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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS


PROBLEM 12.1 

Part a 

Since we are in the steady state (C/Dt= 0), the total forces on the piston 

must sum to zero. Thus 

pLD +(fe) x = 0 	 (a) 

where (fe) is the upwards vertical component of the electric force


(fe) 2x 2 LD 	 (b) 

Solving for the pressure p, we obtain


EoVo

p= (c)


2x


Part b

d


Because A <<1, we approximate the velocity of the piston to be negligibly


small. Then, applying Bernoulli's equation, Eq. (12.2.11) right below the piston


and at the exit nozzle where the pressure is zero, we obtain


1 2 EoVo 
2


2x
2 	 p 

Solving for V , we have


V V= C 0 (e) 
p xp 

Part 	c


The thrust T on the rocket is then


T = V dM = V 2 pdD (f) 
p dt p 

2dD


x 

PROBLEM 12.2


Part a


The forces on the movable piston must sum to zero. Thus


pwD - fe = 0 	 (a)


where fe is the component of electrical force normal to the piston in the direction


of V, 	and p is the pressure just to the right of the piston.


fe= 	 (b)

2 w
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PROBLEM 12.2 (Continued)


Therefore


p= --- (c)


Assuming that the velocity of the piston is negligible, we use Bernoulli's law,


Eq. (12.2.11), just to the right of the piston and at the exit orifice where the


pressure is zero, to write


PV 2 = p (d) 

or r1­

Part b 
V = 

W 
(e) 

The thrust T is 

T = V 
dM 

-
Vo 
V2 pdW = 

I 2d 

d (f) 

Part c 

For I = 103 A 

d = .lm 

w= im

3


p 
= 103 kg/m


the exit velocity is


V = 3.5 x 10 - 2 m/sec. 

and the thrust is 

T = .126 newtons.


Within the assumption that the fluid is incompressible, we would prefer a dense


material, for although the thrust is independent of the fluid's density, the ex­


haust velocity would decrease with increasing density, and thus the rocket will


work longer. Under these conditions, we would prefer water in our rocket, since


it is much more dense than air.


PROBLEM 12.3


Part a


From the results of problem 12.2, we have that the pressure p, acting just to


the left of the piston, is

1

I2


P 2 (a)

2w


The exit velocity at-each orifice is-obtaineu by using Bernoulli's law just to the


left of the piston and at either orifice, from which we obtain
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PROBLEM 12.3 (Continued)


V I (b) 

at each orifice.


Part b


The thrust is


T= 2V 
dM 

= 2V2pdw (c) 

21 I2d 
T = 0 (d) 

w


PROBLEM 12.4


Part a


In the steady state, we choose to integrate the momentum theorem, Eq. (12.1.29),


around a rectangular surface, enclosing the system from -L < x <+ L. 

- V a + p[V(L)] b = P a - P(L)b + F (a) 

where F is the xi component force per unit length which the walls exert on the


fluid. We see that there is no x, component of force from the upper wall, therefore


F is the force purely from the lower wall.


In the steady state, conservation of mass, (Eq. 12.1.8), yields


V(t) = V a l (b) 

Bernoulli's equation gives us


1 pV22 + P = 1 pV aV2+ P(L) (c)
2 o 0 2 obj 

Solving (c) for P(L), and then substituting this result and that of (b) into


(a), we finally obtain


F = P (b-a) + pV2 (-a + ) (d)
0 o 2 2b 

The problem asked for the force on the lower wall, which is just the


negative of F.


Thus


F = - Po(b-a)- pV 2 (-a + b ) (e)wall o 2b 2 

PROBLEM 12.5


Part a


We recognize this problem to be analogous to a dielectric or high-permeability


cylinder placed in a uniform electric or magnetic field. The solutions are then


dipole fields. We expect similar results here. As in Eqs. (12.2.1 - 12.2.3), we




--
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PROBLEM 12.5 (continued)


define 

V = - Vý 

and since 

Vv = 0 

then V2 0 = 0. 

Using our experience from the electromagnetic field problems, we guess a solution


of the form


= -
A 

cos O + Br cos 9 
r 

Then

A A

(T cos 9r - B sin 9 + B sin 9)T­

-Now, as r * 

V = V = Vo(cos Gi - i sin 9) 

Therefore 

B = -V 

The other boundary condition at r = a is that 

Vr(r=a) = 0 

Thus 

A = B a 2 -Va 2 

Therefore 

V V - a _ - V sin 9 ( 1 + a)2 = cos( -)i a 

o r r


Part b 

vs 

;10 i 
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PROBLEM 12.5 (continued)


Part c


Using Bernoulli's law, we have


1p2 1 2 a' 2a 
2 po o = 2+ Vo (1 + r-- a-cos 20) + P 

Therefore the pressure is 

P = p- 1pV 2 r 
a 2a1 

2 

cos 2 9)
0O 2 o r r 

Part d


We choose a large rectangular surface which encloses the cylinder, but the


sides of which are far away from the cylinder. We write the momentum theorem as


I pv(v'n)da = -I Pd7a + F 

where F is the force which the cylinder exerts on the fluid. However, with our


surface far away from the cylinder


V= Vi

S1 

and the pressure is constant


P = Po. 

Thus, integrating over the closed surface


F=


The force which is exerted by the fluid on the cylinder is -F, which, however, is


still zero.
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PROBLEM 12.6 

Part a 

This problem is analogous to 12.5, only we are now working in spherical co­

ordinates. As in Prob. 12.5, 

V = - V 

In spherical coordinates, we try the solution to Laplace's equation 

B 
= Ar cos 0 + 	 - Cos 8 (a) 

r 
Theta is measured clockwise from 'the x axis. 

Thus 

V = 2B B (bV A cos ++ r cos A + -) sin (b:) 

As r + oo 

V 4 Vo(i cos 8 - i sin 8) :(c) 

Therefore A = - V (d)
0 

At r = -a 

V (a) = 0 :(e) 

Thus 2B-- =A= -V 
3 O
-a


or Va 3 

B o 
2 (f) 

Therefore 3 
a3 a 

V= V(l - )cos Or - Vo( + -) sin i (g)
2r 3 0 	 (g)
o r r o 

with 2 2 2 
r = V x +x +x 

1 2 3 

Part b


= At r a, 0 = n, and = ­

we are given that p = 0 

At this point 

V = 0 

Therefore, from Bernoulli's law


p = - 2 - )2 cos 20 + sin2 (1 )2 (h) 

Part c 

We realize that the pressure force acts normal to the sphere in the - i 
r 

direction.
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PROBLEM 12.6 (continued)


at r = a 

9 PV 2 sin 2 e
8 o 

We see that the magnitude of p remains unchanged if, for any value of 6, we look


at the pressure at e + r. Thus, by the symmetry, the force in the x direction is


zero,


= 
f 0. 

