 

in region (1) 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.5 (Continued) 

5 E2 3 2

8 o0 2 oo


3 E2 5 2 
Tij 2 oo 8 o0 Cc) 

0 3 E 2 
8 oo 

The total contribution to the forces found by integrating the stress tensor 

over surface (c) is zero, because surface (c) lies in region (2) where the 

stress tensor is zero. By symmetry the sum of contributions to the force 

resulting from integrations over the two surfaces perpendicular to the x3 axis 

is zero. 

Now let us note the fact that: 

area (a) = 2 (d) 

area (b) = 3 (e) 

Thus: 

fi = Tij n da (f) 

f = fT 1 1 da + fT12da + fT1 3da 

(b) (a) 

=5 
8 o 

E23) + 3 
2 

E 
oo 

E2 (2) (g) 

f= 4 E2 (h)
1 8 o0o


f2 = fT21da + fT2 2da + fT2 3da


(b) (a) 

2 oo 8 oo3 2 5 

f2 3 -
4 o E

2 
o (j) 

f-3 fT 3 1 da + fT 3 2 da + fT33da 

=0 (k) 

Hence, the total force is:


7 2 + 1 2 )
84E E i i + 3 cEo i()8 0 0 oo 2 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.6


Part a


At point A, the electric field intensity is a superposition of the imposed 

field and the field due to the surface charges; E = (/0f/ )1 . Thus at A, 

a 
E= i(E ) + i (E + --) (a)

x 0 y 0 E o 

while at B,


E= ix (Eo) + Cy(Eo) (b) 

Thus, from Eq. 8.3.10, at A,


12 af 
T = So[E -(E + ) ] CE (E + -) 0

ij 0 0


af a 2 
CE e[( - 0+-) [(E +-) E] (c)


S a 2
0 0 E 0 [E2+(E0+ -- ) I 

o ý 

while at B the components are given by (c) with of + 0. 

Part b


In the x direction, because the fields are independent of x and z,


fx = cb-a)[(TxyA -(T y D = (b-a)DEo f (d) 

or simply the area multiplied by the surface charge density and x component


of electric field intensity.


In the y direction

2 

of 
f = (b-a)(T - T )D = (b-a)D[E f + 2] (e) 
y jA Y B 0o 

Note that both (d) and (e) could be found by multiplying the surface


charge density by the average electric field intensity and the area, as


shown by Eq. 8.4.8. 
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FIELD DESCRIPTION OF MAGNETIC AND ELECT IC FORCES


PROBLEM 8.7 

I	 , = L 

(4) 

Before finding the force, we must calculate the H field at xl = L. To find 

this field let us use 

- 0Bnda = 
J 

over the dotted surface. At x1 = + L, 

H(xl=L) = Hoi1 (b) 

over surface (4) H = 0, and over surface (2), H is in the 1idirection, where 

n = 12. Thus over surface (2) B'n = 0. 

Hence, the integral in (a) reduces to 

- I H0da + pfoH(xl = + L)da = 0 

(1) (3)


- oHo a + oHb = 0 per unit depth


Thus: 

H(x, = + L) = ýa/b)Ho i I 

Hi o kHk


Hence, the stress tensor over surfaces (1), (2) and (3) is:


-OH2 0 0 

Tij o -j 2 

2 	 1.


1o 2

T 0 - H 0


ij 2 1


o 2
-0 	 0 2 H1 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.7 (Continued) 

over surface (4)


T = [01


Thus the force in the 1 direction is 

=fl Tij n-da 

fl=-f T 11da+ f T1 1da+ f T1 2 da 

(1) (3) (2)


Thus, since the last integral makes no contribution,

11 o 2 Vo 2 a 2 0o 2

f 1 - Ho (a) + -22 H2 o ()b2 *b = o a b - 1} 

Since Tij = 0 over surface (4) there is no contribution to the force from 

this surface. and by symmetry, there is no contribution to the force from the 

surfaces perpendicular to the x 3 axis. Thus, the force per unit depth in 

1 direction is (k). 

PROBLEM 8.8 

The appropriate surface of integration is shown in the figure 

'I)


tI ~ 

-I 
I 

The stresses acting in the x direction on the respective surfaces are as


shown. Because the plates are perfectly conducting, all shear stresses


required to complete the integration of Eq. 8.1.17 vanish. The only


contributions are from surfaces (i), (ii), (iii) and (iv), where the fields
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.8 (Continued) 

are known to be 

E = 

V 
i 

a y 

V 
-i= 
a y 

(i) ;E 

(ii) ; E 

= 

= 

V 

b 

V 

-s•i 
b 

i 
y 

y 

(iii) 

(iv) 

(a) 

Thus, 

f = (T1 1) ad + (T11) ad ­ (T ) bd ­ (T11) bd 
i ii iii iv 

= dV2 1 - ] 

oob a 

The plate tends to be drawn to the right, where the fields are greater. 

