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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.1
Part a
Since we are in the steady state (3/3t = 0), the total forces on the piston

must sum to zero. Thus

pLD +(fe)x =0 (a)
where (fe)x is the upwards vertical component of the electric force
2
€V
ey, _ __o'%
(f )x el 2x2 LD (b)

Solving for the pressure p, we obtain

R
0'o
p= 29 (c)
2x
Part b
Because %- <<1l, we approximate the velocity of the piston to be negligibly

small. Then, applying Bernoulli's equation, Eq. (12,2.11) right below the piston

and at the exit nozzle where the pressure is zero, we obtain

2 eV 2
1 o'0
2P Y% 2x2 ()
Solving for Vp, we have
v €
o 0
V = — [ — e
o X / 5 (e)
Part c
The thrust T on the rocket is then
= a 2
T vp ir - vp pdD (£)
eV 2
00
= >— dD
X
PROBLEM 12.2
Part a
The forces on the movable piston must sum to zero. Thus
puD - £5 = 0 (a)

where f€ is the component of electrical force normal to the piston in the direction
of V, and p is the pressure just to the right of the piston.

H 2p
o190 (b)

e=
f > w
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.2 (Continued)

Therefore
u 12
0

P= 2w (c)
Assuming that the velocity -of the piston is negligible, we use Bernoulli's law,
Eq. (12.2.11), just to the right of the piston and at the exit orifice where the
pressure is zero, to write

1

3 vi= p (d)
or i
v = &/2 (e)
Part b Wi o
The thrust T is
‘ u,I%d
T = v-g—b:= V2 pdW = °w (£)
Part ¢
For I = 103A
d= .lm
w = 1m
p = 103 kg/m3

the exit velocity is

V= 3.5 x 10 2 m/sec.
‘ and the thrust is

T = .126 newtons.

Within the assumption that the fluid is incompressible, we would prefer a dense
material, for although the thrust is independent of the fluid's density, the ex-
haust velocity would decrease with increasing density, and thus the rocket will
work longer. Under these conditions, we would prefer water in our rocket, since

it is much more dense than air.

PROBLEM 12.3
Part a .
From the results of problem 12.2, we have that the pressure p, acting just to
the left of the piston, is
oI
0
p= 2 : . (a)
2w
The exit velocity at-each orifice is . obtaineu by using Bernoulli's law just to the

left of the piston and at either orifice, from which we obtain
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,3 (Continued)

%
P w

at each orifice.

Part b
The thrust is

T = 2v-‘;—21 = 2V%pdy (c)
2u 1%d
T= —O (d)
w

PROBLEM 12.4
Part a
In the steady state, we choose to integrate the momentum theorem, Eq. (12.1.29),

around a rectangular surface, enclosing the system from -L < X <+ L.

- oV "a + o[v(L)1’D = Pa - P(L)b+F (a)

where F is the x . component force per unit length which the walls exert on the

1
fluid. We see that there is no x, component of force from the upper wall, therefore
F is the force purely from the lower wall.

In the steady state, conservation of mass, (Eq. 12.1.8), yields

V() = v, %'Il . )

Bernoulli's equation gives us

% Vi P = %-pvg f; + P(L) (c)

Solving (c) for P(L), and then substituting this result and that of (b) into
(a), we finally obtain
2 b a?

F= P (b-a) +pV  (-a+ 3+ 5) (d)-
The problem asked for the force on the lower wall, which is just the
negative of F.
Thus e

Fwall = - Po(b—a) - pV; (-a + %E.+ E-) (e)

PROBLEM 12.5
Part a

We recognize this problem to be analogous to a dielectric or high-permeability
cylinder placed in a uniform electric or magnetic field. The solutions are then

dipole fields. We expect similar results here. As in Eqs. (12.2.,1 - 12.2.3), we
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ELECTROMECHANICS OF INCOMPRESSIBLL, INVISCID FLUIDS

PROBLEM 12.5 (continued)

define

and since
Vev

then V%¢ = 0.

Using our experience from the electromagnetic field problems, we guess a solution

of the form

¢ = % cos 8 + Br cos 0
Then _ .
= (A _ A
V= (rz cos 8 - B cos Q)ir + ( =2 sin 8 + B sin OYIQ

Now, as r »

V= Vi = V (cos 61 - 1. sin 0)
01 o r

(]
Therefore
B = -V
0 -
The other boundary condition at r = a is that
Vr(r=a) = 0
Thus
A = Ba?’= -va?
o
Therefore *
V = V cos 8(1 - EEOI- -V sin9 (1+ a )1
r2’r o xZ ’*e
Part b
v 4/”——-\\\‘;
2> >
_ _/—\ —_——
= _/\ S
— D
—S— ﬂ\\\E_//,r >
\—/' -
% \/ 3

30



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.5 (continued)

Part ¢

Using Bernoulli's law, we have

2
l’.
%pvz+po= %pvz (1+-3;—-2;?—cos 20) + P

Therefore the pressure is

~ 1 ., a% 22l
P= p,-70Y, ( =T cos 2 9)

Part d
We choose a large rectangular surface which encloses the cylinder, but the

sides of which are far away from the cylinder. We write the momentum theorem as

j oV (v-mda = - [ Pda + F
_’S S
where F is the force which the cylinder exerts on the fluid. However, with our

surface far away from the cylinder

Thus, integrating over the closed surface

F = 0
The force which is exerted by the fluid on the cylinder is ~F, which, however, is
still zero.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.6

Part a
This problem is analogous to 12.5, only we are now working in sphefical co-

ordinates. As in Prob. 12.5,

V= -

In spherical coordinates, we try the solution to Laplace's equation

¢ = Ar cos 6 + ET cos 6 (a)

r
Theta is measured clockwise from ‘the x1 axis.

Thus .

= 2B - . = L B !

