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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.1
Part a
We add up all the volume force densities on the elastic material, and with

the help of equation 11.1.4, we write Newton's law as
2

9 61 3T11
p 2 = 3% - Pg (a)
at 1
where we have taken 5%— = 5%— = 0. Since this is a static problem, we let
2 3
3 _
Y 0. Thus,
T
5 11 rg. (b)
X1

From 11.2.32, we obtain

361
Tll = (2G + A) -a—:q (c)
Therefore
2%,
(26 + 1)) 5 = g (d)
Bxl

Solving for 61, we obtain

2
61 = _—EETZ(ZG‘F ) xl + Clx + C2 (e)

where C1 and C, are arbitrary constants of integration, which can be evaluated

2
by the boundary conditions

6,(0) =0 (£)

and 36
- 1 = (g)
Tll(L) (2G + 1) 3x1 ¢H) 0 g

since x1= L is a free surface. Therefore, the solution is

g %y

1=2—(7G—+-X)—[x1- 2L]. (£)

S

Part b
Again applying 11.2.32
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.1 (Continued)

861
T;p = (268) E = pglx; - L)

T19 =Ty =0
Ti3=T3=0
¥,
Typ = A 5;; = ?ngxy [xl - L) (g)
26
=y 1 __Aog -
T3y = A ox, | (2GHN) (x; - L]
Typ = Ty3=0
. =
T, O 0
T = o T, o0 (h)
0 0 Ty

PROBLEM 11.2
Since the electric force only acts on the surface at X = - L, the equation

of motion for the elastic material (-L S-XI £ 0) is from Eqs, (11.1.4) and (11.2.32),

43261 8261
b —5 = (20 —; (a)
ot axl

The boundary conditions are

61(0,t) =0
and
228, (-L,t) 3, .
M —————— = aD(2G+L) — (-L,t) + £ (b)
2 x
at 1
£€ 1s the electric force in the Xy direction at X = = L, and may be found by
1
using the Maxwell Stress Tensor Tij = eEiEj - E'Gij eEkEk to be (see Appendix G
for discussion of stress tensor),
£ =-% £ an :
with
v + V1 cos wt
E= 2 (c)

d + 61(-L,t)



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.2 (continued)

Expanding £® to linear terms only, we obtain

2 2
\ 2V V. cos wt 2V

a-82 0y ol 05 (-L,0) (d)
d d d

We have neglected all second order products of small quantities.
Because of the constant bias Vo, and the sinusoidal nature of the

perturbations, we assume solutions of the form
R j(wt—kxl)
61(x1,t) = 61(x1) + Re Se (e)
where '

§ << 6.(x,) << L

1™y
The relationship between w and k is readily found by substituting (e) into (a),

from which we obtain

[26+)
k =+ 2 with g S £
el t vp \ o (£)

P

We first solve for the equilibrium configuration which is time independent.

Thus

2

9 6l(x1)
2
1

o9x

This implies

Gl(xl) = clx1 + c2

Because 61(0) = 0, C2 = 0.

From the boundary condition at X = - L () & (d))

2.
€ Vo h
aD(ZG'FX)Cl - —Z-?aD = 0 (h)
Therefore
e Y
§.(x.) =+ ———x (¢9)
1'71 2 d2(2G+A) 1

Note that Gl(x1 = - L) 1s negative, as it should be.

For the time varying part of the solution, using (f) and the boundary condition

§(0,t) =0

q



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.2 (continued)

we can let the perturbation 61 be of the form

Gl(xl,t) = Re 8 sin kx, eJut &)

Substituting this assumed solution into (b) and using (d), we obtain

+ Me2 8 sin kL = aD(2G+\)k 8 cos KL (k)
t—:aDVOV1 eaDV2 A
- 5 = 30 § sin kL
d d

Solving for 8, we have

eaDVOV1

=
1}
1

2
2 2 cabV
d”|Mw” sin kL - aD(2G+A)k cos kL + 30 sin kL

d

A

Thus, because § has been shown to be real,
€ V2 L ~
61(-L,t) =-2 —2%  _ § sin kL cos wt (m)

2 42(2640)

Part b

If k% << 1, we can approximate the sinusoidal part of (m) as

caDV V., cos wt
ol

61(-L’t) = 3 (n)
aD(2G+21) €abv
2 2 o
d” [ Mw™ - T + 3
d
We recognize this as a force-~displacement relation for a mass on the end of a
spring.
Part c

We thus can model (n) as

V£



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.2 (Continued)

where
€abDV V. cos wt
£ = - ol
d2
and 2
¢ o EDQGH) _ €anv,
L d3

We see that the electrical force acts like a negative spring constant.