(b) 

(c) 

PROBLEM 8.9 

A- - - )Z. 

The volume enclosing the half of the plate is arbitrary so lo6ng as it is


defined so that it does not include additional charge. Thus the volume shown


in the figure encloses no more than the desired distribution of charge. More­


over, surfaces (i) and (ii pass through the fringing fields half way


between the plates where by symmetry there is no x2 component of E. Thus surfaces


(i) and (iii) support no shear stress T2 1 . There is no field at surface (iv) 

and hence the only contribution is from surface (i), where the square of the 

field is known to be 
2


E2 V2o (a)
1 2

s


1 2

and it follows that because T22 on (i) is - 2 CeoE and the normal vector is 

negative

4wse V2


f o o (b)

2 22


s
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.9 (Continued)


The fringing field tends to pull the end of the plate in the + x2 

direction. 

PROBLEM 8.10 

'1 I: 

;I(7	 IB~ 

Part a 

Consider the surface shown in Figure 1. The total force in the x 

direction is: 

f= f T da - T da + da TT f T da (a) 

1,3 5,7 4 8 2,6 

The first 	four integrals disappear because: 

T = CE E = 0 on 1, 3, 5 and 7 because we are next 
xy xy


to the conducting plates (Ex = 0)


T = 0 an 4 and 8 because the E field = 0 there xx 

Hence 

f= T da E2 da (b) 
x xx 2 y 

2,6 2,6


where Tij is evaluated using Eq. 8.3.10.


E = 	 (c) 
y s 

and hence:
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.10 (Continued)


f = ESd2 
( da= - -- v 

2 
(d) 

x -2 s 
2,6 

Part b


The coenergy of the system is


W' = C(x)v2 (e)
2


where C(x) = 2(a-x)d(f)

s 

Thus, (see Sec. 3.1.2b)


f = =W' 21 3C(x) v2 = ----de v 2 (g)x ax 2 ax s 

which is the same value determined in part (a). 

Part c 

The equation of motion of the plate is:


2 
M 

dt
2 x 
2 + K(x-a) = f = -- V (h)

x s o


When the system reaches equilibrium with the switch closed,


K(X
0 
-a) =-dE 

s o (i) 

thus 

X 
o 

= a 
sK 

V2 
o 

() 

After the switch is opened, 

M 2 + K(x-a) = - dc v2 (t) (k)
dt s

dt


The electrical circuit is like an R-C circuit with time varying elements


+÷

v R(x) 

v + R(x)i(t) = 0 (M) 

d 
v + R(x) d [C(x)v] = 0 (m) 

dv dC(x) dx 
v + R(x)C(x) - + R(x) dxv = 0 (n)

dt dx dt
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.10 (Continued)


where:


R(x) s and C(x) 2d(a-x)E (o)
2ad(a-x) s


Hence


v + d-- -x 

a dt La (a-x) d t] 

v = 0 (p) 

Part d 

Dropping the inertial term from (h) leaves: 

K(x-a) = - _c v2(t) from (k) (q)
S 

But we may write the identity


1 dx 1 d
= K(x-a) (r)
(a-x) dt K(x-a) dt


and then, from (q)


1 dx s d d 2 
(a-x) dt dev 2 t) dt s


1 d 2 2 dv 
2 dt v t v dt (s) 

Substituting back into (p) we have 

v+ E -dv + -2E dv= (t)a dt a dt 

Solving we find 

v = V e-(/3E) t (u)
o


and substituting back into (q),

2a 

x = a -• dE V 
2 

e 
3 E 

(v)
sK o 

Along relaxation time is consistent with neglecting the inertial terms, as


then x(t) varies slowly.


Part e


Proceed as in (c), and record the time constant T of a-x(t) by measuring 

the mechanical displacement. Then, 

= 22- (w)a 3 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.10 (Continued)


This problem should raise questions as to the appropriate form of Tij


used in (b). Note that the surface of integration encloses liquid as well


as the plate. We want only the force on the plate, so our calculation is


correct only if there is no net force on the enclosed liquid. The electrical


force density in the liquid is given by Eq. 8.5.45. There is no free charge


or gradient of permittivity in the bulk of the liquid and hence the first


two of the three contributions to this force density vanish in the liquid.


However, there remains the electrostriction force density. Note that it is


ignored in our calculation because the electrostriction term was not included


in the stress tensor (we used Eq. 8.3.10 rather than 8.5.46). Our reason for 

ignoring the electrostriction is this: it gives rise to a force density that 

takes the form of the gradient of a pressure. Hence, it simply alters the 

distribution of liquid pressure around the plate. Because each element of the 

liquid is in static equilibrium and can give way to motions of the plate without 

changing its volume, the "hydrostatic pressure" of the liquid is altered by 

the electric field so as to exactly cancel the effect of the electrostriction force 

density. Hence, to correctly include the effect of electrostriction in integrat­

ing the stresses over the surface, we must also include the hydrostatic pressure 

of the liquid. If this is done, the effect of the electrostriction will cancel 

out, leaving the force on the plate we have derived by two alternative methods 

here.