V= |-Acos 6+ cos ]i +1i,(A +— )sin-6 (b)

r r 6. x3

As r > o

V = Va(ircos 6 - ie sin 8) (c)
Therefore A = - v, (d)
At r =.a

v () = 0 (O]
Thus 2B = A= -V

a3 o
or Voaa
Therefore . 3

- a - a . -

V= Vo(l - ;3-)cos eir - Vo(l + 573 ) sin 6 ie (8

i 2 2
with r=\/ x2+x + X
1 2 3
Part b
n

At r=a, 6= m, and ¢ = - 7
we are given that p = 0
At this point

V=0
Therefore, from Bernoulli's law

1 2 a® |2 2 2 a® 2
= -_— - — + —
P 7 PV, [}l oy ) cos®H sin® 0(1 + . ) (h)

Part c
We realize that the pressure force acts normal to the sphere in the - I;

direction.

32



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.6 (continued)

at r = a

= _9 2.2
P=-3 pVO sin® ©

We see that the magnitude of p remains unchanged if, for any value of 6, we look
at the pressure at 6 + m. Thus, by the symmetry, the force in the X, direction is
zero,

£, = 0.

PROBLEM 12.7

rart a

We are given the potential of the velocity field as
A \'
__ o - o — -
b =5 x%,. v= % = -— (x,1, +x 1)
If we sketch the equipotential lines in the xlxzplane, we know that the velocity dis-

tribution will cross these lines at right angles, in the direction of decreasing

potential.
Part b
<. 4¥ _ vV L moyT
a It - 3t + (v*V)v
v, _ _
= (1;' (xlil + xziz) (a)
V.2
- o —
a = ( a) ri (b)
where _
r= xf-+ x? and i_1is a unit vector in the radial direction.
2

Part c

This flow could represent a fluid impinging normally on a flat plafe, located
along the line

x + x2 = 0. See sketches on next page.
PROBLEM 12.8
Part a
Given that
. X, _ X,
v=iv —+1iv — (a)
10 a 20 a
we have that _
- dv _ dv = o
a= & = 3¢ * W
9 3 ) -
(vl ax1 +v2 axz M ®©)
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ELECTROMECHANICS OF INCOMPRLSSIBLE, INVISCID FLUIDS

---- potential

velocity

Acceleration X
vV 2

- 0l —

a (a ) ri

Problem 12.7
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.8 (Continued)

Thus x v
- 27 — 0 -
a= v — i1 +(a2 xzi2 (c)
Part b
Using Bernoulli's law, we have
1 Vo 2 2 2
P, = 3 p( a) (x; + x7) +p (d)
1 Vol 2 ;
P= P, ‘2“0(—3—)(x2 +x)
2
1 2 r
Po = vao al (e)
where 3 2
r= X +x
1 2

PROBLEM 12.9

Part a
The addition of a gravitational force will not change the velocity from that

of Problem 12.8. Only the pressure will change. Therefore,
— v v
v = L -
v = il 2 X, + i2 2 X (a)
Part b
The boundary conditions at the walls are that the normal component of the velocity
must be zero at the walls. Consider first the wall

X, - X, = 0 (b)

We take the gradient of this expression to find a normal vector to the curve. (Note

that this normal vector does not have unit magnitude.)

n= iz- i1 (c)

Then ven = Zg x-x) =0 (d)
a 1 2 .

Thus, the boundary condition is satisfied along this wall.

Similarly, along the wall

x2 + xl = 0 ‘ (e)

= T, +1, (£)
and - _ _V_q _ '

ven = 3 (x1 + xz) = 0 (g)

Thus, the boundary condition i1s satisfied here. Along the parabolic wall

x? -x2%2= a? (h)
x

n= i, - X1, | (1)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.9 (Continued)
v
- = o
ven = — (XX - XX = 0 &
a ( 12 | 2) @)

Thus, we have shown that along all the walls, theé fluid flows purely tangential to

these walls.

PROBLEM 12.10
Part a
Along the lines x = 0 and y = 0, the normal component of the velocity must be

zero. In terms of the potential, we must then have

9¢ -
vy = 0 ‘ (a)
x=0
and
3% = '
3y 0 ) (b)
y=0

To aid in the sketch of ®(x,y), we realize that since at the boundary the velocity

must be purely tangential, the potential lines must come in normal to the walls.

X
potential
7/
lines
7
/
/]
il
/]
/
/]
/]
/ velocity
:: streamlines
/(/VCf/C//'/’/’/f/’/’/’/’/' VA AV A A y

Part b
For the fluid to be irrotational and incompressible, the potential must obey
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUILDS

PROBLEM 12.10 (Continued)

Laplace's equaiion

V2¢ = 0 (c)
From our sketch of part (a), and from the boundary conditions, we guess a solution
of the form
Yo
0= -—= (x> -y (d)
v a ’
where 22 is a scaling constant. By direct substitution, we see that this solution

satisfies all the conditions.

Part c
For the potential of part (b), the velocity is
v .
v = - = —9— 3 - i s '
v Vo 2'a (xix yiy) : (e)
Using Bernoulli's equation, we obtain
v-
= 0 2 2
p,= P+ 2 ( a) x* + y?) (£)
The net force on the wall between x=c and x=d is
z=w x=d
f = J [ (p, - p)dxdz iy (8)
z=0 x=c

where w is the depth of the wall.