PROBLEM 11.3
Part a
From (11.1.4) ,we have the equation of motion in the X, direction as

ﬂz— = a1 (a)
at2 axl
From(11l.2.32),
862
T21 =G H ()
Therefore, substituting (b) into (a), we obtain an equation for 52
o%s, 3%,
P ) =G ;;5— (c)
1
We assume solutions of the form
~ j(wt-kxl)
62 = Re 62 e (d)

where from (c) we obtain

k:-{-Y— V2=§'
- Vp P P
Thus we let
j(wt-kxl) j(wt+kxl)
62 = Re Ga e + Gb e (e)
" with k = —
v
P
The boundary conditions are
s GJut ,
Gz(l,t) 6°e (f).



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.3 (continued)

and

3d

2
N (8)
*1
since the surface at X = 0 is free.
Therefore
-jk& JkL_

Ga e + Gb e 60 (h)
and

-3k 53 + jk cb =0 (1)
Solving, we obtain

60

Ga = 6b = Zcoskl &)

Therefore
6o jwt 8
= ————— = ___0 )

62(x1,t) Re coskZ ©O8 kx1 e =~ %E oS kxlcos wt (k)

and
Géok ot
Tzl(xl,t)= - Re CoskL sin kxl e (€5
GS k
= - coskL sin kx1 cos wt
Part b
In the limit as w gets small
6, (x;,t) > Re[5_ eI (m)

In this limit, 62 varies everywhere in phase with the source. The slab of elastic
material moves as a rigid body. Note from () that the force ger unit area at

d
x; = £ required to set the slab into motion is T21(1,t) = pl szﬁo cos wt) or the.

mass /(xz-x3) area times the rigid body acceleration.

Part ¢
The slab can resonate if we can have a finite displacement, even as 60 + 0.

This can happen if the denominator of (k) vanishes

cos kL = 0 (n)
(2n+l) v
W=7

or .
n=0,1,2,... . (o)



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.3 (continued)

The lowest frequency is for n = 0
v

N A
OF W1 0w 2% (p)

PROBLEM 11.4
Part a
We have that

T = Tijnj = adijnj

It is given that the T ., are known, thus the above equation may be written as

three scalar equationsii'l‘ij - aGij)nj =0, or:
(T11 - a)n1 + Ty,0, + T13n3 =0
Typty + (Typ = 0dmy + Tygny = 0 (2)
T3lnl + T32n2 + (T33 - (x)n3 =0

-

Part b )
The solution for these homogeneous equations requires that the determinant of
the coefficients of the ni's equal zero. '
Thus
- - - - 2
(Ty, - DTy, = 0)(Tyy = ) = (Ty3)°]

- TyplTyp(Ta3 = @) = T)3Tp5] (&)
+ T50T5Ty5 = Ty3(Tyy — @] = 0
where we have used the fact that
Tij = Tji' (c)
Since the Tij are known, this equation can be solved for o.
Part c
Consider le = 'I‘21 = To’ with all other components equal to zero. The deter-
minant of coefficients then reduces to
—a’+ T2 = 0 (d)
for which a= 0 (e)
or Q= '_’_‘ T (f)

o)
The oo = 0 solution indicates that with the normal in the Xq direction, there is
no normal stress. The o =1 TO solution implies that there are two surfaces

where the net traction is purely normal with stresses * To’ respectively, as



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.4 (continued)

found in example 11.2.1. Note that the normal to the surface for which the shear
stress is zero can be found from (a), since a is known, and it is known that

|n] = 1.