PROBLEM 12.7


'art a


We are given the potential of the velocity field as

Vo V


xo- o 
a x I . a (X2 1 + 

1 2) 

If we sketch the equipotential lines in the x x plane, we know that the velocity dis­

1 2


tribution will cross these lines at right angles, in the direction of decreasing


potential.


Part b


- dv av a = = + (vV)v
dt at 

=V (xi + x i 2 (a) 

a = a)\ rfir (b) 

where 

r = /x 2 + x 2 and i is a unit vector in the radial direction.
1 2 r 

Part c 

This flow could represent a fluid impinging normally on a flat plate, located 

along the line 

x + x = 0. See sketches on next page.
1 2 

PROBLEM 12.8


Part a


Given that 
x2 x1 

v = i V + Tiv (a)
1 oa 2 oa 

we have that

- dv av

a T + (v-V)v


= ax + ,v v (b) 
1 2. 
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Acceleration 
 x2 
V2 

o 
a= (-) ri


a r


yr


xl 
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PROBLEM 12.8 (Continued)


Thus 
2 - , xi (Vc) 

a= v i 0(
O T2 1 2 2 	 2 

Part b


Using Bernoulli's law, we have


p 1 ) (xv + pX2+ 	 (d) 

S= o 2 	 (x2 +2)


V2


1 2r 	 (e)

o 2P 0 a2 

where 

r= x+x 2


1 2


PROBLEM 12.9


Part a


The addition of a gravitational force will not change the velocity from that


of Problem 12.8. Only the pressure will change. Therefore,

- v v 

v i x +i -- x (a)
1 a 2 2a 1


Part b


The boundary conditions at the walls are that the normal component of the velocity


must be zero at the walls. Consider first the wall


x - x = 0 	 (b) 

We take the gradient of this expression to find a normal vector to the curve. (Note


that this normal vector does not have unit magnitude.)


n i 1i, 	 (c)


Then 	 v

--- o
v*n - (x - x) = 0 	 (d) 

a 1 2 

Thus, the boundary condition is satisfied along this wall. 

Similarly, along the wall 

x + x = 0 (e)
2 1 

n = 12 + i, (f) 

and -- o 
v*n = a (x + x2) = 0 	 (g) 

Thus, the boundary condition is satisfied here. Along the parabolic wall


x2 2 a2 	 (h)

2 1 

n = x 2i2 - xi i (Ci) 
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PROBLEM 12.9 (Continued)


v -
a 

0n (x 
1 
x 

2 
- xx 

1 2
) = 0 (j) 

Thus, we have shown that along all the walls, the fluid flows purely tangential to


these walls.


PROBLEM 12.10 

Part a 

Along the lines x = 0 and y = 0, the normal component of the velocity must be 

zero. In terms of the potential, we must then have 

= 0 ax 
x=O


- =0 = 0 (b) 
y=O


To aid in the sketch of J(x,y), we realize that since at the boundary the velocity


must be purely tangential, the potential lines must come in normal to the walls.


Part b


For the fluid to be irrotational and incompressible, the potential must obey
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PROBLEM 12.10 (Continued)


Laplace's equaiion


V20 = 0 (c)


From our sketch of part (a), and from the boundary conditions, we guess a solution


of the form


V 

S= o (x 2 y2) (d)a 
Vv 

where -
o 

is a scaling constant. By direct substitution, we see that this solution 

satisfies all the conditions. 

Part c 

For the potential of part (b), the velocity is 
= v -V = 2 -a (xix - yi y) (e) 

Using Bernoulli's equation, we obtain


V2 

p = p + 2 0 (X2 +y 2) (f) 

The net force on the wall between x=c and x=d is

z=w x=d


f I f (p - p)dxdz i (g) 

z=O X=c


where w is the depth of the wall.


Thus v d


= + w x 2dx i


6 y

2


V C


= + w (d' - c')f (h) 
6 Y


Part d


The acceleration is


V V V V 

a = (v'V)v = 2 - x(2 i ) - 2 y (-2 --y).
a a x a a y 

or 
a = 4 (xi + yi) (i) 

or in cylindrical coordinates


a = 44(V rir )a = -- ri (j) 
Va r 
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PROBLEM 12.10 (Continued)


PROBLEM 12.11


Part 	a


Since the V*v = 0, we must have


V h = v x(x)(h - &)OX 
IL h 	 ­

v (x)= V (1 + ) 

Part b


Using Bernoulli's law, we have


1 1 2 
SpVo + P = 2 [Vx(x)] + P 

P = 	 Po 2 2 pV2o (1 + hh

Part c 

We linearize P around = 00 to obtain 

P Po - pV 2 
o oh


Thus

T - P + P = pV2o


z o oh 
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PROBLEM 12.11 (continued)


Thus Tz = CE (g)


with p Vo

C = h 

Part 	d


We can write the equations of motoion of the membrane as


a2 = Sa2 + T 	 (h)m 3t2 ax2 z


= s 2 + CE 	 (i) 

We assume


E(x,t) = Re ' j e (wt-kx) 	 (j) 

Solving for the dispersion relation, we obtain


- m02 = - Sk2 + C (k) 

or 2 

W - k2 - T] 

= m M 
Now, since the membrane is fixed at x = 0 and x = L, we know that 

ni

k = n = 1,2,3, ..... 	 (m) 

Now if


S( ) - C < 0 	 (n)


we realize that the membrane will become unstable.


So for 
PV2 2 

<-S () 	 (0) 

we have stability.


Part e


As ý increases, the velocity of the flow above the membrane increases, since


the fluid is incompressible. Through Bernoulli's law, the pressure on the membrane


must decrease, thereby increasing the net upwards force on the membrane, which


tends to make E increase even further, thus making the membrane become unstable.
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PROBLEM 12.12


Part a


We wish to write the equation of motion for the membrane.


325 a 25 Te (a) 
= S + p ()-po + T - mg (a)m 0 "m 3t2 ax 1 


S V 2 E V

where o o o o 

Tee = --22 d- -) % 2 dd (1 + ý-) 

is the electric force per unit area on the membrane. 

In the equilibrium C(x,t) = 0, we must have 
E V2 

-p (0) = Po - (d) + mg (b) 

As in example 12.1.3 

P = -pgy + C 

and, using the boundary condition of (b), we obtain


Eo Vo 2 
p1 = - pgy + mg + Po - (d) (c) 

Part b


We are interested in calculating the perturbations in p, for small deflections of


the membrane. From Bernoulli's law, a constant of motion of the fluid is D, where


D equals

E V 2 

D = U2+ mg -- 0 (d) 

For small perturbations ix,t), the velocity in the region 0 < x< L is


Ud

d+E


We use Bernoulli's law to write 

21 2 + P ( + g = D (e) 

Since we have already taken care of the equilibrium terms, we are interested only in 

small changes of pi, so we omit constant terms in our linearization of pi. 