Thus Zgj d
T= +\& w [ x%dx 1
6 y
v 2 c
)
a 3 INT
= <+ w (d° - ¢)i h
p ( A )y (h)
Part d
The acceleration is
_ _ v, Vo — vy vy -
a= (v'Vv= 2 ;—-x(Z e ix) -2 T (-2 b iy).
or _ Vo _ _
a = 4(:;) (xix + yiy) (1)
or in cylindrical coordinates
v
— o —
a = A(a)rir » (1)
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ELECTROMECHANICS OF INCOMPRESSIBLE. INVISCID FLUTDS

PROBLEM 12.10 (Continued)

A - V¥
: ar= 4(—)1:'1
y a r
/
/]
/]
/
/
/]
/]
/1 ! y
ST S 77T S )
PROBLEM 12.11
Part a
Since the V+v = 0, we must have
Voh = Vx(x)(h -§&) (a)
or V. h
= 0 v g—
vx(x) hoE v v, (1 + . ) (b)
Part b
Using Bernoulli's law, we have
Lov 4p = do v o1 +0 (e)
2 o Po 2 X
- 1 vz L1 2 &2
P = PO + 3 Vo 2 pVo 1+ h) (d)
Part c
We linearize P around £ = 0 to obtain
y _ 2 &
PYP -V 2?3 (e)
Thus )
T,=-P4P = pV £ (f)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.11 (continued)

Thus T = Cg €:9)

with o v;

Part d

We can write the equations of motoion of the membrane as

3% _ . 3%
oL YT Sax2 +Tz (h)
_ 2% :
= S35 *+CE (1)
We assume
A . t"'k
EGx,t) = Re g ol (WETkX) ()
Solving for the dispersion relation, we obtain
-ou?= -Sk?+cC (k)
or Y
= | S g2 - C
w 5 k e ®)
m m
Now, since the membrane is fixed at x = 0 and x = L, we know that
k = Igl n= 1,2,3, ..... (m)
Now if
7.2
S( 7 € <0 (n)
we realize that the membrane will become unstable.
So for )
ovS 2 ’
T
o < S(l) (o)

we have stability.
Part e

As § increases, the velocity of the flow above the membrane increases, since
the fluid is incompressible. Through Bernoulli's law, the pressure on the membrane
must decrease, thereby increasing the net upwards force on the membrane, which

tends to make £ increase even further, thus making the membrane become unstable.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.12

Part a

We wish to write the equation of motion for the membrane.

RPE 9% , e
Om 3t2 ~ S 3z T pl(E) Po ¥ T - 08 (2)
2
where eo Vo 2 eo v

o) 2¢
 =2GE) R e U
is the electric force per unit area on the membrane.

In the equilibrium £(x,t) = 0, we must have

eV 2
P, (0) = b -5 () +og (b)
As in -example 12.1.3
p, = -—pgy +C
and, using the boundary condition of (b), we obtain
p, = -y +tog+p - 329 (-\-;9)2 (c)

Part b
We are interested in calculating the perturbations in p, for small deflections of
the membrane. From Bernoulli's law, a constant of motion of the fluid is D, where

D equals )

1 2 €o VB
D= 5pU'+0eg+p -5 () (d)
For small perturbations &x,t), the velocity in the region 0O < x< Lis
Ud
d+£

We use Bernoulli's law to write

v o=

1
F0v° +p (8) +pgE = D (e)
Since we have already taken care of the equilibrium terms, we are interested only in

small changes of P so we omit constant terms in our linearization of pl.

Thus 2
U
p (€)= - gt + 25 (£)
Thus, our linearized force equation is
2
¥ ? u? eovo
Cat s Smt H( B oest )¢ (e)
We define ,
\
u? €%
C= -pg+ QE—-+ d3

and assume solutions of the form

E(x,t) = Re g ej(wt—kx)
40



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.12 (Continued)

from which we obtain the dispersion relation

' %
wo=(e -2 (h)
m m
Since the membrane is fixed at x=0 and at x=L
k = ‘—‘g- n= 1,2, 3, v.... (1)

If C <0, theg w is always real, and we can have oscillation about the equilibrium.
For C > S(%-) » then w will be imaginary, and the system is unstable.
Part c

The dispersion relation is thus

1

72
w =<.—S_k2_°£.
om m

Consider first C< O

complex k for
real gy

A\

K

kr\.x!\x

WX

# \
/\

c>0 u
Y, Mr
\‘*’i\ ,:g:]/ " comple::ea(f 11:0::
X [X /EJ
X | Y
4 N\
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.12 (Continued)

Part 4

Since the membrane is not moving, one wave propagates upstream and the other
propagates downstream. Thus, to find the solution we need two boundary conditions,
one upstream and one downstream. If, however, both waves had propagated down-
stream, then causality does not allow us to apply a downstream boundary condition.
This is not the case here.
PROBLEM 12.13
Part a

Since Vev = 0, in the region 0< x< L,

v d € -&)
N i 2
' d+‘glS g, Vo[ T4 ] (a)

where d is the spacing between membranes. Using Bernoulli's law, we can find the
pressure p, right below membrane 1, and pressure P, right above membrane 2.
Thus

1 2 1 2
200t P = T TP ®)
and
) 1 2
70V, tP, = oVt (c)
Thus
ovi(E -€,)
p = p Xp +—— (d)
1 2V Yo d
We may now write the equations of motion of the membranes as
2 2 2 2
2%, 2% s 2%, Va6, - &) ©
%n 3ez - S hxz (P, py) = ox? d e
%, 9%, . . 3%, oVA(E, - &) -
°n T3z T 55z Po. " P2 = 5%7 T d

Assume solutions of the form

E, = Re gl e (we—lex)
£ ej(wt—kx)
2

Substitution of these assumed solutions into our equations of motion will yield the

~ (g)
= Re 52

dispersion relation

~ ) pvg A A

- omwzgl = - Sk gl A &, - g2)
n ~ 2 (h)
2 _ _ 2 pVO A _ A

-0 wE, = -5k £, + —:r—(gz gl)

These equations may be rewritten as
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ELECTROMECHANICS OF INCOMPRESSiBLE, INVISCID FLUIDS

PROBLEM 12.13 (Continued)

~ pV2
a[-cw2+5k2-—d—ﬂ +£ L -) 0
. V2 - (i)
LJ+£ o_w? +Sk2-——dﬂ]=0

For non-trivial solution, the determinant of coefficients of El and Ez must be

zZero. 2

Thus pVé ’ pV:’
- 2 2————— = —_—
[ cmw + Sk 3 j { 3 (i)
2 2
or oV pv
- 2 2 __° _ +_°9°
o w® + Sk 5 T (k)