PROBLEM 11.5
From Eqs. 11.2.25 - 11.2.28, we have

ey = F [Ty = ¥(Tyy + Ty ()

epp = § [Ty - v(Ty3 + 1)) (b)

e33 = § [Ty3 = v(Tyy + Tpy)l (c)
and T

ey = 200 143 @

These relations must still hold in a primed coordinate system, where we can use

the transformations

\J -
Tij = 20?52 Tke (e)
and
' = .
€15 = 23ye°Ke )
For an example, we look at eil
el = a, a e = l-[T' - v(T), + 11 )] (=)
11 1k712 ke E 11 22 33 g
This may be rewritten as
1
a8 = F L+ Waja Ty = v &, T, (h)

where we have used the relation from Eq.(8.2.23), page G10 or 439.

= & (1)

a_ _a
pPr ps ps
Consider some values of k and £ where k # 2.

Then, from the stress-strain relation in the unprimed frame,

Ter = 21210

a.,a.,e,, = a,, a
1k%12%k8 1718 5 —— (14 V)T, ()
Thus 1 1+v ©
2G E
or E = 26(1+v) which agrees with Eq. (g) of

example 11.2.1.
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.6
Part a .

Following the analysis in Eqs. 11.4.16 - 11.4.26, the equation of motion for

the bar is

w2  3p axla

(a)

where £ measures the bar displacement in the X, direction, T2 in Eq. 11.4.26 = 0

as the surfaces at X, = t b are free. The boundary conditions for this problem

are that at X = 0 and at X = L

T21 = 0 and T11 =0

as the ends are free.
We assume solutions of the form

£ = Re g(x)ejwt

As in example 11.4.4, the solutions for £(x) are

E(x) = A sin ox, + B cos 0x, 4+ C sinh
with }/
A
a = lu? (22
E¥

Now, from Eqs. 11.4.18 and 11.4.21,

2 _ 2
. - (x2 - b4)E 335
21 2 9% 3
1
which implies
3
A%k _ ¢
3x3
1

and
2
- &
= =% P03
1
which implies 2
3E =0
ax 2
1

(b)

(c)

ax; + D cosh ax, (d)

(e)

(£)

(g)

(h)
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.6 (continued)

With these relations, the boundary conditions require that

- A +C =
- Acos oL + B sin oL + C cosh aL. + D sinh oL

- B +D = £

1]
o O O o

-~ Asinal. - B cos oL + C sinh aL. + D cosh alL

The solution to this set of homogeneous equations requires that the determinant

of the coefficients of A, B, C, and D equal zero. Performing this operation, we

obtain
cos OL cosh oL = 1 (1)
Thus, )
2 3p }z
B = aL= |w = L . (k)
Eb?
Part b
1

The roots of cos B = follow from the figure.

cosh B

1/ cosh oL

< cos aL

Note from the figure that the roots oL are essentially the roots 3m/2, 57/2, ...

of cos aL = 0.

10



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.6 (continued)

Part c

It follows from (i) that the eigenfunction is

£E= A'[(sin ox, + sinh axl)(sin oL + sinh oL)
} . 2)

+ (cos oL - cosh aL)(cos ox, + cosh axl)

1
where A' is an arbitrary amplitude. This expression is found by taking one of

the constants A ... D as known, and solving for the others. Then, (d) gives the

required dependence on % to within an arbitrary constant. A sketch of this

function is shown in the figure.

11



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.7

As in .problem 11.6, the -equation of motion for the elastic beam is

2 2 L4
2% B2 L (a)
at p axl

The four boundary conditions for this problem are:

E(x1 =0)=20 E(x1 =L) = 0

= 9E - = - x, 35 -
§,(0) = - x, e =0 6 (L) x =0 (b)

We assume solutions of the form

g(xvt) = Re § (x,l)ejmt , and as in problem 11.6, the solutions for

g(xl) are
E(x? = A sin ox) + B cos =3 + C sinh oxy + D cosh 3
: 1/4
with o = |w? 3i2 (d)
Eb

Applying the boundary conditions, we obtain

B + D =
Asin oL+ B cos oL + C sinh oL. + D cosh aL = 0 (e)
A + C =

A cos ol - B sinolL + C cosh oL + D sinh oL =

The solution to this set of homogeneous equations requires that the determinant

of the coefficients of A, B, Cy D, equal zero. Performing this operation, we
obtain

cos oL coshalL = + 1 (£)

To solve for the natural frequencies, we must use a graphical procedure.