PROBLEM 8.11


B 

(C-2)I 

L_ _ _ - -- - ­

-53­
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.11 	(Continued)


First, let us note the E fields on each of the surfaces of the figure 

over surfaces (1), (3), (5) and (7), E1 = 0 (a) 

over surface


(6) 	 E2 = -a = 0 (b) 

V 
(4) 	 E2 - E1 =0 (c) 

V 
(2) E2 = 	 - E1 = 0 (d) 

c 

From Eq. 8.3.10, 

Tij= oEE -E F F (e)
ij oij 2 0ok k


Hence, over surfaces (1), (3), (5) and (7)


T12 = 0 	 (f) 

and over surfaces 
E V 2 

(6) T11 	= ( (g) 
S v 2 

(4) 	T11 = - (h) 

C V 2 
(2) T11  ) 	 (i 

Now;


f= fTij nfda = T1 lnlda + T12n2da + fT1 3 n 3 da 	 (j) 

IT 1 3n 3 da 	= 0 because the problem is two dimensional. (k) 

Let us consider each of the other integrals: 

fT1 2 n 2 da = 0 (a) 

because the surfaces which have normal n2 are (1), (3), (5) and (7) and by 

(f) we have shown that T12 = 0 over these surfaces. Also, we get no 

contribution to the force over surface (8), because E + 0 faster than the 

area 4 m. 

Hence the calculation of the force reduces tc
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.11 (Continued)


f l i= 	 T6) da T(4) da - T) da2 (m) 

(6) 	 (4) (2)

2


E DV
D o 	 1 1 1(n)
f 0+ 0 (n) 
1 2 a b c 

Note: by symmetry, there is no contribution to the force from the surfaces


perpendicular to the x3 axis.


PROBLEM 8.12


Part a

,, 	 P 

77

T1 
0-~ / - / / / / / / ,- , ,, / -­

S, -- 7	 -­

From elementary field theory, we find that 

wx2 - wxl/a 
= o sin -'- e (a)o 	 a 

satisfies V25 = 0 in the region between the plates and the required boundary 

conditions. The distribution of E follows from 

E = - V4 	 (b) 

Hence,


w - wxla wx wx2 
- 0o 1 'r2 - os2

E -- e In a i - cos --a 	 (c)
a a l a 2 

The sketch of the E field is obtained by recognizing that E is directed 

perpendicular to contours of constant 4. 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.12 (Continued)


Part b


To find the force as the bottom plate, we use surface (2). E = 0 every­

where except on the upper side where the normal n = 12 (d) 

and the field is

o$ - Txl/a


= - - e i

a 2


Hence,


fl = ITi n da = 0 

f2 = T2 j n da = T2 2 n 2 da 2 

per unit x3, this reduces to 

f2 F T 2 2 dIx
1 

2.2 1

1 1 a
-o


but, T EE = -E 0 e
22 2 o 2 2 

a 

and thus 
2


f2 1dx


2a2


2 4a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.12 (Continued)


Part c


On the top plate, use surface (1). Only the sign of the normal changes,


and the result is


fl =0

2 

2 4a


or the force is equal and opposite to that on the bottom plate.


PROBLEM 8.13


Part a 

Tij EiEj - EKEk 

Hence: 
2V 2 

22 
3a 

2V 2 

T21 ooE2E1 
3a 

x 1 x 2 

Part b 

Consider the surface of integration shown in the figure.


D


O 

f2 =T 2jnjda2 = f22T2 1n1da + f22T22 n22 da + f~l3/3da 

(2)(3) (1)(4) by symmetry 
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 (Continued)


Let us look at each of these integrals separately


T22da
ST22n2da - 22da 
(1)(4) (1) (4) 

over surface (1), E 0 * T22 0 and hence, the integral is merely: 

Sxl=a E° 2V 2 
0 

- T22 da 4 = - (- ) (x2 - xl) wdx1Jx =-a 2 3a 

x 2 = 2a
2a


E V2 
44 o0o 

T7 a 

Thus, 
SV2w


Snda 44 oo


S22n2 =27 a

(1)(4)


Let us now evaluate:


I T 21nlda 

(2)(3)


Consider the surface shown.


in this region field = 0


hence, no contribution to the


integral over this area.


i Z•r =• 
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FIELD DESCRIPTION OF 	MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 	(Continued)


Thus; 
x2=a5d 2V 2 

IT21da = 
x 2a 

awx2dx2 
(3) 	 x2a 3a


xl=a


0V2w 
2 oo 
9 a 

Over surface (2), we have essentially the same thing, except n = - i 

and xl = - a. Hence: 