If we take the upper sign (+) on the right-hand side of the above equation, we obtain
2.1
S 2 ZOVO 2
w = | —k® - — (2)
A o cgd
m m

We see that if Vo is large enough, w can be imaginary. This can happen when

o 20 (m)

Since the membranes are fixed at x=0 and x=L

Kk = % n= 1,2,3,.0... (n)

So the membranes first become unstable when

2
, s(1)d
V ¢7 ——— o
o ) (o)
For this choice of sign (+), gl = ~ 52 » S0 we excite the odd mode. If we had

taken the negative sign, then the even mode would be excited

&, =&,

1
However, the dispersion relation is then

w = tik
(o

m
and then we would have no instability.
Part b

The odd mode is unstable.

1

—_—
or —_—>

_;/—\z
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ELECTROMECHANICS OF INCOMPRESSIBLE. INVISCID FLUIDS

PROBLEM 12.14
Part a

The force equation in the y direction is

) .

3y - P8 (a)

Thus
p= - pgly-8) (b)

where we have used the fact that at y= §, the pressure is zero.

Part b
V*v = 0 implies
Bvx EZX_ ~
3x * dy 0 (@)
Integrating with respectto y, we obtain
avx
vy = -35 Y + C (d)

where C is a constant of integration to be evaluated by the boundary condition at
y = -a, that

v (y= -a) =0

y y

since we have a rigid bottom at y = -a.

Thus . avx
v_ = = == (yta) (e)
Part c Y Ix
The x-component of the force equation is
ov
X __3% _ _ . 3 '
° 3t 3 P8 3x )
or
v
X __ ., 3%
it B (8)
Part d
At y = &,
13
Vy at (h)
Thus, from part (b), at y = §
3v
3 | _ X
= - (&) Y

However, since £ << a, and vy and vy are small perturbation quantities, we can
approximately write

av
T e )

Part e

Our equations of motion are now
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.14 (Continued)

v

X L=

3t 5% (k)
and v

X _ _ g2k

3t 8 3% . ®)
If we take 3/3x of (k) and 3/3t of (%) and then simplify, we obtain

v A

T = a8 532 (m)

We recognize this as the wave equation for gravity waves, with phase velocity

vp = Vag (n)

PROBLEM 12.15

Part a
As shown in Fig. 12P.15b, the H field is in the - i1 direction with magnitude:
I 6
lu| = 5 -
s 21r surface of integration (j5)
8 z for the MST
r

If we integrate the MST along the surface defined in the above figure, the only
contribution will be along surface (1), so we obtain for the normal traction

uI
1l oo
W = - 8 “zrsz ®)

Part b

Since the net force on the interface must be zero, we must have

Tn + pint - po =0 (c)

where Pine is the hydrostatic pressure on the fluid side of the interface.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.15 (continued)

2
uOIO

pint = po + 8 T2 (d)

Thus

Within the fluid, the pressure p must obey the relation

3
2 = -8 (e)
or
p= -pgz+C (£
Let us look at the point z = 2, T = Ro. There
1 uoIo2
= - z +C= p + 57T (2)
P ez, Yo = 8 TR g
Therefore b 12
C = z + + —-—3—2r .
PEZ, T Py T B W Ro (h)
Now let's look at any point on the interface with coordinates zZ s T
Then, by Bernoulli's law,
2 2
+ ——z—z—u°1° +pgz = l—z—z—u°1° +p + pgz
Po " BT Ro ez, 8 T P, T PBZg (1)
Thus, the equation of the surface is
2 2
z + = UOIO = z + l —z—-z—uolo * s
PeZs™ 8 nzr; PBZ, T B T R &)
Part ¢ .
The total volume of the fluid is
- 2 by2
V= m[RS - P ]a. (k)

We can find the value of zo by finding the volume of the deformed fluid in terms of

Z» and then equating this volume to V.

2
Thus R l: +luoIo 1 1
°© |26 7 8 Tpgn? ii? r2
= 2 byzq, o
vV = 1r[Ro - (50 Ja= 2m { rdrdz )
r=r, 2=0
where

T is that value of r when z = o, or
2 v,
1 Holo 2
8
YA
|
m Ro

Evaluating this integral, and equating to V, will determine z .

ﬁN‘H

(m)

0] =

+
P8z,

46



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.16

We do an analysis similar to that of Sec. 12.2.la, to obtain

E=-1 v (a)
y w
and
= o(- — = =
J iy ( w+vB) Td 1y (b)
Here Ve IR+V ()
Thus vBw - V
[o]
I= ———
R+ 2do

The electric power out is

P =VI= (IR+ V)I
e o

- Bw - V
+ R(vBw Vo) v o

= |V
° pa T )
Ldo Ldo
From equations (12.2.23 - 12.2,25)
we have
1B
bp = p(®) - p() = T 3)
Thus, the mechanical power in is
Bw(vBw-V )v
= z —_— 0
Py (Apwd)v e (8)
2do

Plots of PE and P, versus v specify the operating regions of the MHD machine.