12



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.7 (continued)

Y J d X
T
oL, -*
4 + cos oL
The first natural frequency is at about
3n
oL = —2-
Thus
4
wz 2—2 L4= (%
Eb
or ' 3m\2 1/2
(__v ) (8)
2 <Eb> 8
w = 3
L2 P
Part b

We are given that L = ,5mand b =5 x 10-4 m

From Table 9.1, Appendix G, the parameters for steel are:
E% 2 x 10* N/m?

0% 7.75 x 103 kg/m°
13



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.7 (continued)

w N 120 rad/sec.

=W a
Then, f1 =g v 19 H=z.
Part c
For the next higher resonance, oL % % n
2
Therefore, £, = (2] £, % 53 Hz. -
* 2 2 1 y

PROBLEM 11.8
Part a
As in Prob. 11.7, the equation of motion for the beam is
2’E , Eb2 3%
W2 3p
ot Ix

At X = L, there is a free end, so the boundary conditions are:

Tll(xl=L) = 0
and _ -
TZl(xl—L) = 0
The boundary conditions at X< 0 are
2%£(0,0) -
M > = + (T21) D dx2 + £, + F
It x1=0 °

and

Gl(xl = 0) = 0
The H field in the air gap and in the plunger is

e 27
D

Using the Maxwell stress tensor

Te.._ Gk wi?\ 2 w2 - u)T
= 2 2 2 7 = U1,

with 1 =1 + 1, cos wt = I_+ Re 1 et
o 1 o 1

14

(a)

(b)

(c)

(d)

(e)

(f)



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.8 (continued)

We linearize fe to obtain

2
f = - 5 (u uo)[Io + 21011 cos wt]12 (g)
For equilibrium
2
= N 2=
F0—2—01_“[0)10 7 0
Thus 2
-~ _ N 2 - \
Fo T2 (u'-uo)lo i2 ()
Part b
We write the solution to Eq. (a) in the form
- £ jut
E0xqpt) = Re &(x;) e
where, from example 11.4.4
E(xl) = A} sin ox, + A,cos ox, + A3sinh ax, + A, cosh ax, 1)
ith
v . 1/4
Eb
Now, from Eqs. 11.4.6 and 11.4.16
38 2
- 1 _ _x 978 _
Tll(x=L) = E % hxz 7 = 0 (3
1 9x
1
Thus 32€
—2 (x,=L) = 0
3 2 1
*1
From Eq. 11.4.21
< -b%) .3
T, = —2 g5 (k)
21 2 ax3
1
and from Eq. 11.4.16
= = e @i =
5,(x= 0) = - x, (3"1 0 O
xl—O
=0

Thus <%§; >
1

x1=0

15



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.8(continued)

Applying the boundary conditions from Eqs. (b), (c), (d) to our solution of Eq. (i),

we obtain the four equations

A1 + A3 =0
- A1 sin oL - A2 cos ol + A3 sinhaol + A4 cosh oL =0
- Al cos aL. + A2 sin oL + A3 cosh oL + A4 sinh oL =0 (m)
2 33 2 2 33 2 _ 2
-3 a’b EDAl +Muw A2 + 3-0 b EDA3 + Mw A4 =+ N Ioil(u-uo)
Now
2 -
a4 w4 L
v=4- & {D D[UOE(O) + u(D-E(O))JJ (n)
A*-NZI(U-U)w(A +A)+N21 Djw (o)
or v = o o j 2 4 lu Al o

We solve Eqs. (m) for A2 and A4 using Cramer's rule to obtain

. - N Ioil(u-uo)(—l + sin oL sinh oL - cos ol cosh oL) ()

