
MIT OpenCourseWare 
http://ocw.mit.edu
 
Solutions Manual for Electromechanical Dynamics 
 
 
For any use or distribution of this solutions manual, please cite as follows: 
 
Woodson, Herbert H., James R. Melcher. Solutions Manual for Electromechanical 
Dynamics. vols. 1 and 2. (Massachusetts Institute of Technology: MIT 
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative 
Commons Attribution-NonCommercial-Share Alike 
 
For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms
 

http://ocw.mit.edu
http://ocw.mit.edu/
http://ocw.mit.edu/terms


SIMPLE ELASTIC CONTINUA


PROBLEM 9.1


The equation of motion for a static rod is


d26

0 = E d 


dx2 
+ F where F = pg


x x


We can integrate this equation directly and get


2

6(x) = - () + Cx + D,


E 2


where C and D are arbitrary constants.


Part a


d6

The stress function is T(x) = E x and therefore

dx 

T(x) = - pgx + CE. (c) 
We have a free end at x = Z and this implies T(x=2)=O. Now we can write the 

stress as 

T(x) = - pgx + pg£. (d) 

The maximum stress occurs at x = 0 and is T = pg£. Equating this to the 
max


maximum allowable stress, we have


2 x 109 = (7.8 x 103 )(9.8) 

hence 

t = 2.6 x 104 meters. 

Part b 

From part (a) 

T(x) = - pgx + pg£ (e) 

The fixed end at x = 0 implies that D = 0, so now we can write the displacement 

2 

6(x) = - •) +--E x)


Part c


6(R) = -
g2 

E 2 E 2E 

For 2 = 2.6 x 10 meters, 6(£.) = 129 meters. This appears to be a large 

displacement, but note that the total unstressed length is 26,000 meters. 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.2


Part a


The equation of motion for a static rod is


2

0 = E 22 + pg (a)


dx


If we define x' = x-L1, we can write the solutions for 6 in rod I and in rod 2


as

apg 2 

61 (x) = E ) + C2 + D1 (b) 

and

p 2 g ,2


62(x) - + C2 x' + D2 (c)


d6

where C1,C2,D1, and D2 are arbitrary constants. Since T = E 1we can also write 

the tensions, 

T1(X ) = - plgx + EIC (d) 

and 

T2(x') = - 2 gx' + E2C 2 (e) 

We must have four boundary conditions to evaluate the constants and they are:


6 (X=O) = 0, (f) 

6 2 (x'=0) = 61 (x=L1) (g) 

0 = - A 1T(x=L1 )+A2T2 (x'=0) + mg, (h) 

and


0 = - A2T2(x'=L 2) + Mg + fex (i)


where fe is found using the Maxwell stress tensor 
x 2 

o 0oe 

x 2d2


where we assume d >> 6(2) (x'=L2).

Equations (f), (g), (h) and (i) serve to define the constants of integration.


Substitution of (b)-(e) shows that


DI = 0 (k) 

plg L


E + C1L1 + D1 - D2 =0 (£)

1
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.2 (Continued)


-A1[-PlgL 1 + E1C1 ] + A2[E2C2] + mg = 0 	 (m)


E A V2 

-A2 -P2gL2 + E2C2] + Mg + o M_2d = 0 (n)

2d


Solution of these expressions, beginning with (n), gives


C2 = g + 2d2 +P2gL 2A2 A E2 	 (o) 

and hence


C1 = g + gL1 A1 + A2E2C2] A1E1 

SoA V2 

= {[(M+m) + 1 L1A1 + P2L2A2 2 AE (p) 
12 22d2


L1 1M1A1 +oA+M 2 

D=
2 AE 

{[ClL)++ 
2 P

2 
2L2A]2 2d2

0 (q) 

D1 = 0 	 (r) 

Thus, (b) and (c) are determined.


PROBLEM 9.3 

Part a 

Longitudinal displacements on the rod satisfy the wave equation 

2 2 
p = E and the stress T = E -(a)

2 2 	 ax
at ax 

We can write 6(xt) = Re[6(x)e ] for sinusoidal excitations. 6(x) can be 

written as 6 (x) = C1sin ýx + C2 cos fx where = ww/p7E. The two constants are 

found from the boundary conditions 

2


M 	2 6 (£,t) = - AT(k,t) + f(t) (b) 
at 

6(0,t) = 0. 	 (c) 

These conditions become


2 ds
-M2 6(£k) - AE - (k) + f 0 	 (d)

dx o 

and 

S(0) = 0 (e) 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.3 (Continued)


for sinusoidal 	excitations.


Now we find C2 	 = 0 and 

f 
Co (f) 

AE~cos8t- MW sin8t2


Hence,


6(x,t) = sin~ x 2 Re[foet ( 
AE$cos 8t-Mw sinat 

and


T(x,t) = E EaEcosx Re[f wt]e (h) 
x AE~cos$Z-Mw sin 2 0 

Part b


At x = 2, 

6(t,t) = Re[foe et 	 (i) 

AEMcotaS-Mw2


where 8cot8£ = 	wv 7T cot (wt/r7E). 

For small w, cot(wt/pE) + 1 and 

6(1,t) 	 MAE2 f(t) (j) 
MW 

This equation is as used to describe a mass on the end of a massless spring:


2 
Mdx = - Kx + f(t) (k) 
o dt2


and 	 H Mto 

x = Ref[eJWt],


- M x = - Kx 	+ fo, (0) 

or


x f(t) (m) 
K-M w 

Comparing (j) and (2)we note that 

K = AE and t = Z. 	 (n) 

Our comparison 	is complete and since M >> pAt we can use the massless spring model


with a mass M 	= M on the end. 
0 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.4

A response that can be represented purely as a wave traveling in the negative


x direction implies that there be no wave reflection at the left-hand boundary.