Thus (
) = - pg + U 

(f)


Thus, our linearized force equation is

2 

a -= S + 2- pg EV


m)t 2 a2 d pg + E Cg)


We define


2 VO2 
C =- pg + + d--­

d d3 

and assume solutions .of the form 

E(x,t) = Re ej (w t - k x) 
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PROBLEM 12.12 (Continued) 

from which we obtain the dispersion relation 

2= a (h) 

Since the membrane is fixed at x=0O and at x=L 

k . n = 1,2, 3, ..... (i) 

If C <0, then w is always real, and we can have oscillation about the equilibrium.

2 

For C > S( ) , then w will be imaginary, and the system is unstable. 

Part c 

The dispersion relation is thus 

Cs

2 2S 

Sf mm 

Consider first C < 0 

for

1 W 

C>0 

lex w for

real k 

_· ~I~~ _I__·__ 
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PROBLEM 12.12 (Continued)


Part 	d


Since the membrane is not moving, one wave propagates upstream and the other


propagates downstream. Thus, to find the solution we need two boundary conditions,


one upstream and one downstream. If, however, both waves had propagated down­


stream, then causality does not allow us to apply a downstream boundary condition.


This is not the case here.


PROBLEM 12.13


Part a


Since V-v = 0, in the region 0< x< L, 

v 
V 

o 
d V (ý1 - 2 )]01 


x d+~l- 2 o d (a)


where d is the spacing between membranes. Using Bernoulli's law, we can find the


pressure p right below membrane 1, and pressure p2 right above membrane 2.


Thus

1 2 1 2 
SpVo + p 2 p + p 	 (b) 

and 
1 1 2
SpV + p pv + p 	 (c) 

Thus


0 2 
p = p2 Po + d (d) 

We may now write the equations of motion of the membranes as


a2 1 a2 a 2 1 V & ) 

am S (pS1 = x + 1 C(e)St2 + - po) S d 	 (e) 

a2 2 2 22 2 _pVO(- 2) 

m 2O t2 = SX2 + P.- P2 = S df)


Assume solutions of the form


S j(wt-kx)
1 = Re l eiwt-kx) 	 (g) 

2 = Re 52 e


Substitution of these assumed solutions into our equations of motion will yield the


dispersion relation

V2 

== -	Sk + (- 2) 

SV 2 (h) 

S-Sk2c + PV-­
m 2 = - Sk2 d 2 1 

These equations may be rewritten as




ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS


PROBLEM 12.13 (Continued) 

[ 2 + Sk2 + L = 0 

Vm dj 2 V 2d o 

0O a 2 + Sk 2 - ] = 0

d 2[ m d


For non-trivial solution, the determinant of coefficients of 5 and 5 must be 
1 2 

zero. 2 2 

V2­
Thus aO2 + Sk2 V2Od) dOQ 

or pV2 pV 2


- 2 + 2 o- + (k)
aw Sk

m d d 

If we take the upper sign (+) on the right-hand side of the above equation, we obtain


2pV2 !/2

S= S k2 -2Vd] ) 

We see that if V is large enough, w can be imaginary. This can happen when


V2 Sk2d (m)

o 2p


Since the membranes are fixed at x=O and x=L 

k = n = 1,2,3, ..... (n) 

So the membranes first become unstable when

2 

S( -) d 
V 2 L (0) 
o 2P 

For this choice of sign (+), = - 2 w If we hadso we excite the odd mode. 


taken the negative sign, then the even mode would be excited


E1 = E2


However, the dispersion relation is then


w
m

and then we would have no instability.


Part b


The odd mode is unstable.


. •--­


----- i or 
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PROBLEM 12.14


Part a


The force equation in the y direction is


3y = - pg (a)
)y


Thus


p = - Pg(y-0) (b) 

where we have used the fact that at y= 5, the pressure is zero. 

Part b 

V*v = 0 implies 

av 3v 

ax 
x +-

3y 
0 (c) 

Integrating with respect to y, we obtain 
av


v x y + C (d) 
y ax 

where C is a constant of integration to be evaluated by the boundary condition at


y = -a, that 

v (y= -a) = 0 

since we have a rigid bottom at y = -a. 

Thus 3v 
v x (y+a) (e)


Part c y ax


The x-component of the force equation is


av
xx 3 a = (f) 

at x 3-x 
or


av

x x (g) 

at =-gx


Part d


At y = 6, 

v (h) 
y at 

Thus, from part (b), at y = 

3v 
= - x (C+a) (i)at 3x 

However, since C << a, and v and v are small perturbation quantities, we can

x y 

approximately write

av 

a ax (j)at ax 
Part e


Our equations of motion are now
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PROBLEM 12.14 (Continued)


av 
. -=a xat ax


and 
3v


x __


S- g xf


If we take 3/ax of (k) and 3/at of (R) and then simplify, we obtain


32V
x x 
--- ag


We recognize this as the wave equation for gravity waves, with phase velocity


V /ag 
P 

PROBLEM 12.15


Part a


As shown in Fig. 12P.15b, the H field is in the - i direction with magnitude:


I 
I, I 0o 
Insl = 2N	 of integration (a) 

for the MST 

If we integrate the MST along the surface defined in the above figure, the only


contribution will be along surface (1), so we obtain for the normal traction


20o0
n= 12 'o s72 = -771 

Part 	b


Since the net force on the interface must be zero, we must have


Tn Pint o = 0 

where pint is the hydrostatic pressure on the fluid side of the interface. 
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PROBLEM 12.15 (continued)


Thus 1 olo 2 

Pint 0o+ 8T (d) 

Within the fluid, the pressure p must obey the relation


= - pg (e) 

or 
p = - pgz + C (f) 

Let us look at the point z = z , r= R . There 
0O 02 

1 Voo 0

p = - pgzo + C = P + (g) 

0 

Therefore 	 2 

C = pgzo + p + - -~(h) 
o 

Now let's look at any point on the interface with coordinates zs, rs


Then, by Bernoulli's law,


1 1olo 
2 1 oo 2 

P + 1 PR + pgzo - 8 + Po + pgzs 	 (i) 
o s 

Thus, the equation of the surface is 

1 olo
2 1 02 

pgzs+ i - = pgzo + (J) 

s 0 

Part 	c


The total volume of the fluid is


V = [Ro2 - ( )2 ]a. (k) 

We can find the value of z0 by finding the volume of the deformed fluid in terms of 

z0, and then equating this volume to V. 2


R o oo (+ 10

Thus 


o0 2!r 

V = r[R - 1)2 a = 2 rdrdz 	 (a) 

r=r 0 z=O 
where


r is that value of r when z = o, or


o

2 1


r 	 (m 

pgz 	 + oo0 

Evaluating this integral, and equating to 
V, will determine zo0
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PROBLEM 12.16


We do an analysis similar to that of Sec. 12.2.1a, to obtain


E = - i (a) 
yw


and 
J = i (-

V
+ vB) = - (b) 

y wd y 

Here V = IR + V (c)

o 

Thus vBw - V

O 

I =

w

R + 
Zda 

The electric power out is


P = VI= (IR + Vo)I 

R(vBw - V) v Bw - Vo 
(e)= V + .... 