2 - 2Mw2(l + cos oL cosh aL)+‘% (ab)BED(cos oL sinh oL + sin oL cosh aL)

and

2.,

. - N Ioll(u— uo)( 1 cos 0L cosh oL - sin oL sinh oL) @

4 - 2Mw2(1 + cos oL cosh oL) + % (ab)3ED(cos oL sinh oL + sin oL cosh al)
Thus

. 2 2 ‘
2w = v(jw) N +[F Io(u-»uoj jw(+ 2 + 2 cos al. cosh olL)
i1 - 2Mw2(l + cos oL cosh ol)+ g-(ab)3ED(cos ol sinh oL+ sin alL cosh ol)
2 .
+ N° ubjw (r)

Part c

Z(jw) has poles when

+ 2Mue(l + cos oL cosh alL) = (ab)3 ED(cos oL sinh aL + sin oL cosh al)

W]

16



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.9

Part a

The flux above and below the beam must remain constant. Therefore, the H

field above is
. Ho(a—b) -
a- (a-b-8)11
and the H field below is
= Ho(a-b) I]_
B = G@-o+D
Using the Maxwell stress tensor, the magnetic force on the beam is
M M 2 2
T, = - —2-(H2 -H 2) =-=2H (a-b) (+ AL
a b 2 o 3
) (a-b)
- - 2uoHog
(a-b)

Thus, from Eq. 11.4.26, the equation of motion on the beam is

2

R S WA

3 tz 3p axf (a-b)bp
Again, we let

g(xft) = Re g(xi)ejwt

with the boundary conditions

E(x1=0) =0 E(xl= L) =0

61(x1=0) 61(x1= L)y =0
Since 61= - %, ag/axl from Eq. 11.4.16, this implies that:

3 g
- Q28 o _ -
3;5-(x1—0) = 0 and 3“1 (xl— L) 0

Substituting our assumed solution into the equation of motion, we have
~ 2 4A u HZA
_ w2€ + Eb” 38 +-20 £
3p 3 4 (a-b)bp

1

Thus we see that our solutions are again of the form

E(x) = A sin ox + B cos 0x + C sinh ax + D cosh ox

17

(a)

(b)

(c)

. (d)

(e)

(£)

(g)

(h)

(1)
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INTRODUCIION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.9 (continqed)

where now - 1/4
2 WH 2 i
a={{w— 0 0 )( 3Q> (j)
\ (a-b)bp Eb2
Since the boundary conditions for this problem are identical to that of problem 11.7,
we can take the solutions from that problem, substituting the new value of a. From
problem 11.7, the solution must satisfy
cos oL cosh oL = 1 (k)
The first resonance occurs when

aL%%E

37\4( Eb2 2
or 2 _ (72 ) (36—) + uoHo

wo= L4 (a-b)bp

2)

Part c

The resonant frequencies are thus shifted upward due to the stiffening effect
of the constant flux constraint.
Part d

We see that, no matter what the values of the system parameters w2 >0, sow
will always be real, and thus stable. This is expected as the constant flux cons-

traint imposes aforce which opposes the motion.

PROBLEM 11.10

Part a

We choose a coordinate system as in Fig. 11.4.12, centered at the right end of
the rod. Because %-= f% ,» We can neglect fffnging and consider the right end of the
1o » We can assume that the electrical
force acts only at X = 0. Thus, the boundary conditions at X = 0 are

rod as a capacitor plate. Also, since % =

b
- T,. Ddx, + £ = 0 (a)
21 2 a
where T = —— — (Eq. 11.4.21)
21 2 3 3
b1

since the electrical force, fe, must balance the shear stress T to keep the rod

21
in equilibrium,

18
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (continued)

and :
2%
T,.(0) = -x, E (0 = 0 (b)
11 2 3x.2
X
1
since the end of the rod is free of normal stresses. At X = - 2, the rod is
clamped so
E(-2) = 0 (c)
and yE
§ (-2) = -x, 5;i(—2) =0 (d)