M

P P P
. M | w Pe | Py
e
1 |
I‘ P
e
‘ v
- v
Vo b\\\\\~ | g
2doRB | w
P> 0 lfe< Ofp < 0 l P> 0
PM> 0 }iM> OPM< 0 PM> 0
Generator Brake ' Pump Generator
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEE“12.17
Part a

The mechanical power input is

L d
Py = - J ‘] f vaodxdydz (a)
z=0 y=0 x=0
The force equation in the steady state is
- Vp + £ =0 (®)
where o g ©
yo
Thus L w d
PM = f | JyBovodxdydz (d).
z=0 y=0 x=0
o 3, = 0@, +vB) = o %—3 +v,B) (e)

Integrating, we obtain

= 2 - VLd
PM ovoBoLwd oBovo (£)
V;; vvoc 1
Ri ~ R = ﬁr-(voc— v)Voc
1 i
Part b P .
Defining n = ——
P
M
we have )
. (voc - V)V - av ®
(voc - V)Voc
First, we wish to find what terminal voltage maximizes Pout' We take
aPout
3V - 0 and find that
A
_ oc .
V= 7(1+a) maximizes Pout'
For this value of V, n equals
1 1
n 2 (1+2a) (h)
Plotting n vs. 1 gives n
a
s e e e e . e —
1
N N A AR A I R a
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.17(Continued)

Now, we wish to find what voltage will give maximum efficiency, so we take

a,n
3v“°

Solving for the maximum, we obtain

/a .
V= voc\:lt l+a] (1)

We choose the negative sign, since V< Voc for generator operation. We thus obtain

n= 1+ 2a-2/a(l+a) )

Plotting n vs. % , we obtain

n

: , . 1
' 2 3 4 5 6 7 8 9B a
PROBLEM 12.18
From Fig. 12P.18, we have
E = 43
Wy
and
—_ —-_ V _ _I— —_—
J = 1yo[ -t vB] = iD iy (b)
The 2z component of the force equation is
_dp oL,
5z ~ 1D ° 0 (c)
IB v
or bp=p; -p,= F= Apo(l-vo) (d)
Solving for v, we obtain
IB
v= (1- m v, (e)

49



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,18 (Continued)

Thus, we have

I \ IB

oo~ wt B mm_ % 0
or Y BZVOW.
= — -
Ve I{ 5o Bip, > v Bw (g)
Thus, for our equivalent circuit
w vosz
v oy
Ri LDo + DApo th)
and V = -vwuB (i)
oc o

We notice that the current I in Fig. 12P.18b is not consistent with that of Fig.
12P.18a. It should be defined flowing in the other direction.

PROBLEM 12.19
Using Ampere's law

NI +NI
_ oo LL ,
H = 5 (a)
Within the fluid
I \/ :
_— L — _ _ —L -—
J= 331, = o( ot vuoHo)iz (b)
Simplifying, we obtain
: 1 ovUONL _ UVUONOIO ) OVL ©
L| & d d w

For VL to be independent of‘IL, we must have

ki W (@
d T

or R e)
NL QOVNO (

PROBLEM 12.20

We define coordinate systems as shown below.

Y2

MHD #2. MHD # 1
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ELECTROMECHANECS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.20 (Continued)

Now, since Vev = 0, we have

vwd = vwd
11 1 2 2 2

In system (2),
I v

= = -_— — +
J2 1y2 7,4, o( va sz)iy2 (a)
and
I,B
ap, =p(0) -pQ&, D= - - ®)
2
In system (1),
- - b Vl
Jl = iylW =0 ( W_ - VIB) (C)
11 1
and IIB.
Ap = p(0,) - p(ll_) = - (d)

1
By applying Bernoulli's law at the points x = 0_ (right pefore’'ID system 1) and at
X, = 21+ (right after MHD system 1), we obtain

1 2 . 1 2

5 Py, +p (0) = Fpv: +p (L) (e)
o P, (00 = p (2 ) (£)
Similarly on MHD system (2):

p,(00) = () )
Now,

§ Vpedt = O

c

Applying this relation to a closed contour which follows the shape of the channel,

we obtain

11_ x2=0_ x2=22_ xl =0_
é Vpedl = JV pedl + { Vped? + I Vpedl + I Vpedl
C x1=0+ x1=£1+ x2=0+ x2=£2+

=p, (@ )-p, (0D +p,(0)-p (& J+p Q)
- p2(0+) + pl(O_) - p2(22+) (h)

From {f) and (g) we reduce this to

Apl + Apz = 0 (i)
or
' Lo oh 3)
d d
- 1 2
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.20 (Continued)

Thus, we may express v1 as

I
v = <+T1723+%>% (k)
We substitute this into our original equation for J2 (a), to obtain
I Y wdy /1 v
;e (o) (8 ) “

This may be rewritten as

w 1 wld1 d1

= - —l - —
V,* L |ltatwrar|- T Y (m)

2" 2 2 1 2 2

The Thevenin equivalent circuit is:

_— 1, R
V.YV, W
_ +
Voc _:L_ v,
+
where dl
vV =— YV
oc d 1
2
and d
- Y2 ;L_+ iy
eq ad 22 w2d22,l
PROBLEM 12.21
For the MHD system
= I Vo
3] = W = 95 - VUOHO) (a)
and I, H
Ho'o
bp = py-py= +—— (b)
Now, since
f Vp*d? = 0 (c)
we must have v .
o
Ap = kv = UOHOLO( 5 vuoﬂo) (d)
Solving for v, we obtain
= UOHQLOVO
D{k+ (u_H_) ?Lo] @)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.22
Part a
We assume that the fluid flows in the +x direction with wvelocity v.
Thus
- I

- v )
J = 13 o= o( It vuOHO) i, (a)

where I is defined as flowing out of the positive terminal of the voltage source Vo'

We write the x component of the force equation as

AT
_3% __o9° _ =
axl T w o} 0 (b)
.Thus Iy H
090
For 8p = p(0) - p(L) =0
Then Iy H
‘0 0
e T T8 @

For the external circuit shown,

V= - 1R+ Vo (e)

Solving for I we get
Vo '
— +
_ d vuoHo - pglw
I-= = (£)
—l—-+ R uoHo
OLw d

Solving for the velocity, v, we get
__esﬁv_(l + B)_‘b_

U H oLw d d
00
- (8)
uOHO
For v > 0, then
Vo<uH (E+ RLw) (h)
oo

Part b
If the product VOI > 0, then we are supplying electrical power to the fluid. From
part (a), (f) and (h), Vo is always negative, but so is I. So the product