From equations (12.2.23 - 12.2.25) 

we have 
M


Ap = p(0) - p(a) = B 

Thus, the mechanical power in is 

Bw(vBw-V )v 
P = (Apwd)v = (g)

Mi w
R + 

ida


Plots of PE and PM versus v specify the operating regions of the MHD machine. 

P>e 0 e < 0Pe < 0 P > 0 
e e e 

PM > M > 0 PM < 0 >0 SPM 0 

Generator Brake Pump Generator


http:12.2.1a
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PROBLEM 12.17


Part a


The mechanical power input is


PM L Jdf Vpv0dxdydz (a) 

z=O y=0 x=O 

The force equation in the steady state is


- Vp + fe = 0 (b)


where

fe = - J B (c) 

yo

Thus YB
PM= Lf I J dxdydz (d),


z=0 y=O x=O


Now 
J =a(E + vB) (- + vB ) (e) 
y y 0oo y oo 

Integrating, we obtain 

P= ov2 B Lwd - oB v VLd 
P 0 o oo (f) 

V 2 VV 
oc oc 1 V)V 

Ri R R. (Voc oc 

Part b
 P 
out 

Defining = out 
P 

we have 
(V

oc 
- V)V - aV2 (g) 

S(Voc - V)Voc 

First, we wish to find what terminal voltage maximizes Pout. We take


Pout

= 0 and find that


V
Voc

V = oc maximizes P 

2(l+a) out


For this value of V, n equals


1 1 
11 (h)

2 (1+2a)

1 

Plottlng n vs. -- gives
a 

.5 

a 
1 
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PROBLEM 12.17(Continued)


Now, we wish to find what voltage will give maximum efficiency, so we take


-- = 0 

Solving for the maximum, we obtain 

V = Voc I +ala (i) 

We choose the negative sign, since V< Voc for generator operation. We thus obtain 

r = + 2a - 2 a(l+a) (j) 

Plotting n vs. a , we obtain a 9 ­

2 3 4 5 6 7 8 910 

PROBLEM 12.18


From Fig. 12P.18, we have


E - i 
w y 

and

V I -­


J= i [ ( + vB] = -- i 
y w LD y 

The z component of the force equation is 

3z LD


IB v 
or Ap = Pi - P= D = p(l ) 

Solving for v, we obtain


IB 
v = D(1 )v 
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PROBLEM 12.18 (Continued)


Thus, we have 
I V IB 

LDa w 
- + B(1 

DApo 
)v 
o (f) 

or 2VW 
V =I w + - v Bw (g) 

LD( DAp 

Thus, for our equivalent circuit

w vowB2


t O 

i LDo DApo 
and 

V 
oc 

= - v 
o

wB (i) 

We notice that the current I in Fig. 12P.18b is not consistent with that of Fig.


12P.18a. It should be defined flowing in the other direction.


PROBLEM 12.19


Using Ampere's law 
NI + NI 

H = (a)o d

Within the fluid


IL VL 
J = = 

Zd 
(-

w 
+ v H 

00 
)iT 

Z 
(b) 

Simplifying, we obtain 

Si v NiNNVS= Ova NI
0o L (c) 

L [d d d w 

For VL to be independent of IL, we must have


VpoNL 1

d 

d= 9d (d) 

or 1N (e)

L Zavy 0


PROBLEM 12.20


We define coordinate systems as shown below.


MHD #2. MHD # 1 
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PROBLEM 12.20 (Continued)


Now, since V*v = 0, we have 

vwd = vwd 
1 1 1 2 2 2


In system (2),


I V 
J2 = - + v B)i (a) 
2 y2 2 d2 W2 2 y2 

and 
I2B


AP2 = p(0) - p(_) d (b) 
In system (1),


I V 
= i --- ( -- v B) (c)

1 y 1 id w 

and IB 

Ap = p( 0 +) - p(Y' ) = d (d) 

By applying Bernoulli's law at the points x = 0 (right before'IdD system 1) and at 

xt = + (right after MHD system 1), we obtain


1 p2 + p (0) = I v2 + p(L (e) 

or p(0_) = p (+) (f)


Similarly on MHD system (2):


p 2 (0_) = P2 (2+) (g) 

Now,Now Vp'd = 0 

C 

Applying this relation to a closed contour which follows the shape of the channel,


we obtain x 0 x = x = 0 
2 - 2 2- 1 -

Vp-dZ V p-dZ + VpdZ + Vpdt + Vp-dZ


C x =O x =£ x =O x = 
1 + 1 1+ 2 + 2 2+ 

p (z1 )- p (0+) + p2(O_)- p1(+ ) + p2 (2­

- P2(O+) + 1 (0) - p2( 2+) (h) 

From (f) and (g) we reduce this to


bp +p A = 0 (i) 

or

II -I1

12 (1) 

d d 
1 2 
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PROBLEM 12.20 (Continued) 

Thus, we may express v as 
I 

S(+ - + (k) 

We substitute this into our original equation for J 
2 

I V wd I 

ad w wd £do w 
22 2 2 12 

(a), to obtain 

() 

This may be rewritten as 

w wd 
V = - 1 1

2 2 a d wkd d 
2* 2 2 12 

The Thevenin equivalent circuit is: 

d 
11d 
2 

2 R 
eq 

V 
oc 

+ 

1V 2 v 2 

where 

and 

V 
oc 

1 
=-

d 
V 
1 

R 
eq 

2 
jd2 2 

_l 

2 d2 Z" 

__ 

J 

PROBLEM 12.21 

For the MHD system 

II -
V 

a1--V H) (a) 

and 

ap 

Now, since 

= P1 - P 2 = + 

IpoH 
(b) 

IVp'dk = 0 (c) 

C 
we must have 

Ap = kv = poH LO( 
oo D 

- VoH 
oo 

) (d) 

Solving for v, we obtain 

POH LaV 
v = D° V0 

D[k+(poHi )2Lo]
00 

(e) 
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PROBLEM 12.22


Part a


We assume that the fluid flows in the +x direction with -velocity v.


Thus

S I 	 V +J•= i o( VoHo) i	 (a)

3 d 00 3


where I is defined as flowing out of the positive terminal of the voltage source V .