We use the Maxwell stress tensor to calculate the electrical force to be

2 2
e €A (Vo*'vs) (vs_ vo)
£ =7 7 2 (e)
[d-£(0)] [d + £(0)]
n  2€AV vV E(0)
7 |Vt T3
d s
The equation of motion of the beam is (example 11.4.4)
32§ Eb? 3t
at + 3p axI“ =0 (£)
We write the solution to Eq. (f) in the form
~ . t
E(x,t) = Re E(x)el" (g)

where

E(x) = Al sin ox + Azcos ox + A3 sinh ox + A4 cosh ox

with et
o = (Uz '—Z'3p
Eb

Applying the four boundary conditions, Eqs. (a), (b), (c) and (d), we obtain

the equations

- Al sin al + A2 cos ol - A3 sinh af + A4 cosh oL = 0
Al cos Of + A2 sin ol + A3 cosh af - A4 sinh ok = 0 (h)
- A, + A, 2 = X
2 2 AV 2c AV v
2 .3 3 2e AV 2 .33 o . __o os
- §-b DEa A1 + 070 A2 + 3 b~ DEa A3 + a7 A4 -———Ez———

19
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INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (continued)

dqs
Now is = 4t (i)
eoA soA(vs- vo)
where qs = d-£(0) (V°+ VS) + W
2 Av 26 AV 1)
N_9o s . o o £(0)
d 2
d
Therefore
1 = ju—2— v +-= £(0) (k)
s d s d
where

£(0) = A2 + A4

We use Cramer's rule to solve Eqs. (h) for A, and A4 to obtain:

tA

- EoAVovs {cos afsinh al -sin al cosh al]

d
Ay = A, = 2 (®)
2 4 %-bsasDE(l + cos O0fcosh o)+ 2€OAVo (cos®® sinh @%- sin Gfcosh al)
q°
Thus, from Eq. (k) we obtain
2
Z(jw) = 4 1+ 3€0AV0 (cos ol sinh ol - sinal cosh afl) (m)
ijEOA d3(ab) 3ED (1 + cos af cosh o )

Part b

We define a function g(af) such that Eq. (m) has a zero when

20



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (Continued)

' 3 3,2
(o) g (aL) = (1 + cosh af cos afl)(ol) - 32 Vero
8 sin al cosh ol - cos of sinh afl DEb3d3 (n)
Substituting numerical values, we obtain
337V Ae 3 x107°(10°)107*(8.85 x 10712) -3
°_ X : N 1.2 x 10 (o)

n, pey = =
DEb3d3 107°(2.2 x 1011107 °? 10 °

. 3
In Figure 1, we plot (al) g(al) as a function of af. We see that the solution to
3 .
Eq. (n) first occurs when (al) g(of) ~ 0. Thus, the solution is approximately

ol = 1.875

(a2) *g (al)

i i i i |
1 1 L T T
V] 0.4 0.8 1.2 1.6 2.0 al
Figure 1

21



INTRODUCTION TO THE ELECTROMECHANICS OF ELASTIC MEDIA

PROBLEM 11.10 (Continued)

N

From Eq. (g) 1

a = |w? 2| 2 = 1.875
Eb

Solving for w, we obtain

w ~ 1080 rad/sec. G®)

Part ¢

The input impedance of a series LC circuit is

1 - LCw?
Z = e
(Gw) Jac @)
Thus the impedance has a zero when
2
_ 1
Y% = Ic *)
We let w = w, + Aw, and expand (9) in a Taylor series around w, to obtain
Z(jw)%+j@ﬂ = + 23 LAw (s)
Cw02
(m) can be written in the form
1
z = —X_[1 - - )
(Gw) X (1 - f(w)] where f(w) =1 (t)
€0
and C = ——
o d
For small deviations around wo
Z (5 ") j ﬁ
(u) ~ 20 3w Bu
Wo
Thus, from (@), (r) (s) and (t), we obtain the relations
1 3f
L= 3. 3w (u)
o w
(o)
and C = 12 )
w°L
o
£ s
now = ——— W
v (@2) g (o) )
where 312'3€oAVo2 -3
= —2 2 . 1.2x1
K T3 (EDDY) 1 0
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PROBLEM 11.10 (Continued)

1l + cos ol cosh al
sin af cosh af - cos afl sinh ol

and g(al) =

Thus, we can write

d(al)
{.(al) l:(al) g (cxIL)] } G)

df(w)