E V2w

I 2 oo


ST21da2 a9
"a

(2)


Therefore, the total 	force in the f2 direction is 

E V2w 
56 00


2 27 a


Part c


0 
= + T12n2da + f1T da

f1 Tllnlda 
(2)(3) (1)(4) by symmetry


f-T1 2da4 
over (1) we get


I T12n2da 
(1)(4) (4) 0 as before 

S 2V02 fa x x2wdx1 = 0
0 3a2 -a 	XX2WdX 

x2=2a


Now, over surfaces, 2 and 3


Tl1 1n 
da = - T 11da2 Tllda 3 0


(2)(3) (2)


because,


T1 1 12 T1113


hence fl = 0.
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 (Continued)


Part d


a = n E0 	 (o) 

at the lower surface of the movable conductor. The functional relation,


f(xl 2), for the lower surface if the movable conductor is given as


f(x1x2 ) = 4a2 + x - x2 = 0 	 (p) 

the outward unit normal 	to this surface is


n ~Vf(xlx2) xl I - i (q) 
l'2 [ 2 

at x 2 = 4a + x12 

S1/2 
2 x 2 24 2 /
12 


of Eo[n l E + n 2 E2 ] = 	 32 x2 4a 2 2xl 
3a 2 J4a +2x 

The surface force density (see Eq. 8.4.8) is equal to:


-E + E•

f 2


where, Eb = field just below the charge sheet 

Ea = field just above the charge sheet 

Since 

a = 0, T = 1 a (t) 

thus 2 2 2 1/2 
e 2V 2 x 4a + x 
o o0

T 2- 2 ) + x2 x1il- 2i2 4a2 + 2 (u) 
3a x2 4a + 2x1 J 

To find the total force, the surface force density must be integrated over the


surface. Hence, we find


V 2 a 1/2 1/2 

2- 0 fx2 dx1f2 = 2c a j2x 2 + 4a2 + 4a2} 	 (v)
3a -a


If the student wishes, he may carry out this integral, but the complexity of


the integration shows the value of the stress tensor in calculating such a
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.13 (Continued)


force. We realize that by using the stress tensor, we have essentially


carried out this difficult integral by an integration by parts.


PROBLEM 8.14 

Part a

V 

i - xY (a)1 2 

a


= - V (b) 

hence, V 
E ( 2 x2) + 2 - xl) (c) 

a a 

and, from Eq. 8.3.10 

Ti = CEE - 6j 1ýE (d) 
T ijhe
stress tensor becomes2


Thus, the stress tensor becomes: 

V 2 V 2 

(-) - (x2-x ) (-) o(xlx2) 0

a a 

V V 2 E°

Tij - (X1 X2 ) (- ) -2- (x-x2) 02 (e) 

a a 

V 2 ) 
0 -(-) -•xx 2 

a


Part b 

Consider the surface shown, bounded by the line segment x2 = 2a, x2 = a, 

and xl = a/2 and x1 = a. 

XK 

1
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.14 (Continued)


As before, because the geometry and fields are two-dimensional, the force in 

the 13 direction is zero. Also, since along surface (1) , = constant, then 

the E field = 0, and hence Tij = 0 along this surface. Thus the calculation 

of the force on AB reduces to:


fl = - T11da - T12da (f) 
(2) (3)


f2 = - T2 1da - f T22 da (g) 

(2) (3)


V 2 2 a 2 a + 

fl 2 oD x2 - (2 ) ]dx (h)a a/2


and hence 
V 2 

fl - Eo=- ()a 
a 

Da3 17[*•] (i) 

Similarly: 

V 2a 1 a 2 2 
f
2 a Do x(x-a2 x2d2 2 a/2 l 

)dxl (J) 

and hence

V 2


f
2 

- oD 
o 

a3 (- ) 
48 (k) 

a 

Thus, 2
v

o 17 31

f = - E D [i - + i 4 o a 1 12 48 (-)
2 

PROBLEM 8.15


Part a


The E field in the laboratory frame is zero since the two perfectly


conducting plates are shorted. This can be seen by integrating E around a


fixed contour through the block and short and recognizing that the enclosed


flux is constant. Hence,


E'E+vx E , E 0 (a) 

and thus


E' v x B = - V1 oHi2 (b) 

Therefore we may now calculate J in the moving block.
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FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.15 (Continued) 

J' aE' - ap VHo 2 

Thus: 

F Jx ap2 VH2i 
0 o 1 

- (3 x B)dV =- i oVH (abD) 10 0 1 
volume


Part b 

The closed surface of integration is shown in the figure below.