We write the x component of the force equation as


p L pIpoHo

-ax L w 	 pg = 0 .(b) 

-Thus 

p= - Lw + pg x 

For Ap = p(O) - p(L) = 0 

Then 
ILIoVHo 

Lw 

For the external circuit shown,


V -IR + V 
0


Solving for I we get

V


T v+ ooH - pgLw
0 


+ R oPH

OLw d


Solving 	for the velocity, v, we get 

gL• + R o 

H 0 d d 

~oo 

For v > 0, then


V <P + RL

0 oH o w)


Part b


If the product V I > 0, then we are supplying electrical power to the fluid. From


part (a), (f) and (h), Vo is always negative, but so is I. So the product


V I is positive.
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PROBLEM 12.23


Since the electrodes are short-circuited,


J i z -Zd = OvB o i z (a) 

In the upper reservoir 

pi = Po + pg(hI - y) 	 (b) 

while in the lower reservoir


P2 = Po + pg(h	 2 - y) (c) 

The pressure drop within the MHD system is


IB

Ap = p(O) - p(R) = -	 (d) 

Integrating along the closed contour from y=h through the duct to y=h , and 
1 	 2 

then back to y=h we obtain


Vp-d = 0 = -	 pg(h - h )+ - (e)
1 2 d 

Thus 
I 

pg(h
1 	

- h
2 
)d (f) 

BBR

and so	 and so pg(h

I 1 - h 
2) 

(g) 
atdB o9 B 

o o 

PROBLEM 12.24 

Part a


We define the velocity vh as the velocity of the fluid at the top interface,


where

dh


vh - dt 	 (a)


Since V-v = 0, 	we have


vA = v wD 	 (b)
h e 

where ve is the velocity of flow through the MHD generator (assumed constant). We


assume that accelerations of the fluid are negligible. When we obtain the solution,


we mustcheck that these approximations are reasonable. With these approximations,


the pressure in the storage tank is


p = - pg(y-h) + Po (c)


w:here po is the atmospheric pressure and y the vertical coordinate. The pressure


drop in the MHD generator is


Ap = D 	 (d) 

where I is defined positive flowing from right to left within the generator in the


end view of Fig. 12P.24.
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PROBLEM 12.24 (continued)


We have also assumed that within the generator, ve does not vary with position.


The current within the generator is


I IR

y= L(- + v P H ) (e)

LD w eoo 
0 

Solving for I, we obtain

Ho 

ve po
1= 1 

+ 
- (f)


1 R-L ­

aLoD w 

Now, since Vp'dZ = 0, we have 

Ap - pgh = 0 (g) 

Thus, using (d), (f) and (g), we obtain 

- pgh + Do 1 v e 0 (h) 

Using (b), we finally obtain


dh + sh = 0 (i) 
dt


where

pg w D RD 1 

h= 10 e , until time T, when the valve closes () 

Numerically at h = 5. 

s = 7.1 x 10 - 3 , thus T u 100 seconds. 

For our approximations to be valid, we must have


vh << pg (k) 

or 

s2h <<g. 

Also, we must have 

2 h2 << I pgh


or

1 s2h <<g (a) 

Our other approximation was


pL < (m) 

which implies from (f) that
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PROBLEM 12.24 (continued)

(o Ho)2


psL << 0o0 (n) 
LD + i 

Substituting numerical values, we see that our approximations are all reasonable.


Part b


From (b) and (f)


pH A

I- = oo h 

wd ]D It


- 650 x 10 e - s t amperes. 

until t = 100 seconds, where I = -325 x 103 amperes. Once the valve is closed, 

I = 0. 
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PROBLEM 12.25


Part a


Within the MHD system


-1i V

J = = - (- iHo)iH where V = -iR + V


LD 3 w 00 3 0 

and Ap = p(O) - p(-L ) = D''D 

We are considering static conditions (v=0) so the pressure in tank 1 is


p 1 = -pg(x2 - h ) + po 

and in tank 2 is 

p = - pg(x - h ) + Po 
2 the atmospheric2 2ispressure, 

where po is the atmospheric pressure, 

thus V 
i = o (e)


1 R

w[ + ­


aL D w 

Now since jVp.dk = 0, we must have 
C io H 

+ pgh + - pgh2 = 0 (f)


Solving in terms of V we obtain


0 pg(h - h)wD 21 ar

oo 1


For h = .5 and h = .4 and substituting for the given values of the parameters,
2 1


we obtain 

V = 6.3 millivolts 

Under these static conditions, the current delivered is


pg(h 2 -hl)D

i = = 210 amperes


o o 

and the power 
delivered is 2 

eP= V = P 
g(h2 

Hh 
1 

ww 
1 + R] 

1.33 wattse o L H wL D w 
Part b 

We expand h and h2 around their equilibrium values h10 and h20 to obtain 

h = h +Ah 
1 10 1


h2 2 
h2 0 + Ah 2
= 


20 a 
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PROBLEM 12.25 (Continued)


Since the total volume of the fluid remains constant


Ah = - Ah

2 1


Since we are neglecting the acceleration in the storage tanks, we may still write


PI = - pg(x - h ) + po

1 2 1 

(h)

= 
P2 - - + PO
2g(x2h2) 


Within the MHD section, the force equation is


av i1oHo

S- = - VpMD + L(Dat V MHD + LID (i)


Integrating with respect to x , we obtain


APMHD = p(O) - p(-L) = LD -o pL l () 

The pressure drop over the rest of the pipe is

dv


APpipe = 2 dt


Again, since Vp-dk = 0, we have


C


pg(h - h2 ) + pMHD + pipe = 0 (k)


For t > 0 we have

2V


w V 0oHo 
1 R ()


cL D w


and substituting into the above equation, we obtain


ýv w V110H 1ol)t0
pg(h- h) - p(L+ý) ~ 1 o o 0 (m) 

[L 1D + ;i-

We desire an equation just in Ah . From the V-v = 0, we obtain 
2


dAh

2


vwD = A (n)


Mlaking these substitutions, the resultant equation of motion is


d2Ah2 (o Ho)2 dAh 2gwdAh2

dt2 1 R dt (L + L2)A


V •pH (o) 

p(L +L2 )A -•D +


58
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PROBLEM 12.25 (continued)


Solving, we obtain


V 0 H st s 2 tt 

Ah = + B e + B e (p) 
2 2pgwd D+ R 1 2 

where B and B are arbitrary constants to be determined by initial conditions

1 2


and


[(H2] H 2


S - o gwd (q) 
2 ' L)) +pL L +L DD1 1 R (L + L 

2
)A 

1 2 aL D w 21 ID w 

Substituting values, we obtain approximately


-1

s = - .025 sec. 
1


s = - .94 sec. 
2 

The initial conditions are


Ah (t=O) = 0 

and dAh (t=0)

2 = 0 

dt


Thus, solving for B and B2 we have


B = = - .051 (r) 

1 2pgwD[ 11D w1 1 R 2 

- VooH 3

B 000 (R = + 1.36 x 10


2pgwD[ ++---lR 1 _ 
LID w sI) 