We must have


v(O,t) + 1 T(O,t) = 0 	 (a) 

as seen in Sec. 9.1.1b.


This condition can be satisfied by a viscous damper alone:


AT(O,t) + Bv(O,t) = 0 	 (b) 

Hence, we can write


B = ArpE


M = 0 	 (c)


K = 0. 

PROBLEM 9.5 

Part a 

At x = k the boundary condition is 

36

0 = - AT(£,t) - B 2- (£,t) + f(t) 	 (a) 

Part 	b


We can write the solution as


6(x) 	= CI sin Bx + C2 cos 8x, (b) 

where a = w . At x = 0 there is a fixed end, hence 6(x=O) = 0 and C2 0. 

At x = Z our boundary condition becomes 

F = 	 JwB6(x=2) + AE d•x (x6=), (c)o 	 dx


or in terms of C1;


Fo = 	JwBC1 sin 8£ + AESC1 cos at (d)


After solving for C1, we can write our solution as


F sinSx

(x) = o 	 (e)AE~cosaB+jwBsini(


Part c


For w real and B>O, 6 cannot be infinite with a finite-applied force, because


the denominator of 6(x) can never be zero.


Physically, B>O implies that the system is damped and energy would be
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SIMPLE ELASTIC CONTINUA 

PROBLEM 9.5 (Continued) 

dissipated for each cycle of operation, hence a perfect resonance cannot occur.


However, there will be frequencies which will maximize the amplitude.


PROBLEM 9.6


First, we can calculate the force of magnetic origin, fx, on the rod. If 

we define 6(9,t) to be the a.c. deflection of the rod at x = Z, then using 

Ampere's law and the Maxwell stress tensor (Eq. 8.5.41 with magnetostriction 

ignored) we find


=
f 2 (a)

X 2[d-6(ý,t).] 

This result can also be obtained using the energy methods of Chap. 3 (See


Appendix E, Table 3.1). Since d >> 6(t,t), we may linearize f : 
2oAN222AN22 

f 
x 

-
2d2 

+ 
d3 S(£,t) (b) 

The first term represents a constant force which is balanced by a static deflection


on the rod. If we assume that this static deflection is included in the


equilibrium length X, then we need only use the last term of fx to compute the


dynamic deflection 6(£,t). In the bulk of the rod we have the wave equation;


for sinusoidal variations


6 (x,t) = Re[6(x)e1j t ] (c) 

we can write the complex amplitude 6 (x) as 

6(x) = C sin Bx + C cos ýx (d) 

where a = U4. At x = 0 we have a fixed end, so 6(o) =0 and C2 = 0. At x = Z 

the boundary condition is


0 = f - AE (£,t), (e)x x 
or AN2 2 

p AN d

0 = 6(x9=) - AE (x=9) (f)3 dx 

Substituting we obtain


p AN2 2 

d3 C1 sin 8£ 
= C1 AEa cos BZ 

(g) 

Our solution is 6 (x) = C1 sin ax and for a non-trivial solution we must have 

C1 j 0. So, divide (g) by C1 and obtain the resonance condition: 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.6 (Continued)


i AN212


( 3 ) sin BU = AEB cos B$ 
d 

Substituting B = w and rearranging, we have 

3

~(N212 = tan( .-­


-
o1N2 12t 

which, when solved for w, yields the eigenfrequencies. Graphically, the first


two eigenfrequencies are found from the sketch.


I I 
I I 

StE~A 3/~44 ,N 
1

Ejc.A3' 

;IE-

Notice that as the current I is increased, the slope of the straight line decreases


and the first eigenfrequency (denoted by wl) goes to zero and then seemingly


disappears for still higher currents. Actually w1 now becomes imaginary and can


be found from the equation


oL ( IfwlI I) = tanh( ol Z)
10N212Z


Just as there are negative solutions to (i), -wl, -w2 " etc., so there are now


solutions + JIwlI Thus, because wl is imaginary, the system is unstable,
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.6 (Continued)


(amplitude of one solution growing in time).


Hence when the slope of the straight line becomes less than unity, the system


is unstable. This condition can be stated as:


STABLE 
Ed
Ed > 1 (k) 

S0N2 2 
or 

UNSTABLE 
Ed 

2 < 1 (a) 

pN2 2 

PROBLEM 9.7 

Part a 

6(x,t) satisfies the wave equation 

2 2 
p 2--E 2 (a) 

at ax 

ac 
and the stress is T = E 2-. We can write 

ax 

6(x,t) = Re[•6(x)e J t ] (b) 

and substitution into the wave equation gives


d2ýd + B22 6 = 0. (c) 

dx 

For x > 0 we have, 

6(x) = C1 sin ax + C2 cos ax (d) 

and 
Ta(X) = C1ER cos ax - C2Ea sin 8x (e) 

and for x < 0 we have, 

6b(x) = C3 sin ax + C4 cos Bx 
(f)


and


Tb(x) = C3ER cos ax - C4 EB sin ax (g) 

Part b


There are four constants to be determined; thus we need four boundary


conditions. At the right end (x=L), we have


6 (x=L) = 0 (h) 
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SIMPLE ELASTIC CONTINUA 

PROBLEM 9.7 (Continued) 

and the left end, 

6 b (x-L) = 6oe 

There are two conditions at the middle (x=O), 

6a(= 0+ ) = 6^(x=O -

and 

(i) 

(1) 

-Mo 
2 

6a(x=O) = ATa(x=+ +
) - ATb(x=O) - 4K6a(x0) (k) 

Part c 

Solving for C1 ,C 2 ,C 3 , and C4 we obtain 

-j 
-6 AEBe cotBL 

c o ()
1 sin6L(4K+2AEBcotBL-M 2 ) 

6 AEBe 
C 
2 sinBL(4K+2AEBcotSL-M 2) (m) 

11E 7 
-j -j­


6 AE~e cotBL 6 e

= o o (n) 

3 sinL (4K+2AEBcot L-Mw2) sRL) 

C =4C2 (o)


Thus, (b), (e), and (g) with these constants give the desired stress distribution.