All, 

""~~ "I'I­

' -­

IX ( 

I i A 

XI 

Since the field is uniform everywhere, the only non-zero components of the stress 

tensor are the diagonal elements


T =T 1 H2 T 1 H2 
11 22 2 oo 33 2 oo 

Thus 

f1 = i T1da3 - f Tllda2 
(3) (2) 

= H2 bD - H2bD = 02•o 2 o 

Similarly 

f2 = T22da - T22da4 =0 

(1) (4)


f3 = T 33da5 - T 33da6 =0 

(5) (6)


Hence:




FIELD DESCRIPTION OF MAGNETIC AND ELECTRIC FORCES


PROBLEM 8.15 (Continued)


Part c


The magnetic field strength and the current density are inconsistant. The


quasi-static magnetic field cannot be uniform and irrotational in a region where


a finite current density exists. The Maxwell stress tensor was developed with


the aid of Ampere's Law (quasi-static) which relates current density and magnetic


field rotation.


S=VxH (k) 

F V o J x H = o(VxH)x H (1) 

For this case, we have assumed that


V x H = 0 (m)


In the limit of small magnetic Reynold's number, (Rm << 1), the motion does not


appreciably affect the field, and the answer found in part a is a good


approximation. There are some problems more easily handled with the stress tensor.


This problem illustrates that in other cases it is easiest to use the force


density J x B directly. Note that we could compute the field induced by J and


then use the Maxwell stress tensor and the self-consistent fields to find the


same force as given by (e).


PROBLEM 8.16


To find the force on the block, we will use the stress tensor over the


surface shown in the figure. Note that the surface is just outside the block.


X,
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PROBLEM 8.16 (Continued)


In the region to the left of the block 

I


and to the right H=0

=D o 13 , 

Thus: 

f n T12n2da + T1 3 da (a)T11nda + 3 n

but, since 

H1 = H2 = 0; T12 = T13 = 0 
(b)


hence,


f = - Tl1da5 + f T1dal (c) 

(5) (1) 

on surface (5), J 12 

T o o (d)
11 2 2 d

D 

on surface (1) 

T11 f 0 (e) 

therefore 2 2


f1 + 2 oo
2 .Dd = + 2D 

(f)(f)
D


Similarly, f2 reduces to


f2 = T22da2 - T22da6 (g) 

2 6 

But, since T22 is a function of xl alone (1 is a function of x l alone) the 

two surface integrals are identical, and hence f2 = 0. Similar reasoning 

shows that f = 0 and thus the total force is 

- ~ood

f d


2D i


PROBLEM 8.17


Part a


2-B V =po- (a)o at 
Assume a solution of the form: 

H = Re [H (x)e iWt (b) 

e-z


- joZ o HZ (c)
2 ax 
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PROBLEM 8.17 (Continued)


Try

Kx


H (x) = H eKx 

where


K
22 


= •0 ° 

and hence


K = + (1+j)


Let us define the skin depth as: 

6 2 

And thus [ (+j) 

-H= e 2+He iz 

Because the skin depth 6 is assumed to be small, and the excitation is on 

left, 

Hz(large x) + 0 which implies 12 = 0 
Hence, - x(l+j) 

H(xlt) = H e ejt z 


But, our boundary condition at x = 0 is 

H(x=O,t) =ReHe = - Re - e i 
H(Ot)z D z


and thus


(x•) D e +J)ejt i 

3H - -K(l+j) 
J=VxH=- ((6)i

yx 
-

D 6 
ee ejt i 

y 

Part b


= f x EdV= JfxV RdV 

f Re dV] + ReL 2- e2jWt dV] 

Now, solving each of these integrals:


S2x


2 dV = oaD (1 (1+j) e dx


T Da I (1+j)i

4 D x x 

(d)


(e)


(f) 

(g)


(h) 

the


(i)


(j) 

(k) 

(M)


(m)


(n) 
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PROBLEM 8.17 (Continued) 

2x 
fixi e 2 2xT(1+j) 

1 o•a 2 2jwt (p) 
4 D x 

Hence, taking the real part, the force as in equation (n) is:


S1 oa 12(1 + cos 2wt)i (q)
4 D x 

Part c


Using the Maxwell stress tensor, we choose the surface shown in the


figure,

O 

f = T jnjda = Txxn da + T n da (r) 

(1)(3) (2)(4) 

Along surfaces (2) and (4), Hx = 0 along the interface between the perfect 

conductors and the finite conductivity block. Thus, 

T = oHHy = 0 (s) 

At surface (3), the field is zero since all current filaments complete a 

closed loop circuit with the source through the block. Hence 

T = 0 on surface (3) (t) 
xx


Therefore the calculation of the force reduces to 

f =- f T da (u) 

T o H2 (v) 
xx 2 z


And thus, 
aDoH 

f = o H2 (w) 
x 2 z 
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PROBLEM 8.17 (Continued) 

where the field Hz is evaluated on surface 1, i.e. x = 0 and is simply given 

by the boundary condition (j). Thus it follows 

al

a=4D 2 (1 + cos 2wt}ix (x)


which checks with (q). Note that the distribution of J and H, as found in 

part (a), are not required to find the total force in this problem. Even more, 

(x) is not limited to 6 << x block d1•lension, while the detailed integration is.