Thus


3 .94t -025t

h (t) = h + Ah (t) = .55 + 1.36 x 10 e - .051e (s)
2 20 2


From (£) we have 
2V o 

w
i VoH
R 1 (t)
R 1 
w +aL D 

Substituting numerical values, we obtain 

st s2 

i = 420 - 2.08 x 10 s (Bzsze + B2 s 2e ) 
= 420 - 268 (e-*025t -e94t) (u) 
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PROBLEM 12.25 (continued)


11h_(t)
2 

i 
12 4 5 50 

It 

100 150 200 

420 

i(t) 

- ----

210 -

1 

1 

2 

I 

3 

I 

4 

I 

5 

LI/ 

- -- 

50 

I 

100 

1 

--

150 

1 

I-.---------­

200 

I 

250 

1 

L 
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PROBLEM 12.25 (continued)


Our approximations were made in (h) and (k). For them.to be valid, the following


relations must hold:


32Ah

2 

<< 1

gh


2


and


+ (v*V)vds ý-t L 

transition


region


Substituting values, we find the first ratio to be about .001, so there our approx­


imation is good to about .1%. In the second approximation


/A- .3 
L Pd 2 .15


2


Here, our approximation is good only to about 15%, which provides us with an idea of


the error inherent in the approximation.


PROBLEM 12.26


Part a


We use the same coordinate system as defined in Fig. 12P.25. The magnetic field


through the pump is


Nipo -
B = i (a)

d 2 

We integrate Newton's law across the length £ to obtain


av Apo i 
p = p(O) - p(X) + JBZ = - v + B (b)

3t v d


Ap v + Np i2 

v d2 
Thus 0 

Ap Nji Nil 
+ v 

2
12 sin 2 t 2 12 (1 - cos 2 wt) (c)

Tt pzv° d Pz 2d Pt 

Solving, we obtain


Npo12 ot \P ov cos 2wt + 2w sin 2w()


v= 0 0Ap Ap 2 (d)

t o A o + 4 W2


Part b \pvo


The ratio R of ac to dc velocity components is:


R = /v (e)


[ Po + 4W2 /2 
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PROBLEM 12.27


Part a


The magnetic field in generator (1) is upward, with magnitude

Ni po Nmip o


B =

I a a 

and in generator (2) upward with magnitude


Nilpo Ni2 o


B m=io +

2 a a 

We define the voltages VI and V2 across the terminals of the generators.


Applying Kirchoff's voltage law around the loops of wire with currents i and i

1 2 

we have 

d dX 
V +N + Nm d t + i RL 0 
1 dt 

and dX2 
dX1 

V + N - Nm j + i2RL= 0 
2 dt 

where 

A = B wb
1 B,1b 

A = B wb 
2 2 

From conservation of current we have


i, V I + VBI
1 + VB2

abo w


and

i 2 V 2


- = -- + VB 
aba w 2


Combining these relations, we obtain 
wbp di w W N] pw 

(N + N)+ i w+ + VN i 
m a dt ab a a m 2 

wbp di 2 

(N2 + N2 ) di 2 + i + w N wVi = 0

m a dt ab a a 1


Part b 

We combine these two first-order differential equations to obtain one second-


order equation.


di di2

a1 +a 

.) ,1,- +ai . ', 
= 0UC L UC ~ L 

whe re 

(N2+ N2)Wbo] 2 
a = WmVJ a


1 wN Vp
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PROBLEM 12.27 (continued)


/NNV 2 2) 
a = 2 ýb-w + R- 0 + N )

2abo tN a m V 

VN oiw

a =


3 a 

If we assume solutions of the form


i = Aest (9)2 
Then we must have


as 2 + aas + a = 0 (m)

1 2 3 

- a ­-Ia2 4a a

2 2 1 3


2 a


For the generators to be stable, the real part of s must be negative.


Thus


a > 0 for stability
2 
which implies the condition for stability is


Sw NV 

Part c ab + > a (n) 

When a = 0
2 

woNv

+ =Sab (o)aba L a


then s is purely imaginary, so the system will operate in the sinusoidal steady state.


Then -a"

a


N V 
m 

The length b necessary for sinusoidal operation is


b= aakVWoN~ (q)


Substituting values, we obtain


b = 4 meters.


Part d


Thus, the frequency of operation is


w4000 = 500 rad/sec.

8


or f v" 80 Hz. 
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PROBLEM 12.28


Part a


The magnetic field within the generator is

N i po

B= -- i

w 2 

The current through the generator is


J i ( + VB)T 
Solvingfor the we obtain
the v,voltage across channel 


Solving for v, the voltage across the channel, we obtain


D VJ°Nw 

v Gx w 

D i


We apply Faraday's law around the electrical circuit to obtain


1pN 2
1 diji 
v + L idt + iR = - d - ­

J w dt 

Differentiating and simplifying this equation we finally obtain


A2 /2Rw n _ pNDV \ 

Ai+2 +2 ,LT.. .. d ,.+ ?-TOA(dC i = dt2 \ N' 'd LJ N 0 

st
We assume that i = Re I es


Substituting this assumed solution back into the differential equation, we obtain


Sw D oNDV

- ) + w 

s + + = 0 
oN d oLw w PoNz£dC


Solving, we have 

iRLw D- NDV' D 
o NDV )2 

S+N Z- OLw w 
w


S ­

2 4 SN LdC 

o 

For the device to be a pure ac generator, we must have that s is purely imaginary, or


S( 
ONDV D) N2d 

L= •w YLw w (h) 

Part b 

The frequency of operation is then 

w 
pN £dC 

PROBLEM 12.29


Part a


The current within the MHD generator is


YiV

J = i 0- (-+vB= )1

Ld y w o y 
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PROBLEM 12.29 (continued)


where V is the voltage across the channel. The pressure drop along the channel is


iB

0 + av (b)

Ap = Pi - Po p at 

where we assume that v does not vary with distance along the channel. With the switch


open, we apply Faraday's law around the circuit, for which we obtain


V + 2iR = 0 (c)


Since the pressure drop is maintained constant, we solve for v to obtain


2aR + _ dt !v + OvB = + 2R Ap (d) 
w Ud B at o d w B 
In the steady
state


In the steady state


+ 2R
v= 1 -- Ap
aid w B


and

d

i = Ap 

Part b 

For t > 0, the differential equation for v is


(F + Bod 2- + avB = S + R d Ap

O


The general solution for v is


V= - + d +o-t/T 

where T = YR +2) d 

We evaluate A by realizing that at t = 0, the velocity must be continuous.