PROBLEM 9.8 

In terms of the complex amplitudes, (k) and (r) become 

LI 
T'(0) = i (R) - text (a) 

and 
LLI


T'(Z) = o i' (r) - text (b)
aA 

where i - Gv 
0 

Equation (t) without the approximation becomes


^ GLo (P+p) ^ L I

v = - j + j 6 (c)

o 1-11 o a o


Using the steady-state solutions for the rod, we can solve for T(x) in terms of


the boundary values T(O) and T(P): 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.8 (Continued)


T(x) T(O) sin[k(k-x)]
sin[kt] 

+ T() sin[kx]
sin[k2] 

(d) 

then 

1 [ cos[k(-x)] cos[kx] (e) 
sin[kt] sin[k] 

From (a) and (b), this becomes


)_ 1 lo_ 1 o ^ cos[kt~
6(M) = 60 i v 	 (f)o a•aA i sin[kt] aA o sink 	 f) 

Thus, in view of (c) solved for 60, we obtain the system function


H(w) = 
i 2 wGL (1+1) 2 
i cosfkt]+j/p ()(a oI ) sin[kP]- o AC G(+a I)sin[k)] 

o o 

(g) 

PROBLEM 9.9


Part a


First of all, y(t) = 6(-L,t) where 6 (x,t) = Re[6(x)eJet]. We can write the 

solution for 6 as 6(x) = C1sinBx + C2cosBx, where = wm/pE. The C2 is zero 

because of the fixed end at x = 0(6(0) = 0). At the other end we have 

2 
M 26 (-L,t) = A2 E -xL (-L,t) + fe(t) (a) 
Bt 

Using the Maxwell stress tensor, (or the energy method of Chap. 3) we find 

Ae N2 	 [ -(t)]2 [I( + I(t) 2 (b) 

[d-D+6(-Lgt)] [d-D-6(-L,t)]2 

which when linearized becomes,


fe(t) - C I(t) - C 6(-L,t), (c) 

where 

2N2p AI 2N21oAI2 

CI 0 2 ;C 
(d-D)2 'y (d-D)3 

Our boundary condition (a)becomes 

2 d6 ^ 
-Mw 6(-L) = A2 E dx (-L) - C I - C 6(-L) 	 (d) 

Solving 	for C1 we obtain
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.9 (Continued)


CI 
CI 2 , (e) 

A2EcosSL - (M -C )sinBL 

and we can write our solution as


y(t) = Re[-C sinBL ejWt]. (f)


Part b


The transducer is itself made from solid materials having characteristics


that do not differ greatly from those of the rod. Thus, there is the question


of whether the elastic response of the transducer materials is of importance.


Under the assumption that the rod and transducer are constructed from materials


having essentially the same elastic properties, the assumption that the yoke


and plunger are rigid, but that the rod supports acoustic waves,is justified


provided the rod is long compared to the largest dimension of the transducer,


and that an acoustic wavelength is long compared to the largest transducer


dimension. (See Sec. 9.1.3).


PROBLEM 9.10


Part a


At the outset, we can write the equation of motion for the massless plate:


-aT(l,t) + fe (t) = M (£,t) 0 (a) 
at 

Using the Maxwell stress tensor we find the force of electrical origin fe(t)

to be


(V0 - v(t)) 

6 (b) 
(d6 (L, t)'Zý"to'-5 

Since v(t) << Vo and 6(£,t) << d, we can linearize fe(t):


2E AV2 2E AV 
fe(t) [oaV (,t) + v(t) (c) 

Recognizing that T(£,t) = E ýx (£,t) we can write our boundary condition at 

x = R in the desired form: 

2E AV2 2c AV 
ax (t) 0 6(,t) + o2 v(t) (d) 

d d 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.10 (Continued)


Longitudinal displacements in the rod obey the wave equation and for an


jWt
assumed form of 6(x,t) = Re[6(x)et] we can write 6(x) = C1sinax + C2cosax, 

where 8 = wr/7E. At x = 0 we have a fixed end, thus 6(x=0) = 0 and C2 = 0. 

From part (a) and assuming sinusoidal time dependence,we can write our boundary 

condition at x = 2 as 

2c AV 2 2E AV 
aE L(Z)

dx 
= 

3d 
6() + 

2
d 

o (e) 

Solving


2E AV V 
C1 o o (f) 

2c AV
2 

aEd28cos - o o sin S£
d


Finally, we can write our solution as


2eoAVo0 jwt ]6(x,t) = FAV 2 Re[Vet (g) 

2 S£ 2 AV aEd2 cos - d sinat 

PROBLEM 9.11


Part a


For no elastic wave reflection at the right-hand boundary we must have a


boundary condition of the form


v(0,t) + 1 T(0,t) = 0 (a) 

(from Sec. 9.1.1b). Since v(O,t) = -6 (0,t), we can write 

-- (O,t) = T(O,t) (b) 

If we write the boundary condition at x = 0 for our example we obtain 

0 = - ST(O,t) + fe(t), (c)x


or for perturbations


0 = - ST(0,t) + fe (t) (d)
a.c. 