Note: We have made use of the rule for products, namely of:


a(t) = Re[Ae
jwtj ] = 

Ae +
2

A*e 
2 

b(t) = Re[Be ] = 2 
2 

then


-
AB* + A*B ABe 2 jwt + A*B*e 2 jwt


a(t)b(t) = 44 +4 4


AB* AB 2jwt
= Re[ --

2 
* + Re[-

2 
e t 

avg. value time varying part


PROBLEM 8.18


Choose the surface shown in the figure.


r -----­
/ 0j r- - - - -­

I-. -- -­

f fTijnjda = f Tlnlda+ T2n2da + T3n3da (a) 

3,4 5,6 1,2 

Since the plates are perfectly conducting, E1 = 0 at surfaces (5) and (6) 

and .hence T12 = 0 on surfaces (5) and (6). Surfaces (1), (2), (3) and (4) 

are far from the body so 
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PROBLEM 8.18 (Continued)


V 
E= i (b)

d z


at each of them, and thus, on surfaces (1) and (3), T1 3 0=. Therefore,


fl = - 11da3 + f Tllda (c) 

(3) (4) 

T(3) T ) o (V (d)11 11 2 

and a3 = a 4 (areas). Hence, 

fl = 0 (e)


PROBLEM 8.19


Part a


Since the system is electrically linear, 

S= BI + Br (a) 

where BZ and Br are respectively the fields from the left and right wires. 

The force on a unit length of the right wire is 

=r x B da = Jr x , da + x BE da (b) 

but, 

Jr x Br da = 0 (c) 

ane hence, 

f = J x Bi da (d) 

Since, we don't need the fields near the wire, 

P I x2 1- (xl+a) 2 
9 2 (xl+a) + x2 e 

0
1l -x2 1 + (x 1-a)12S 
r 2 (x -a) 

Hence, 

fr = rx B da 

2 p o1 (2a)i 

r 2w1 2
(2a) 

22 
+x 2 j (f) 

- I 3 x Bz (xx (g)

1 a, x2=0) 


pl 2 

4wa 1 (h) 
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PROBLEM 8.19 (Continued)


Part b


I 
I /­

Along the symmetry plane of the surface shown in the figure


- o (-2a) (i)
=2w 2 2 2 

(a +x 2 ) 

The terms of Tij go as B2, but B2a - and the surface area goes as 27R on surface 

(2), hence the contributions of the stress tensor will vanish on surface (2) as 

R-o; we need only compute the integral on surface (1). Because H1 0 in the 

plane xl = 0 

f= f-T1 1 da = 2 dx2 

o 	Ia2 dx 2

22 2


- -j- (a +x2) 

Solving this integral, we find

Io2


f P 	 (k)

1 4ra


also


f2 f3 = 0 (Y) 

since 

T21 T = 0 31 (m) 

and hence the total force is that of (k) and it agrees with that determined 

in part (a). 
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PROBLEM 8.20


ioL7 

\
\~


4-21 0 
| • | !


- X.IF- O .j~ I 
r 

/ 
0 / 

I~/


Part a


Use the contour indicated in the figure. At infinity the fields will go


to zero, and hence there will be no contribution to the force from the semi­


circular part of the area, i.e. surface (2).


Along the line x2 = 0, E2 = 0 by symmetry and


2 X

E1 = ( )sin8 

o

2 2 2


r = a + X 

x1 x


sinG =

r 2


Hence 
o x1 

X X1 
E1 = oe a2+x22 

f2 = T2jnda = T21nda + t22n2da + T23n3da 

(1) (1) (1)


first and last integrals = 0, n 1 and n3 = 0 on surface 1 
2 

T 2 2)o2 2 
22 2 1 2 c ft (a +x )2 
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PROBLEM 8.20 (Continued) 

Thus 

f 
2 
=- 2 

f2 

2cr 

SXl2 
dxl 

x 2 22 
o (a +x ) 

f2 

2 P4a a 

Part 	b


From electrostatics,


f = AE 

From the figure, we see that 

E(x2=a) = 2 (2a)


Hence,

2 

4we 0 a 2 

which is the same as we obtained using the stress tensor - (see equation (h)).


PROBLEM 8.21


Part a 

From Eq. 8.1.11, 

BB 
Xy 0 
lo


0Tij	 2L0 x y 

0 1 2 2
0 - (-Bx-By)

2v x y0 

where the components of B are given in the problem. 

Part b 

The appropriate surface of integration, which is fixed with respect to the 

fixed frame, is shown in the figure.