Now from (g),

1
d(aW) | - f3p A 2 @
dw ) (Er 20, Y
wo mo
and
d K _ -K
d(al) [(aﬂ.)’g(az):] © T g2 d(oz!Z,) [(aR)3g(ol)]
Yo Wg
- % 3@ Lo 8(0‘“1‘ (aa)
Yo
since at @ = w,
(a2)%g(oR) = K. 6b)
Continuing the differentiating in (aa), we finally obtain
d_ [(a®)?z(a) 1 .
d(R) | - K ] - l:g(al)S(al) + (at)? d(odL) g(aR,)]
o Wy
-3 (@) d
=& | TRk d@n 8V (co
We W

Now

d () = 3 sinal coshal + cos alsinh af
d(on) & (sin alcosh af- cos 0&sinh 0L)

- (1+cos ofcosh al) (+cosafcoshul+ sinofsinh of+ sin afsinh 0f- cos al cosh of)
(sinof coshaf - cos afsinhal)

o - 1-_28(a2) (sin_afsinh of)
(sin afcosh af - cos afsinh of)

(dd)
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PROBLEM 11.10 (Continued)

Substituting numerical values into the second term of
value much less than one at w = W

Thus,

o*

Ty B & -1

Thus, using (v), (2),(aa} (bb) and (dd), we have

df

. 1
df %(39 )/’ % 3 4.8
dw

EbZ, -

4+ Lo)?
20 }% al K
0 w

w

Thus, from (v) and (W)

n 4.8 x109™3
v %(1080) (8.85 X10- ') (10-%)

L

and

A 1 2 =
1.25 x10°(1080)° =

c 6.8 X 10°'° farads.

24

(ce), we find it to have

(ee)

(££)

= 1.25 x 10° henries
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bl

PROBLEM 11.11

From Eq. (11.4.29), the equation of motion is

328, 3%, 3%,
Prer T C\ax? *5323> (a)
We let

(we- kxl) (b)

= 5 3
63 Re G(xz)e
Substituting this assumed solution into the equation of motion, we obtain

A

~ -~ 2
-pw?s = G<— k2§ +28 (c)
Bx:
or
225 pw? _ p2y3
szt (5 -kHs = o0 (d)
2
If we let B2 = —(%’- - k2 (e)

~

the solutions for ¢ are:

§(x ) = Asin Bx + B cos B x (£f)
2 2 2
The boundary conditions are
8(0) =0 and 6@ =0 (g)

This implies that B=20
and that B d = n1m .

Thus, the dispersion relation is

2 :
ot &-x2= (5D (h)

Part b

The sketch of the dispersion relation is identical to that of Fig. 11.4.19. How-

ever, now the n=0 solution is trivial, as it implies that

3(x =0
2

Thus, there is no principal mode of propagation.
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PROBLEM 11.12

From Eq. (11.4.1), the equation of motion is

2
0 %Eg' = (26+\)V(V+§) - GVX(Vx §) (a)

We consider motions

§ = ae(r,z,c)fe ‘ (b)

Thus, the equation of motion reduces to

326 326 u
9 g . a1 2
e "G[a—rz +§;<: an%) 0 (e
We assume solutions of the form
84(Esz,t) = Re 8 (r)ed (wt—kz) (d)

which, when substituted into the equation of motion, yields
afia ;3 (_owz ' z) 3 ,
g [F - rG(rﬂ + - k4 8(r) 0 (e)

From page 207 of Ramo, Whinnery and Van Duzer, we recognize solutions to this

equation as

~ 2 Y 2 )
6(r) = AJ \:(p—‘é’—- 2)1] + BN l:(ﬁ(‘;’—— k2> r (£)

On page 209 of this reference there are plots of the Bessel functions Jland Nl.

We must have B = 0 as at r = 0, N1 goes to - . Now, at r = R

§(R)

0 ()

This implies that

2 )
e ] -

If we denote ai as the zeroes of J1 , L.e.

J1 (ai) = 0
we have the dispersion relation as

(12
sz_kz o _j.'_

G R 1)
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