Combining (b) and (d) 

fe (t) = - - (0,t) (e)SpE
a.c. at 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.11 (Continued) 

and since 365/t (O,t) = dys/dt, 

dy_


f ec (t) 	 = - SP a.c. 	 dt 

The perturbation electric force can be found using the Maxwell stress tensc 

(using a surface of integration similar to that illustrated by Prob. 8.10): 

E V2D E V2D 2E V Dv 
e o oo + o s 

ft) 	 -- + 
x a a a


2E V Dv

where we 	associate fe (t) s


a.c. a 

Equation (f) now becomes 

2e
o2	
V 

o 
Dv 

s = S/pf -
dy 

(Oh) 
a edt 

Now that 	we have dealt with the force balance we can write the circuit equat ions.


The capacitance of the


+. V. device is found to be


C = ­

Note that 	q = Cv and i=d- . The basic circuit equation is 

v+iR = V =v+R =v+RC d+vd (i)
o 	 dt dt dt 

Substituting, 	we obtain 

2E DR 

V = v + RC +dv o dy 
o 	 dt a dt 

and 	for perturbation quantities,


dv 2E DV R dy s
s o 	 o
O = v + 	RC + 0 

s o dt a dt 

Since w << v >> RC dv /dt and now we have
RC s 	 R o 

2E DV R dy

0 v +


s a dt




SIMPLE ELASTIC CONTINUA


PROBLEM 9.11 (Continued) 

Equations (h) and (t) must be satisfied simultaneously and this can occur 

only if 

2E DV0R aSp (m) 
o = (m) 
a 2c VD 

oo


Finally from (m) we have the condition on the d.c. voltage,


Vo= S- (n)n1/2
V o - 2E D [SvR l (n) 

PROBLEM 9.12


Part a


Note that there is no mutual capacitance between the two pairs. We can find


the capacitance of the left-hand pair of plates to be 

d( - y2) Eod(' + y2)c = + (a)
2 h h


The current 12 can be found from 12 = dq2 /dt = d(VoC2)/dt = V dC2/dt, 

and upon substitution of C2 we obtain


i (E-E )Vdd]dy2 (b)2 


2 h dt 

If we solve for y2 in terms of vs our job will be done.


Define the y-axis from left to right with y = 0 at yl = 0. Assume all


constant forces (with v = 0) to be balanced and consider only the perturbations.
s 

If we assume for the rod 6(y,t) = Re[i(y)e j t ] then we can write 

6(y) = C1 sin By + C2 cos By (c) 

where = w/plE . (We have assumed that the electrical forces act only on the 

surfaces of the rod. This is evident from the form of the force density, Eq. 

8.5.45, if the effect of electrostriction can be ignored.) At y = 0 there is 

no perturbation force and for a.c. deflections we have a free end condition: 

A


d6 
0 = T(O,t) E - (y = 0) = 0 (d)

dy 

This forces C1 to be zero. At y = I we can write the boundary condition as 

0 = - hdT(t,t) + fe (t)a.c. 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.12 (Continued)


Using the Maxwell stress tensor (or energy methods, as in Sec. 8.5.4)


fe~t ) (Ec-o)d
fe(t) = 2h (V + v )2 (e) 

Linearizing and ignoring the d.c. term we have 

(E-E )V d 
f 
e 

(t) = 
o o 

v .la.c. h s 

From the boundary condition for complex amplitudes we obtain


(Ec-Eo)V d

0 = - hdE T () + h v (f)

dy h f 

Substituting and solving for C2; 

-(E-E 
o)Vo ^ 

2 v . (g) 
S ksh2E sin 

Recognizing that Y2(t) = 6(0,t), we can now write 

h Eh8 sin f3, 

Since 2 = 
-(CE-cE)Vod 

h 
dY2 , we have 

h dt 22 

i2 = Re v e t (i)
2 Lh3 E sin t sv 

Finally, we can write


2 o22 
Y(jw) ^ - 3(j) 

v h ER sinr3 
s 

Part b 

The poles can be found from 

h 3 Ea sin Pt = 0 (k) 

where 8 = wp7iE. The lowest nonzero frequency can be found from 

sin(wlJpEj = 0 to be 

Note that the A)= 0 is a pole because the rod is free to translate slowly between 

the plates. 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.13


Part a


The flux for the left-hand transducer is

2
poN

X = 2 2wR(a-6(0,t))i£
2, 

and for the right-hand one,

2
N

Xr = 2I7R(a+6(L t))i r 
(b) 

For this electrically linear situation we have W 
21 

2 Li  1 
Xi and f = 

awl 
m 

Hence we find, to linear terms 

f
f 

-
N2 

° 
g 

2 
rR(I 2 

o 
+ 21 i)

o 
(c) 

and, because ir = 	 I - out 

2 

f = N2 rR(I - 21 Gv ) 
r g 0 o out 

Part b


For the left-hand transducer, an acceptable stress-tensor surface is shown


below, 

T Ac eC­

and the mirror-image is acceptable for the right-hand transducer. Application 

of f = f Txjnda to the two surfaces yields the same result as in part (a). 

S 
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.13 (Continued)


Part c


The wave equation holds in the rod for 6(x,t). Assuming 6 = Re[6(x)eJWt], 

we have 6(x) = C1 sin B x + C2 cos 8x, where = w/pE. At x = 0, f= -T(0,t)(rrR) 

which yields 
N 2I 


211i0N 0 A1


T(0) = Rg = C I,

ci


which in turn implies C1 =E . At x = k, fr = T(L,t)(,R ), which will yield C2.