We compute the time average force,
 to

d.h iUbL rL U i I LUL U f an 	 ence contr ut. ons rom SUL aces 

(1) and (3) cancel. Fields go to


zero on surface (2), which is at


y-. Thus, there remains the stress

I on surface (4). The time average 

value of the surface force density T +· c c~ea 
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PROBLEM 8.21 (Continued)


is independent of x. Hence,


T = - <T (y=O)> (b) 
y yy


T <-B 2 + B2> (c) 
y 21p x y


Observe that

^ -JkUt 

<Re A -e jkUt Re B e kUt> 
22 

Re A B* (d) 

where B* is complex conjugate of B, and (c) becomes 
T R-kx (-jklj 0K°) jkx (jki K ) jk x 

e-Ty Re-( Koe kX) (p K )+ e e 
0 

2 k2 (e) 

= 4 (1 aa* ) (f) 

Finally, use the given definition of a to write (f) as


T = - - (g) 
y 4 U 2 

S1+ (-10-)

Note that T is positive so that the train is supported by the magnetic field.


Y 
However, as U-O (the train is stopped) the levitation force goes to zero.


Part c


For the force per unit area in the x direction;


1T - <B B (y=o)> (h)
x 21 ° x y 

1 Re[V° K e j k x 
( 

-jk0 -jk (i)= Re Kek K ejkx M 
2V a* o0 

Thus •K2 V aU 

Tx 0 Re j 1- j 
SaU 2 1/2 

2[1 + (-ý) I 

As must be expected, the force on the train in the x directions vanishes as 

U-O. Note that in any case the force always tends to retard the motion and 

hence could hardly be used to propel the train. 

The identity sin(e/2) = + /(l - cosO)/2 is helpful in reducing (j) to 

the form 

- K2 p crU 2 
T=° 0 ( 1+ (-e- 1) (k) 

11 0oU--2 1/2
2-
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PROBLEM 8.22


This problem makes the same point as Probs. 8.16 and 8.17, with the


additional effect of material motion included. Regardless of the motion,


with the current constrained as given, the magnetic field intensity is zero 

to the right of the block and uniform into the paper (z direction) to the left 

of the block, where 
I 

H= i 0 (a)zd 

The only contribution to an integration of the stress tensor over a surface


enclosing the block is on the left surface. Thus


f = ds T = - ds1 H (b)
x xx 2 0oz


2

I 

ds 1o 0) (c) 

The magnetic force is to the right and independent of the magnetic Reynolds


number. 

PROBLEM 8.23


In plane geometry, a knowledge of the charge on the upper plate is equivalent


to knowing the electric field intensity on the surface of the plate. Thus, the


surface charge density on the upper plate is


I t I 
a = I coswt dt sin wt (a)f A o a)

0


and


E
X

(x=a) = 
Qf 

E AE 

I 
0Wsin wt (b) 

o o 

Now, we enclose the upper plate with a surface just outside the electrode


surface. The only contribution to the integration of Eq. 8.1.17 using the


stress tensor 8.3.10 is 
A 2 

f = - AT (x=a) = o E2(x=a) (c)
x xx 2 x


which we can evaluate from (b) as


AE I 22 

fx o2 ( ow)sin20t (d) 
o 

The force of attraction between the conducting slab and upper electrode is not


dependent on 01 or ao .
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PROBLEM 8.24


The force on the lower electrode in the x direction is zero, as can be seen


by integrating the Maxwell stress tensor over the surface shown.


t


The fields are zero on surfaces (2), (3) and (4). Hence, the total force per 

unit depth into the paper is 

f f= T dx (a) 

where contributions from surfaces in the plane of the paper cancel because the


problem is two-dimensional. Moreover, by symmetry the electric field intensity


on the surface (1), even in the fringing regions, is in the y direction only 

and T = C E E in (a) is zero. Thus, the total x directed force is zero. 
xy oxy 

PROBLEM 8.25


The force density in the dielectric slab is Eq. 8.5.45. Not only is the


first term zero, but because the block moves as a rigid body (we are interested


only in the net force giving rise to a rigid body displacement) the last term,


which originates in changes in volume of the material, does not give a


contribution. Hence, the force density is


= E.Ev- (a) 
2 

and the stress tensor is

6


T = EEIE - - c k E (b) 

Note that, from (a), the force density in the xl direction is confined to the


right edge of the block,.where it acts as a surface force. Thus, we obtain the


total force by simply integrating over a surface that encloses the right edge;
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PROBLEM 8.25 (Continued) 

fl = aD E +1 (Eb) (c)ao(E2 


where a and b are to the right and left of the right edge of the slab. Also


Ea = 
2 

E 
2 

= - V/a. 
0 

Hence (c) becomes 

V 2 
fl 2 (o) (ECo) (d)(d) 

The force acts to the right, as could be computed by the energy method. 