Therefore


1 R d Rd - t/Tv = + ap + - -+- Ap eid w B w B 

Ap (I + pY" Rd -t/) d

T w B 
 Bo 

-,Ap(1 + e d 
= / BR 

A~kl wi.+!1d


PROBLEM 12.30


Part a


The magnetic field in the generator is


J Ni

=


B

d


The current within the generator is 

S 0 ( + vB)
=d w




2  
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PROBLEM 12.30 (continued)


where V is the voltage across the channel. The pressure drop in the channel is


Ap = Pi - Po= Ap (1 - ) = -- (c) 
o

Applying Faraday's law around the 	external circuit, we obtain


d(NB~w) Lw N di

V + i(RL + RC) = dt o d 	 (d) 

Using (a), (b), (c) and (d), the differential equation for i is then

LN 2 dUN] (PoN 2

oN 2 di RL+ RC 1 N


d dt w•d d o d AP o


In the steady state, we have


FRL+ 	 RC 1 oNvo1 
2 w 

+ O- d dAPo

i2 = 	 (f)


iN
2 	 V


The power dissipated in RL is


P = 	 i2RL 

For P = 1.5 x 10 , then 

i2 = 	 .6 xl0e (amperes)2 

Substituting in values for the parameters in (f), we obtain


.6 x 08 = (.125 + 2.5 10-6 N 	 - 6.3 x 10l - N)40 10g)


-
N2 (4 x 10 )


Rearranging (g), we obtain


N 2 - 102N + 2.04 x 103 = 0


or N = 75, 27 

The most efficient solution is that one which dissipates the least power in the coil's 

resistance. Thus, we choose 

N = 27 

Part 	b 

Substituting numerical values into (e), using N = 27, we obtain 

(1.27 	x 107) di (6 x 107)i + 13 = 0 (h)
dt


or, rewriting, we have


dt di

1.27 xlO' = i(6 x10 7 - ) 	 () 

Integrating, we obtain 

9.4t + C = log 6 x10-i () 

We evaluate the arbitrary constant C by realizing that at t=O, i = 10 amps 

66 
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PROBLEM 12.30 (continued)


Thus CThus
= - 13.3 

We take the anti-log of both sides of (j), and solve for i2 to obtain 

6 x 10 7 

12 1+(13.3 -9.4t) (k) 

7.75 X 10 

5.5 	 ,10 3 

- -4 

10 

I '25 seconds t


Part 	c 

For N = 27, in the steady state, we use (f) to write 

RL+ RC 1 PNvoN


P = i2RL = +w cd dj dAPoRL


2ON) 

or


P = a - 2 2 

where dA R+ 1 1oNvo 
a = - d 1.47 x 108 

N VOand 


dAP
o 1


2 2 2.85 x 1O 
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PROBLEM 12.30 (continued)


P


1.5 X10 6 

RL


PROBLEM 12.31


Part a


With the switch open, the current through the generator is


= 0 = 
_ d 

I 
y 

= ( - + vB ) (a)
w B y 

where V is the voltage across the channel. In the steady state, the pressure drop 

in the channel is 

Ap Pi -o iB
B = 0 = APo(l -

v 
) (b) 

Thus, v = vo and the voltage across the channel is 

V = v B w. (c)00 

Part b 

With the switch closed, applying Faraday's law around the circuit we obtain 

V = i RL (d) 

Thus 
i = oRLd - i + avB (e)2d w o


and

iB t v 

= 
Ap = d+- p t Ap (1 ) (f) 

Obtaining an equation in v, we have 

v aPo GB 
t vw-L-o 7+ AP (g) 

T w 
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PROBLEM 12.31 (continued)


Solving for v we obtain


-t/'T _AP 

v = Aev - t/T + _ o where Ri 
w


(APo + Bow atd


vo RL+ Ri)


and where


Ap wB 

'o RL + R 

at t = 0, the velocity must be continuous. Therefore, 
APo


= 
A v. ­
0o Ap w B


o+

\vo RL+ Ri


Now, the current is


wBo v

i=


RL + Ri 

Thus


1= (wB p APo B(1 e) )+e -ve-t/T 
RL o wB 0i

0 + 0 
v RL + 

V 
0 

V 

Vo "W"o1 
Ap TR.+L) 

Vo o


w 

!+R. 
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PROBLEM 12.32


The current in the generator is


i V 
i ( Y- (a)= vB)

zd w 

where we assume that the B field is up and that the fluid flows counter-clockwise.


We integrate Newton's law around the channel to obtain


Iv = i 
pt - JB B (b)

4t d


or, using (a),


3V w 3i B2 

3 = d +- i (c)
d= Ttdt a dpk

I 

Integrating, we have

00 

w + B 2ww
V = -+ -+i I idt (d)

dia dp2


w 
Defining R. = i1 atzd 

and

C= p2d
i wB2


we rewrite (d) as


V = iRi + i-fidt (e) 

The equivalent circuit implied by (e) is

R. 

+ v 

Ci 

PROBLEM 12.33


Part a


We assume that the capacitor is initially uncharged when the switch is closed


at t = 0. The current through the capacitor is


dV V 
i = C d = ud - w + vB (a)

dt w 0 0 
or


dV adv

c + o'd oB
V o (b)


dt wC C C 
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PROBLEM 12.33 (Continued) 

The solution for VC is 

-t/IVC = vBw(l - e ) 	 (c) 

with wC
T = - , where we have used the initial condition that at t = 0, the vol­
atd 

tage cannot change instantaneously across the capacitor. The energy stored as 

t + m, is 

2 C (VW


Part b


The pressure drop along the fluid is


iBo 2 -t/TAp = - = B2v G£e

d 0oo 	 (e) 

The total energy supplied by the fluid source is


Wf = Ap vodwdt


-=I(v B )2 awde- t/T dt 	 (f) 

- UT(v B )2 Twdet/T I000 

Wf : C(wv B )2 	 (g) 

Part 	c


We see that the energy supplied by the fluid source is twice that stored in the


capacitor. The rest of the energy has been dissipated by the conducting fluid. This


dissipated energy is


wd J VC idt 	 (h) 
0 

= 	 + (v0B )
2w( - e-t/T)rdet/T dt 

Oidw(VBB) 2 -t/T+ 1 e-2t/T

= idw(v BBo)20


= aTdw(v B )2 	 (i)
0o 2 

Therefore 

W = 1 C(voBow) 2 	 (j)d 	 2 oo 
Thus


fluid elec dissipated (k)


As we would expect from conservation of energy.
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PROBLEM 12.34


The current through the generator is


i = c( - - vB ) (a)
Zd w o 

Since the fluid is incompressible, and the channel has constant cross-sectional area,


the velocity of the fluid does not change with position. Thus, we write Newton's law


as in Eq. (12.2.41) as


av

p - V(p+U) + J x B (b) 

where U is the potential energy due to gravity. We integrate this expression along


the length of the tube to obtain


iB

• = - - pg(x a + x b )  (c) 

Realizing that 
xa = xb 

and dxa (d) 
v d


dt


We finally obtain


d2X aB22 dx cB v k


dt 
a+ 0 

pt dt 
a 

2 
x 
a 

= 
wp 

o 
2 

(e)


We assume the transient solution to be of the form

^ st


x = x e (f)a 

Substituting into the differential equation, we obtain


aB2
o. s

s2+ o 2g = 0 (g) 

Solving for s, we obtain


2
o=Bp /B2 2 
2-p9, t- 2 -22. (h) 

Substituting the given numerical values, we obtain


s= - 29.4 

s2 = -.665 (i) 

In the steady state 

aB V2 
x 

O 1 1 .075 meters (j) 
a wp 2g 

Thus the general solution is of the form 

x = .075 + A es t + A eS2t (k)
a 1 2 

where the initial conditions to solve for A and A2 are
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PROBLEM 12.34 (continued)


x a(t=0) = .0


a


d~-(t=0) = 0 

.075 s .075 s

Thus, A = 1 _ 2A2 1 .0765 cad A = - = .00174 

Thus, we have: 

x = .075 + .00174e
- 29.