The only other relation we need is the electrical circuit equation, which


we can find from


out dt Eze;G


to be


IoL1 ji 6(L)

v (e)

out a(l+j GII1w)


where L1 = N2(27Ra)/g. 

Finally we can write G(w) as


S=out jIoL1CI 
= aE~sin8L(l+jGL1w)-jwGC IoLcosf( 

Part d

1


If G << so that the self inductance of the output transducer is negligible

1


and the system is matched so that a/iE = G C IoL 1 we have


Vout JIoILICI
,out=oa I C I(g)

I aJrE [sinSL-jcosBL]


and


Vout o L 1
 =0 a(h)


PROBLEM 9.14


Part a


With no perturbations and no volume force in the rod we know that the


stress, T(x1), will be constant. At x1 = 0, 

0 = - AT(x = 0) + fe 2 (a) 
SV A 

where, using the Maxwell stress tensor, fe = Hence, 
2
2d
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SIMPLE ELASTIC CONTINUA


PROBLEM 9.14 (Continued)


C V2A


T(x1 21

2Ad 

Part b 

The velocity of the wave will be v = p-•and the transit time will be 

td = L/vp 

Using Table 9.1 we have 

t 1 = 1.96 x 10 - 4 sec.
d 5100


Part c


This part is similar to Prob. 9.11, where our condition for no reflection


fe (t) = - AA/ip-- (O,t)
a.c. at 

Using the Maxwell stress tensor 

A v2 cA V2 E AV 
fe Ao1 - olo 

+ ol o v'


2d 2d2 d2


where v = v' + V . Here, we ignore the effect on fe of the change in d resulting
o 

from the motion of the plate.


Writing the circuit equation we have


iR + v = V = R + v = R C dC 
o dt d-t dt 

The capacitance C is


ooA1o = 1 + oalo• 

d-6(0,t) d d2 6(0,t) 

Our equation becomes


0 = v' + R A1 d+RV E 
2 

1 6 ,t)

d dt o at


d 

and since 

SEoA1R dv'

d dt '


we have
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PROBLEM 9.14 (continued)


RV e 	A 

v' = 2
2 a t (0,t) (g)

d

Now we can use this result to write fe = EAV v'/d 2 , and the condition 
a.c. o o 

that this force take the form of (c) requires


A/p$E 	d = RV2 2A , (h)o o1 

or equivalently


R = 	A/CpSd4 (:i) 
E2A2V2 

PROBLEM 9.15


Part a


We have from the problem statement


ip(z+Az) - P(z) = 3TAz . 

If we take the limit Az + 0, then we obtain 

1 3IT =

a
3z 

Part b


We can write the equation of motion directly as


2

-
(JAz) 	• = T(z+Az,t) - T(z,t).

at


Dividing by Az we have


j aý = T(z+Az,t)-T(z,t)

2 Az
at


Taking the limit Az + 0 we obtain 

at2 	 az


Part 	c


Substituting the result of part (a) into the result of part (b) we get


9 	 2 

at2 	 az­
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PROBLEM 9.16 

Part a 

We seek to write Newton's law for motions in the z direction of a slice 

of the material having x thickness dx. In our situation the mass is 

?2 22 
padzdx, where the acceleration is a 6 /3t . The net force due to the stress is 

F = [Tx(x+dx) - T x()]a dz 	 (a) 

and

3-6

S z dx adz = [T (x+dx) - T (x)]a dz (b) 

2 zx zx 

Finally)in the limit dx + 0 we have 

32 6 3T 
Z ZX 	 C)p z = zx 	 (c)

t2 3x 

Part 	b


The shear strain, ezx , is defined so that it is proportional to 

6 (x+dx) - 6 (x) normalized to the distance between points dx. If T z=2G ezx 

then in the limit dx + 0 T = G 36 /3x if we define 
zx z


1 z

e 	 (d)

zx 	 2 ax 

The 1/2 is included to subtract out rigid body rotation, a point that is


important in dealing with three-dimensional motions (see Chap. 11, Sec.


11.2.la). 

Part 	c


From part (a),


a26 3T


P 2 z 3x zx 	 (e) 

Using the result of part (b) we have


p-
326 

= 
326 

; 	 Cf) 

3t 3x


the wave equation for shear waves with the propagational velocity


v = 	 ­
P P 
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PROBLEM 9.17 

Part a 

Conservation of mass implies: net mass out per unit time = time rate of 

decrease of stored mass 

[pv + a(pv) AxA - (pv)A = - [p(Ax)A] (a)
ax at 

As Ax - 0, we have 

a ap (b) 
a (pv) + 0 (b)jx at 

If we write p = p + p'(x,t) and v = v(x,t) then we obtain by substitution 

p av•+-a(pv) (c)
o ax ax at 

Retaining only first-order terms we have


pav ap (d)

o ax at


as desired.