PROBLEM 8.26


Part a


The force density for polarizable materials is:


- 1 1 -­
F =- E*E VC + - V(E*E p -) (a)

2 2 ap 

The second term on the right side represents electrostriction. Note that 

this is a case where the material volume must change, and hence the effect of 

electrostriction is important. Sincd free space and the elastic bulk are homogeneous,


changes in permittivity and ac/ap occur only at the boundary where 

the permittivity is discontinuous. The upper and lower elastic bulk surfaces


are constrained by the plates. Thus only the xl component of force is pertinent.


Since the left-hand edge is fixed, any stress arising from the discontinuity in


permittivity at that boundary is counterbalanced by the rigidity of the wall.


Therefore, all of the force arises at the right-hand boundary which is free to 

move.


The closed surface of integration is shown in the figure.
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PROBLEM 8.26 (Continued) 

1 9e 
Tij EEi J 2 ij - p EkEk (b) 

1
Since a/c << 1 and b 2- a the field at the dielectric interface is essentially 

uniform. V 
- 0o
E-= - i 2 aW (c) 

The relevant components of the stress tensor are: 

S 2 1 ae 2
T - 2 + p E2 (d)

11 2 2 2 ap 2 

T12 = E1EE2 =0 (e)


f = nT11nda + T 22da (f) 

(1)(3) (4) 

Hence 

f fT11da3 - fTldal 
(3) (1) 

E 
S 2 

V 
T) 

2 
(aD) -

E 1 V 
(1 

2 
) (aD) + P 

V 2 
(aD) (g) 

Thus;


(E- Eo)V2 D V2 D 
00 r 0(h)f 

1 
1 
2a 

o 
2 d ( a ) 

Part b


In order to use lumped parameter energy methods, the charge on the upper


plate will be found. The permittivity of the dielectric bulk is a junction of


the displacement of the rightýhand edge. That is, if mass conservation is to


hold,


po abD = (po + Ap)aD(b+F) (i) 

where 

P = Po + Ap, Ap = 0 if 5 = 0 (j) 

Thus, if Ap << po and E << b, to first order 

Ap = -p (k)
-Po b 

(see Eqs. 8.5.9 and 8.5.10) 

Furthermore, to first order, using a Taylor series,
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PROBLEM 8.26 (Continued)


a p Po 2E


1 +p 1 b ap


Also, the electric field will be assumed as uniform everywhere between the


plates. Hence; in the block


V

-2a + Ap] } (m)
;-T 22 [2 l 


to the right of the block

V


D=- 1 2a--E (n)

2 aa 0 C2 (o 

By employing Gauss's law, we find the charge on the upper plate as: 

V p0 V 

q = (P - p E}(b+)D + Eo--)(c-b-Q)D (o) 

dw = fqdv + f dx (p) 

integrating we find 

w'e = i(a 11 E 22 a o(c-b-)D2 b ap (b+ý)D + 1 (q)


Thus, 
Thus, (E-E)V2D V2 

f 
e 

eo 
e 
c v=V 

-- 0
2a 

o 1 

2 
o 

a o 
_E 

pr) 
(PD 

o 

Second order terms have been dropped in the co-energy expression (alternatively,


first order terms can be dropped in the force expression).


Part c


If the result of part (a) is written for p = po + Ap, where po >> Ap, 

then the answers to part (a) and (b) are identical to first order. This 

should be expected since the lumped parameter approach assumed a value for 

permittivity which was correct only to first order. 

PROBLEM 8.27 

The surface force density is 

T = [Ta - Tbn (a) 

m mn mn n 

For this problem, we require m = 1 and n = 12. Thus 

T1 = (T 2 - Tb2 ) (b) 

From Eq. 8.5.46,
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PROBLEM 8.27 (Continued)


T1 =EoEEa EEbEb (c) 

Note that E2 = E2 (see Eq. 6.2.31). Moreover, because there is no free charge 

coEa = CE1 (see Eq. 6.2.33). Thus, (c) becomes 

T 1 = 2 ol - EEl]1 f 0 (d)Ea[EoE I 


That the shear surface force density is zero in the x3 direction follows the


same reasoning.


PROBLEM 8.28


The force density, Eq. 8.5.45, written in component form, is


F = E ac a 1 ac (a)
i i ax 2 Ekk +a EkEk ) (a) 

The first term can be rewritten as two terms, one of which is in the 

desired form 

a i 1 De 1 E) (b) 
i -x (i j ax 2 k k ax ax 2 k k -5p (b) 

Because V x = O, aDE/axj = Ej/Dx i so that the second term can be rewritten 

and combined with the third. (Note the j is a dummy summation variable.) 

a a i a i 

Finally, we introduce 6 (see Eq. 8.1.7) to write (c) in the required form


aT

F= (d)
i ax 

where 

Tij = CE - (E-p ) (e) 
This is identical 8.5.46.
to E. 


This is identical to Eq. 8.5.46. 
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