VOI is positive.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.23

Since the electrodes are short-circuited,

7- 1L - T

J= i 99 = OB i, (a)
In the upper reservoir

P, = pytegth -y) (b)

while in the lower reservoir

P, = P, *+pelh, -y) (c)

The pressure drop within the MHD system is

bp = p(O) -p() = 2 (@

Integrating along the closed contour from y=h1through the duct to y=h2 , and

then back to y=h1 we obtain

IB
-§ UpedR = 0 = - pg(hl - h2) + =2 (e)
C
Thus L - pg(h1 - hz)d (£)
i BL
and so
h - h
vo L pg(h - h) (2)
oLdB ol°B
o o

PROBLEM 12.24
Part a

We define the velocity vy, as the velocity of the fluid at the top interface,
where

_ dn
Yh T dt (2)

Since Vev = 0, we have

th = v wD (b)
where Vg is the velocity of flow through the MHD generator (assumed constant). We
assume that accelerations of the fluid are negligible. When we obtain the solution,
we must check that these approximations are reasonable. With these approximations,

the pressure in the storage tank is

p= - pgly-h) +p (c)
vhere P, 18 the atmospheric pressure and y the vertical coordinate. The pressure

drop in the MHD generator is

&p = —3 (d)
where I is defined positive flowing from right to left within the generator in the
end view of Fig. 12P.24,
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.24 (continued)

We have also assumed that within the generator, v, does not vary with ﬁoSition.

The current within the generator is

I . IR
LoD = of w + veuoHo) (e)
Solving for I, we obtain
v, U H
= -5 00 ‘ (£)
1. R
OLD w

Now, since § Vped? = 0, we have

Ap - pgh = 0 . @)
Thus, using (d), (f) and (g), we obtain
(u H )2 ’
00 1 .
- pgh + R, 1 _|% =° (h)
-+
W OLOD

Using (b), we finally obtain

dh .
T tsh=o0 (1)
where o8 W o [&p 1
$° wnoz Alw tor
oo o
Th -st
us h= 10 e °° | until time T, when the valve closes &)
Numerically at h = 5.
s= 7.1x10°° , thus T~ 100 seconds.

For our approximations to be valid, we must have

v,
’pgr << pg (k)
or
s?h <<g.

Also, we must have

1
RSN
or
1l 2
7 8 h <<g (L)
Our other approximation was
3ve IuoHo
pLo at << D (m)

which implies from (f) that

55



ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.24 (continued)

(W H )2
psL_ << —2L o (n)
o p R4 1
\4 ULOD
Substituting numerical values, we see that our approximations are all reasonable.
Part b
From (b) and (f)
I-= —-———_.—._.__UOHO A _ah
wd L Rl9e
OL D w
o
= - 650 x 10° e %t amperes.,
until t = 100 seconds, where I = -325 x 103 amperes. Once the valve is closed,
I = 0.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25

Part a

Within the MHD system

— - i -— v —_—
J = E:E 13 = - g( o vuoHo)i3 where V = -iR + Vo (a)
iuy H
and bp = p0) - p(-L) = —g=a (b)

We are considering static conditions (v=0) so the pressure in tank 1 is

p, = -pglx, - h) +p, (c)
and in tank 2 is

P

2 - pg(xz - hz) + Ps d)

where P, is the atmospheric pressure,

thus v

i= = (e)
vl + B
OLID w
Now since ﬁVp-dz = 0, we must have
C iy H
+ pgh + -pgh =20
pgh D pgh_ (£)
Solving in terms of Vo we obtain
pg(h = h )wD
e TN 011,1)*% (8)
Ho'o |
For hz = .5 and hl = .4 and substituting for the given values of the parameters,

we obtain

Vo = 6.3 millivolts

Under these static conditions, the current delivered is
pg(h2 - hx)D
i=s ——————— = 210 amperes
u_ H
o o
and the power
delivered is 2

pg(h, - 00 Fy g
-Pe = Voi = _———TTTT_——_ w Ef_b+ ol = 1.33 watts
oo : 1

We expand h1 and h2 around their equilibrium values hlo and h20 to obtain

Part b

h + Ah
1

1 lo
h, + bh,

0
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25 (Continued)

Since the total volume of the fluid remains constant
Ah = - Ah
2 1

Since we are neglecting the acceleration in the storage tanks, we may still write

P, = -pg(x -h)+p
' 2 v (h)
P, = -p8lx, -~h)+p,
Within the MHD section, the force equation is
iy H
v oo :
°3c =" Vep * LD 1)
Integrating with respect to X, , we obtain
iuoHo v
Spyyp = P(O) - p(-L) = LD - oL 53¢ )
The pressure drop over the rest of the pipe is
A = - L d_v
ppipe PLIFTS
Again, since ﬁ Vped? = 0, we have
o
pg(hl - hz) + ApMHD + Appipe =0 (k)
For t > 0 we have
2V
o
w - VHol,
i=— R Q)
— + _—
OLID w
and substituting into the above equation, we obtain
<’2v0
— - VU H) Ui
v W 0o ‘oo _
og(hl— hz) pP(L+L) 3T Yo7 X 5 =0 (m)
oL D w
1
We desire an equation just in Ahz' From the Vev = 0, we obtain
dAh2
vwh = o A (n)
tlaking these substitutions, the resultant equation of motion is
2 2
d Ah2 .\ (uOHO) dAh2 .\ 2gwdAh2
dt? 1 R] dt (L.+L)A
= 1 2
p(L1+L2)D[?LID + Y}
(o)
VouoHo
1 R
p(L +L,)A LD + w]
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PROBLEM 12.25 (continued)

Solving, we obtain

vV u Ho Slt szt
Ah = o2 +Be +Be ()