Part b


Conservation of momentum implies:


time rate of increase of stored momentum = net momentum in 

per unit time + externally applied force


-C(pvAxA) = - [pv 2 + (v Ax]A +(pv2)A + pA - (p + ax A x)A (e)at ax 

as Ax + 0, we have 

2

a(pv) = a(pv 2) (f) 
at ax ax 

Expanding we have


p(a + v 2) + v (a(Pv) + ) () 

this term is zero 
by conservation of


mass
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PROBLIEM 9.17 (continued)


Finally we have


p ( 	 + vper = - (h) 

Substituting the perturbation quantities and retaining only the first order


terms we obtain


yv= _

0o •t ax 

Part c 

In terms of perturbation quantities we can write 

p' = a
2 0'


where


a ­

o 

Substitution for p' yields the two equations 

av ap' 
Po ax = t 

and 

-a 2 ' = ° 
avy* 

Combiningxweo obtaint 

Combining we obtain 

2 2 

at 

= a 
x 2 3x 

(scalar wave equation) 

Part 	d 

If we substitute v = Re[v(x)e j t ] in the above equation we obtain 

dv(x) 2 

d 2 +-•2 v(x) = 0dx a


which has solutions of the form 

v(x)=C sin(- x) + C2 cos(a x). 
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PROBLEM 9.17 (continued) 

A rigid wall at x = 0 imples that v(x=n) = 0. The drive at x = Z and the 

equations of part (c) imply that 

v (p) 

dx 2

a po 

at x = 2. 

The solution for v is 

j~o sin( x) 
v() 0 (q) 

apo cos((
a 

) 

and we can now obtain v(x,t): for p real 
o 

p sin(01 x)

= v(x,t) a sin wt. (r) 

apo cos (- )
a 

PROBLEM 9.18


We can calculate the values of d6+/da and d6-/d8 for three regions of the


x-t plane as defined below. 

/ 

Referring to equations from text, 

Region A: 

d6+ 1 m d6­ S-= 0 
da 2 v ' d0 

and 
v 

T E m
2 v 

p 

9.1.23 and 9.1.24, 9.1.27 and 9.1.28: 

(a) 

(b) 
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PROBLEM 9.18 (continued)


Region B:


d6+ d6- 1 Vm

d- d6 2 v 

E m 
T


2v

P 

Region C:


d6+ ds­
= 0 and T = 0. 

de dB


Plotting T(x,t) in the x-t plane we have 
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PROBLEM 9.19


We can find d6+/da and d6-/d3 for four regions of the x-t plane:


DD 

a 

-0 

<1D 

Referring to equations from the text 9.1.23, 9.1.24 and 9.1.27, 9.1.28 we have, 

Region A: 

d6+ 1 T(a) d6- 1 T(R) 
da 2 E ' dB 2 E (a) 

Region B: 

d6+ 1 T(a) d6­

da 2 E ' dB


Region C: 

d6+ d6- 1 T(a) 
da 0' df 2 E (c) 

Region D: 

d6+ d6­


da dB =•0 (d)


We can use these values in equation 9.1.23 and 9.1.24 from text and make the 
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PROBLEM 9.19 (continued)


'F'/~ E 

PROBLEM 9.20


Part a


The free end at x = 0 implies that T(0,t) = 0 and using equations 9.1.23


through 9.1.26 we can easily find that velocity pulses "bounce off" x = 0


boundary with the same sign and magnitude. For the x-t plane we can indicate


the values for v(x,t):


/P
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PROBLEM 9.20 (continued)


Part b


We can make use of part (a) if we use superposition. Consider the super­


position of boundary and initial conditions; a free end, T(O,t) = 0 with the


initial conditions in part (a) and the T(O,t) as shown in Fig. 9.P20b with


initial conditions on T and v zero. Since the system is linear, we can add


the velocities that result from the two situations and thus have the net


velocity. For the response to the second set of conditions we have


o0-/-VP 

Add this velocity set to the set in part (a) and we obtain:


vtY 
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PROBLEM 9.21


Part a 

With the current returned on the inside surface the field in the air gap, 

is H = I(t) 
z D 

/a 

/ ' 

and the force per unit area acting on the inside surface is 

2


Tx=2o-1 Ia2 , (a) 

The force is f =-T aD = I (t) and the boundary condition at x = - £ 
x x 2 D 

is 
326 1 oa 2 
S--

2 
(-£,t) = 2 D (t) + AT(-R,t) (b) 

at
Part b 

The current will flow on the surface when the time T is much shorter than 

the characteristic diffusion time Td over the length b:


Tdd 
> > T or oabo >> T (c) 

Part c 

In order to ignore the mass M, the inertial term must be small compared 

to AT(-£,t). For t < T, 6_ = 0 on the rod, and from Eqs. 9.1.23 and 9.1.24, 

E a6 
T(-Z,t) = - (-Y,t) (d) 

v Tt


Thus M26 

t 2p 

or 

M << AE T/v (f) 
p 

Our boundary condition In part (a) now becomes: 

a
0 = 1
2 D

o 2 (t)+ AT(-£,t) (g) 

Since there is a fixed end at x = 0 we know that a stress wave traveling 

in the +x direction will reflect at x = 0 with the same wave returning in the 

-x direction. To satisfy the condition v(O,t) = 0, Eq. 9.1.23 shows that 

d6 /da = d6 /dB at x = 0. Thus, from Eq. 9.1.24, the stress is twice that 

-107­



SIMPLE ELASTIC CONTINUA


PROBLE1I 9.21 (continued)


initiated at the left end


pa 
T -=oa 12 (h)

r DA o


PROBLFM 9.22 

Part a 

We have W = W' and U = C + U' where W' and U' are perturbations from 

equilibrium. Rewriting the equations we have 

3W' aw' aU' + K BU'
+ (-') W + _ = 0 (a)

(C+U')3 ax


and


+ aU'aw' aU'
- (C+U') -L + (W') - = 0 (b)
at ax ax 

Neglecting all second-order perturbation terms we have 

aW' K 3U'

+ (1 + -) • = o (c) 