4 t -.0765e
-
.665t 

aXa 

1 2 3


Now the current is

V dx


i = Z do( V - B d-) 
0 ft)dtt t 

= 91dY[ - Bo (s I Al esl + s 2 A2eS2)] (m) 

= 100 - 2 x 103(sI AeSlt + 2A2 e 2
t ) amperes 

= 100(1 + e - e ) 

Sketching, we have 

i


100


t


1 2 3 
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PROBLEM 12.35


The currents I and I are determined by the resistance of the fluid between

1 2 

the electrodes. Thus 

I = VooDx (a)
I w 

and V ODy

I 	 (b)

2 w 

The magnetic field produced by the circuit is


- poN-
B= - (I2 - I )i 	 (c) 

N 
or - o

= z 	 VoD(y- x)i2 (d) 

From conservation of mass, 

y = (L - x) (e) 

Thus 	 - N Vo oD 
B 2 (L- 2x)1 (f) 

The momentum equation is


av

at = -V(p+U) + J x B 	 (g) 

Integrating the equation along the conduit's length, we obtain


p - (2L + 2a) = -pg(y-x) - J BL 	 (h)
at o 

Now 
v = ax (i)

at

so we write:
 (oNV GDL 

2p(L + a) -!-T + Pg + J (2x - )= 0 (j) 

We assume solutions of the form


^ st L

x = Re x e + (k) 

Thus 
2 NVo D 

S 2 + -s- + J L 0 (C)(L + a) pw (L + a) o 

Defining


NV - Lw22 + + OOg ODJ 	 (mO 
o (L +a) pw (L+a) 

we have 	our solution in the form

L= 
x A sin w t + B cos w t + 	 (n)

o o 2

Applying the initial conditions 

x(O) = L and dx(O) 
de = 0 (0) 

we obtain x = 2 (1 + cos wot) (p) 
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PROBLEM 12.36


As from Eqs. (12.2.88 - 12.2.91), we assume that


v = iev0

B= Biz + TOB0 (a)

JI= iTJ +TJ 

rr z z

E= TE + T E


rr z z


As derived in Sec. 12.2.3, Eq. (12.2.102), we know that the equation governing Alfven


waves is 

aZv2 B 2 a2v 
0 .p0 z_- (b) 

For our problem, the boundary conditions are:


at z = 0 E = 0 r (c) 
at z = Z v = Re[Orej 

As in section 12.2.3, we assume 

v = Re[A(r)v 0 (z)ejet] (d) 

Thus, the pertinent differential equation reduces to 

dv2V
0 2, 

dz-V-+ kv = 0 (e) 

where k = W0


The solution is 

v 0 = C1 cos kz + c2 sin kz (f) 

Imposing the boundary condition at z = 2, we obtain 

A(r)[C cos kZ + C2 sin k ]i = r (g) 

We let 
A(r) (h) 

and thus 

R = C1 cos kZ + C2 sin kZ (i) 

Now E = - VB 0 (j) 

Thus, applying the second boundary condition, we obtain


v (z=0) = 0 

or C = 0 (k) 

Thus C OR 
2 sin kZ 

Now, using the relations 

Er = - vOB (m)r 0 o 
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PROBLEM 12.36 (continued)


E = 0 (n) 

aE aE 3B 
r z = (o) 

az ar at 

1 Be = J 
Po az r (p) 

1 3(rB6 ) 
r = J (q)o ar z 

we obtain 

v = Re sin kz ej t] (r)
Ssin k. 

B = Re a k il• nrB cos kz ej (s) 

r =ejRel
F ?rBo 

sin 
k 2 

k2kt sin kz ej 
j] 

(t) 

= F 2 2Bo kk cos kz e j et (u)J Re 
z 1j wsin k C 

PROBLEM 12.37 

Part a 

We perform a similar analysis as in section 12.2.3, Eqs. (12.2.84 - 12.2.88). 

From Maxwell's equation 

VxE= (a)-t 

which yields


aE

yz B (b)az at C


Now, since the fluid is perfectly conducting,


E' = E + vx B = 0 (c) 

or E = vB (d)y xo

Substituting, we obtain


yv 3B

Bo Bzx tXx
 (e) 

The x component of the force equation is 

av aT 
X xz


Pat = a z (f) 
where B


0 
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PROBLEM 12.37 (continued)


Thus Thus B JB


P at
X O 

a 
x (h)Bz


0 

Eliminating Bx and solving for vx, we obtain 

92 B2 a2vv 
x o x 
 (i)


or eliminating and solving for Hx, we have


32i B2B 2 H 
x o (j) 

where

B = pH (k) 

Part b


The boundary conditions are 

vx(-k,t) = Re Vejwt (0)


E (0,t) = 0 + vx(O,t) = 0 (m) 

We write the solution in the form


v = A ej(wt-k z) + B ej(wt+kz) (n)
x 

where 

k"o 

Applying the boundary conditions, we obtain 

Now 
x S(,t) =Re 

I 
in k

sin kZ 
ejt (o) 

or 

x x(p)
o az at 

- BoVk cos kz 
sin k2 ==J•o Hx (q) 

Thus 

Hx 

=Re 

= Re 

B Vk cos 

jw0po°in 
kz 
k 

t 
ejet (r) 

Part c 

Thus 

From Maxwell's equations 
3Hx 

ThusVxH= i = J (s) 

Jjw 
[BBVk2 

Re 
sin kz 
sin R Rt 

ee (t) 
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PROBLEM 12.37 (continued)


Since V*J = 0, the current must have a return path, so the walls in the x-z plane 

must be perfectly conducting. 

Even though the fluid has no viscosity, since it is perfectly conducting, it


interacts with the magnetic field such that for any motion of the fluid, currents are


induced such that the magnetic force tends to restore the fluid to its original


position. This shearing motion sets the neighboring fluid elements into motion,


whereupon this process continues throughout the fluid.