2 Zp?Wd(%‘ D+ E) 1 2

where Bl and B are arbitrary constants to be determined by initial conditions
2

and

2 ,
ALY /[“oo \ 2gwd_ (@
3 ZpiL +L )1)( \/\< [L +LZJ [OL . y @ + LA

Substituting values, we obtain approximately

-1
~ .025 sec.
1 -1

s = - .94 sec.
2

s

The initial conditions are

Ahz(t=0) = 0
and dAhz(t=0) -
dt

0

Thus, solving for B, and B, we have

- VuH
0 0o
B = = - ,051 (r)
1 2 LR -5
20gwD [ + ](1 _)
1 s
2
- VuH _3
B = ~—2-2 s = + 1.36 x 10
z 2pgwD [ 1 + —ji
[4:4 quD
Thus
-3 _ -
h () = h 48h () = .55+ 1.36 x 10" e WOME_ go1,me025L )
From (L) we have
o
— - v H
{ = w o o (t)
R, _1
\ OLID
Substituting numerical values, we obtain
slt s,t
i = 420 - 2.08 x 10° (B,s,e t+ B,s,e )
- 420 - 268 (e "O25F - o7vo%E) ' (v
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PROBLEM 12.25 (continued)

hz(t)

«55 L
Sk 4
.53 4
.52

«51 4

50 ] I—

i(t)

420 — e e ewn - e cmme e vm e e

210 +
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25 (continued)

Our approximations were made in (h) and (k). TFor them. to be valid, the following

relations must hold:
3%An
2
51:
gh,

@
<l

v S nvas & X A
J——+ (veV)vds ~ t/A« L,

Qo
[ad

transition
region
Substituting values, we find the first ratio to be about .001, so there our approx-

imation is good to about .1%. In the second approximation

VA .3
B R
2
Here, our approximation is good only to about 15%, which provides us with an idea of

the error inherent in the approximation.

PROBLEM 12.26
Part a
We use the same coordinate system as defined in Fig. 12P.25. The magnetic field

through the pump is

NiM g

d 1_2 . (a)

B =

We integrate Newton's law across the length £ to obtain
8p

ot & = 50 -p() +IBL= -—2y+ip )
at v, d
Ap Nu
=—T°v+ d2 iZ
o
Thus

bp Nu Nu
v, o = 0 ;2 2 _ 0 2,7 _
3 * BIv, v = 7oL I° sin® wt = Saiok I°(1 - cos 2 wt) (c)

Solving, we obtain

dp
Np I% |v pR (—172—- cos 2wt + 2w sin 2wt
o o _\P* ¥vo (@)
2d“pl | Ap Ap N2
° 9 + 4w
Part b pgvo
The ratio R of ac to dc velocity components is:
R = 89, /voPt (e)
oo \ %4 z.wz:]Y
VoP%
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PROBLEM 12,27
Part a

The magnetic field in generator (1) is upward, with magnitude

Niluo Nmizuo
B = — (a)
1. a a -

and in generator (2) upward with magnitude

N1iu Ni u
B = m 1l o + 20 (b)
2 a a

We define the voltages V1 and V2 across the terminals of the generators.

Applying Kirchoff's voltage law around the loops of wire with currents i and i
pply P 1 2

we have
dll dAz

V1+N-a-t—+Nm?lE— +11R'L =0 (c)
and dl d),

Vz-+ N EE—-- Nm T + 12RL = 0 (d)
where

Al = Blwb ) (e)

= B wb ’
2 2

From conservation of current we have

2o v, ()
abs  w
and
1, v,
abo w + VBZ (8)
Combining these relations, we obtain
2 ) wbuo di, wuoN uow
o +Nm) a dt + [abo RL_ 3 + a VNmiz =0 ()
and
wbu di VNu oV N u
2 2 o 2 . - _mo -
(" + Nm) a dt + * abc + RL WVi; 0 (1)
Part b

We combine these two first-order differential equations to obtain one second-

order equation.

a’i, di,
a4 4t ta ¢ tai, =0 ()
where = wa;-z
N2+ N?)
a = m a | (k)
1 wN Vu
m [o]
a
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PROBLEM 12.27 (continued)

2 2
) - N _ wuoNV (N*“+ Nm)b
2 abo RL a Nm A

VN U w
a - —mo’ ,
3 a

[
]

If we assume solutions of the form

1= A *)
Then we must have
as®+as+a =0 (m)
1 2 3 .
or -a*Va® - 4aa
s = 2 2 13
2 a

1
For the generators to be stable, the real part of s must be negative.

Thus
a, > 0 for stability .
which implies the condition for stability is

wu NV
' 0
—_— > e
Part ¢ abo | R, a (n)
When a =0
2
wuoNv
w =
abo + RL a (0)

then s is purely imaginary, so the system will operate in the sinusoidal steady state.

Then
a!
s= *j/—
al
Nm v
RN YCEE Y 2

The length b necessary for sinusoidal operation is

b = — wuoNg (q)
[ - v
Substituting values, we obtain
b = 4 meters.
Part d

Thus, the frequency of operation is

w = éQ%Q_ = 500 rad/sec.
°F  f£= - X 80 Hz.
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PROBLEM 12.28

Part a
The magnetic field within the generator is
uoNi _
B = w i2 (a)

The current through the generator is

= _ _ _j__ _ X -—
J = 13 T = ol 5+ VB)i’ ’ (b)

Solving for v, the voltage across the channel, we obtain

i Vu N
= (D __0o
v = <02,w - D) i (c)

We apply Faraday's law around the electrical circuit to obtain

p N2

"o d1

d == (d)

1 .

v + E-f idt + 1 RL
Differentiating and simplifying this equation we finally obtain
a2 (AT E Y Nai, _w ©
dt u N“Rd w dt uoN 2dC

We assume that i = Re I eSt.