-au' + ((C) w' = 0 (d)

at ax 

Part b


Multiplying the above two equations by and x' respectively, we have


329' K 2U'e) 
+ (1 + = 0 (e)


t2 C
3


and


a2 U' 32W ,


+ (C) 2-= o (f)

axat (C)


Eliminating U' we obtain


aw2' K a2 
2 
a'= c(1 + 

3
) 

2 (8) 
at C ax 

which is the familiar wave equation with wave velocity v = C(I + K)3 

We can write the solution as 14' = ReIW(x)ejt] where 

N(x) = C1 sin Ox + C2 cos Bx (h) 

with = wou/v 
p 

At x = 0, W = W' = 0 and hence C2 = 0. At x = - L, W =W' = Wo cos wt, or equiv­

alently t"(-L) = Wo, hence C =-Wo/sinpL. Upon substitution we find that 
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PROBLEM 9.22 (continued)


the solution is


W sin 3x 
W = W' = -

sin BL 
cos Wt . (i) 

PROBLEM 9.23 

Part a 

This part is similar to Prob. 9.24 with two simplifications:


V = 0 and 
o 

the mass is M/unit width (Mw) instead of 2M. The two separate relations yielding 

the natural frequencies are 

and sin (L ) = 0 (a) 

and 

m = tan (wL (b) 

(a) yields wL /~7/S = nir where n = 1, 2, ... and corresponds to solutions 
m 

which are "odd", or ý(x) = - F(-x). (b) can be solved graphically and corresponds 

to solutions which are "even", or ý(x) = F(-x). 

Part b 

The effect of raising M is to reduce the eigenfrequencies of the "even" 

modes. The "odd" solutions predicted by (a) are independent of the mass M. 

This is physically reasonable since there is a node at the mass,and since 

the mass doesn't move there is no inertial force. For the "even" solutions 

predicted by (b), we notice that if M = 0 we have essentially the natural 

frequencies of a membrane of length 2L. As M + -, the system responds like 

two different membranes of length L. The infinite mass acts like a 

rigid boundary. 

PROBLEM 9.24


Part a


We can use the Maxwell Stress Tensor to find the forces of electric


origin. If fe corresponds to the force due to the upper electrode and

u 

f corresponds to the force due to the lower electrode, then we have:


C V2AA 

f(t) 
u 

= oo 
2[d-_(O,t)]2 

i 
y 

(a) 
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PROBLEM 9.24 (Continued)


E V2A 
(t) = - 0 2 (b) 

2[d+ý(0,t)] 

2 2 32

Our equation for the membranes is a 22C/~t = S a and if we assume 

E=Re[Q(x)ejwt1, then we can write m ax2 

Z(x) = C1 sin 8x + C2 cos fx (c)


for x > 0 and


Z(x) = C3 sin ýx + C4 cos 8x (d) 

for x < 0 where 3 = wr7T7S. 
m


Our boundary condition will yield the four constants. We have


&(x = - L) = 0 

.(x = L) = 0 (e) 

(x = ) = (x= 0 ) 

and 

- (0-) + fe(t) + f(t) (f)
2M 

2 
2 
t2 

(0,t) = Sw 
xx 

(0+ ) 
u 

which reduces to 
2 2E0V2A 

-2Mw E(0) = Sw- (0) - (0) + 2+3 dA () (g)(g)(0) 
Idx dx d3 

after we linearize [fe(t) + ef(t)]. Substituting, we immediately find C2 = C4 . 

Writing the remaining equations we have 

0 = - C3 sin ýL + C2 cos fL (h) 

0 = C1 sin BL + C2 cos aL (i) 

0 = SwB C1 + - + 2Mw2 2 - Sw C3 ) 

If we eliminate the constants by setting the determinant of the coefficients


C1 , C2 , and C3 equal to zero, we obtain two separate relations:


SwI

sin 8L = 0 and S = tan BL. (k) 

E V2A 
o o + 2M


3


d 
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PROBLEM 9.24 (continued)


Substituting for a we have


SwW m-

sin(WL( = 0 and 2 = tan wL


E V2A

S+ M 2


d


The first relation implies that wLv/-7 = nfl where n = 1, 2, .... The second 
m 

relation can be solved graphically. 

Part b 

As V is increased from V = 0, the lowest natural frequency decreases. 
o o 

When V approaches the value

o 

CSSwd'


the lowest natural frequency approaches zero; as Vo is further increased, there


will be an imaginary solution for w and the system will be unstable.


PROBLEM 9.25


Part a 
m = W' =io 2

The force of the lower2 plunger is f - . By symmetry the upper 

i = (I + i ) = I + 21 i and i = (Io-il) = I1 - 21 i . Hence the total 
magnetic force isu o 1 o o 

magnetic force is 

2L I i 2L, G

= o1 oo 3(


a a ax 

Writing the force balance on the tip of the wire at x = - Z we have 

2L IG 
ff (-+,t) +X o o ag (o,t) = 0 
ax a x 

Part b 

Away from the ends 

M =2f 2

2 22 2
at x


and if E=Re[(x)ejm t] then


((x) = C1 sin Ox + C2 cos fx 

where = . = 0 implies that = 0. From part (a) we haveZw7/mT E(O,t) C2 
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PROBLEM 9.25 (continued)


d 2L I G 
f (-+) + d (o) =. (e)

dx a dx 

Upon 	substitution we obtain

2L I 

fB C cos 6k + ooa GBC = 0 	 f)
1 a '1 

Since C1 must be finite for a finite response, we have


2L I 
fB cos B + oo G = 0, (g)a 

or 
 - 2L IG 
f cos Wk - + 00 0 (h)

If a 

(We have ruled out one solution, because it is trivial.) A graphical solution 

of (h) is shown in the figure. 

Part 	c


If G = 0, then


S = (-n+l) 	 (i)
f 2 

with n = 0, 1, 2,... 

Part d 

From the figure, wl increases toward wl•7"/m/f = T and co2 decreases toward 

the same value. They come together at G = af/2LT I and seemingly disappear 

af 
if G 	 > ­

2L I 
0O
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PROBLEM q.25 (continued)


Part e


If JGI > 2L ' then (h) has imaginary solutions for w, hence the system
O2O

00


will be unstable: 

PROBLEM 9.26


Part a


First of all we. notice that y(t) = C(-L,t). For the membrane 

l t  
ma -- = _il and if F=Re[l(x)ejO then ,(x) = Clsinfx + C2 cos(x where m at 3x 

8 = Jo~m/S. At x = 0, ((x=O) = 0 and therefore C = 0. At x = - L, we can write 

the boundary condition 

M (-L,t) = SD - (-L,t) + fm(t) (a) 
at 2 ýx y 

We can find fe(t) using Ampere's Law and the Maxwell stress tensor 

1 AN2 ( + I(t))2 (I- (t)) 2 

fe(t) o0 o_ - o (h) 
t) 2 d-D- (-L,Qt)) (d-D+C(-L,t)) 

Since I >> I(t) and (d-D) >> ,(-L,t) then we can linearize:

SI 12I


fe (t) 2N22A I(t) + U-Lt) (c) 

y (d-D (d-D)3 2N2A 
2N2A oI o


Substitution of (c) into (a) and definition of C E 2 and 

2NA•I 2 (d-D) 

C E gives


Y (d-D)) 

M2 (-SD,t)) (-L) t)+ Clt) + C -l) (e)= 

Cx 
or in complex form,= SD ax (-L) + CII + C •(-L) (e)-Mw C(-L) 
After solving for C1 , we can write 

CI sin 8x I 

((x) = (f) 
(Mw 2 +C )sin(L-SD( cos 8L 

or finally
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PROBLEM 9.26 (continued)


C sin BL IT 
Sf~osf~. (ttC si 3


SDB cos T.- (MW +C )sin BL


= where y(t) Ie[y ejwt]. 

Part b 

To find the resonance frequencies we look at the poles of y/I. This amounts 

to finding the zeros of the denominator of y/I. We have 

SD C w,. - [MW2 C ]sinb L 	 (h)cos 	 + 

is-

USDmWV.m ­
= tan(wL V)


MW +C


We can represent the solution graphically:


I 

I 

PROBLEM 9.27


Part 	a 

The boundary condition may be obtained by applying force equilibrium using 

the following diagram, 	 s 3C 
slope 

slope ax 
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PROBLEM 9.27 (continued)


thus


F(t) =f (0-) - r+( 

Part b


For the odd solution, EQ(x,t) = - r(-X,t) and it follows that 

a5, agr 
= 0. This implies that the odd solution is not excited by the force F(t). 

ax ax 

Part c ag a r 

For the even solution, Q(x,t) = Fr(-x,t), we have - = - and the boundary 

condition (a) from part (a) becomes


F(t) = - 2f -x at x = 0 

For O<x<£ we have


m = f • 

at2 ax 2


with E(x,t) = 0 at x = k. 

For t < 0, this reducss to


2

a2 = 0
2

ax


and we obtain


F0

o x 

((x) = 2f (1 - ) for O<x<£ 

Part d


We now have a combined transient and driven response, as discussed in Sec. 9.2.1.


By contrast with the developments of that section, we now have a boundary condition


at x = 0 on the slope 3&r/ax (see (b) of part (c)). Our program is: (E5Hr in the


following)


i. Find the driven sinusoidal steady-state response, This satisfies the boun­


dary conditions: 

F cos wt = - 2f (O,t) (f) 
o ax 

((£,t) = 0 

ii. Find normal modes, which satisfy homogeneous boundary conditions;


T- (0,t) = 0 
ax


E((,t) =o 
The sum of these modes takes the form of a Fourier series.
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PROBLEM 9.27 (continued)


iii. Superimpose (i) and (ii) and use the initial conditions found in


parts (a)-(c) to evaluate the arbitrary coefficients.


The driven response is of the form


S=Re(C1 sin Bx + C2 cos Bx)eJJt; = (j) 

a linear combination which satisfies (g)


= ReC 3 sin ý(x-2 )e
jWt (k) 

while (f) evaluates C3 and the driven response is


F sin 8(x-k)ejWt

5 = - Re 0(2
2fM cos B (


The normal modes are in this lossless case the resonances of the driven 

response and occur as cos ýZ = 0. Thus 

Sk = (2n+)r, n = 0, 1, 2, 3... (m) 

and the total solution for O<x<R is


F sinO(x-) + jWnt -jn t 
2onf= cos +

0 os t + [A e + A e ]sin[(-2 - (x-)] (n) 

n=0 

The coefficients An and A- are evaluated by requiring that
n n


o(xo F o sinS(x-.)_+_o + 2n+lF 2, 2n+1 
(x,0) • - 2f cos + (An + A )sin[ 2( ) (x-k)] (o) 

n=O 

and


__ S + 2n+l 7(x,) = 0 = jw nAnA j- An]sin[.(-)T (x-2)] (p) 
n=O 

This last condition is satisfied if A+ = A-. The A+'s follow from (o) by using
n n n 
the orthogonality of the functions sin[(2n+1/2)j (x-Z)] and sin[(2m+l /2) (x-Z), 

m # n, over the interval R. 
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