Substituting this assumed solution back into the differential equation, we obtain
RL w U _NDV
___._.Jl___. + = 0 (£)
s® u N?%d Tw W s N’de

Solving, we have

RV ) U NDV R w ) M NDV \ 2
uy NZ2d Y oLw w Wy NZed t ch W .
s == ) pa A T U NAC (g)

For the device to be a pure ac generator, we must have that s is purely imaginary, or

. 2
) uoNDV D uoN 24 -
RL w OLw w

Part b
The frequency of operation is then

w
w = uoNszC 1)
PROBLEM 12.29
Part a

The current within the MHD generator is

- _ v —
J = Rd iy = 0(w + vBo)iy (a)
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PROBLEM 12.29 (continued)

where V is the voltage across the channel. The pressure drop along the channel is

bp= p,-p,= 7 tezt (b)

where we assume that v does not vary with distance along the channel. With the switch

open, we apply Faraday's law around the circuit, for which we obtain

V+2iR= 0 (c)
Since the pressure drop is maintained constant, we solve for v to obtain
"20R , 1) pd2 3v. ({1, 2R\d_
(w+£d) B ot T " (zd+w)BOA" (@
In the steady state
_ 1 2R\ d
vE (old+w>§7Ap (e)
o}
and d
i-= B Ap ()
o
Part b
For t > 0, the differential equation for v is
oR , 1 )ptd dv o (L, or)d
(w+2d) B ot O " (2d+w>Bo bp ()
The general solution for v is
_ 1 R\d -t/T
v = <——_02,d-.+w>FgAp+Ae (h)
_ (oR, 1) _ad
where T = (w ld)a’—ﬁ—z
We evaluate A by realizing that at t = 0, the velocity must be continuous.
Therefore
- 1 R\ d R d - t/t
v = (EEE-+ w) 37 Ap + - 57 Ap e (1)
o o
and
} PL R d —t/'r)g_
i Ap<l+Tw-ﬁ-é-e B &)
- t/t
= Ap 1+ Ro e d
JERL LT B
w 2d °
PROBLEM 12.30
Part a
The magnetic field in the generator is
uoNi
B T ; (a)
The current within the generator is
i v
T - o(;"’VB) (b)
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PROBLEM 12,30 (continued)

where V is the voltage across the channel. The pressure drop in the channel is

b= p -p = M, 1-%)= I (©)

Applying Faraday's law around the 8xternal circuit, we obtain
_ d(NBg,W) e - 2,_\"1 N2 g'j_.

V+ AR + R = dc d Mo dt (d)
Using (a), (b), (¢) and (d), the differential equﬁsion for 1 is then
U N\2
2 . o
&’.N_gi.}.i m.p_];__i’iv +.__g_ vid =0 (e)
d dt w ofd d o dApo o
In the steady state, we have
R+ Re 1 “oNvé]
{2 = - [_ \ + o%d =~ d 7 dApo (£)
u NJ2 .
9 v
d o

The power dissipated in RL is
2
P= i"R
For P = 1.5 X 106, then

12 = .6 x10° (amperes)2

Substituting in values for the parameters in (f), we obtain

4

_ (L1125 + 2.5 X 10 °N® - 6.3 X 107" N)40 x 10°

N (4 %X 1079

i = .6 x10°=

(g)

Rearranging (g), we obtain
N2 - 102N + 2.04 x 10° =0

or N= 75, 27

The most efficient solution is that one which dissipates the least power in the coil's
resistance. Thus, we choose

N = 27
Part b

Substituting numerical values into (e), using N = 27, we obtain
(1.27 x 107) %% - (6 x 1071 + 1% =0 (h)

or, rewriting, we have

dt - di )
1.27 x107 i(6 x107 - i%)

Integrating, we obtain

1 .
9.4t + C = log (gj;167jjiz> @)
We evaluate the arbitrary constant C by realizing that at t=0, i = 10 amps

66



ELECTROMECHANICS OF INCOMPRESSIBLLE, INVISCID FLUIDS

PROBLEM 12.30 (continued)
Thus

C= - 13.3

We take the anti-log of both sides of (j), and solve for i’ to obtain

6 x 107

iz =
l-+e(1&3 =9.4¢)

i

275 X 10° -JL ———————— _— ——— —— —

5.5 x103-L

)}

A\

10

1-'4}55

seconds t

Part c

For N = 27, in the steady state, we use (f) to write

P = izRL =
(=)
d o
or
= _ 2
P alRL a, RC "
where 1 HohVg
a=-dAp° w ¥ opd a) A 1.47 X 10°
1 (u N\ *
o
v
and d °
B dApO 1
a,s= (uoN)z A3 gsx10
d Vo
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.30 (continued)

6
1.5 X190 -

i
) AJ
2.5x1072 s x1072 L
PROBLEM 12,31
Part a
" With the switch open, the current through the generator is

- L
2d

where V is the voltage across the channel. In the steady state, the pressure drop

- v _
L= o(-g+vB)T (a)

in the channel is

iB
Bp= Py ~Py= F=0=28p (1-3) (b)
[o]

Thus, v = vy and the voltage across the channel is

vV = voBow. (e)

Part b
With the switch closed, applying Faraday's law around the circuit we obtain

Thus . .
m=—Tl+OVBO (e)
and
. iB v, o _y
Ap = Tt SE L = Apo (1 vo) (£)

Obtaining an equation in v, we have
v [fpo 9B, ()
pL s+ v — + = AP g
at Vo 1+°5] L
Td " v
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PROBLEM 12.31 (continued)

Solving for v we obtain

bp
. -t/t o = A
v = Ae Bp v where R, ald (h)
)
Vo RL*'Ri
and where
p 2
T = 1)
v, RLi-R
at t = 0, the velocity must be continuous. Therefore,
8p
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Now, the current is
wB v
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R tRy
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.32

The current in the generator is

i \'
2d =o(g =B (a)

where we assume that the B field is up and that the fluid flows counter-clockwise.

We integrate Newton's law around the channel to obtain

v _ _ i
pl 3; = JBJL1 = 3 B (b)

or, using (a),

IV . w3 By
T + i (c)

dto 3t  dp
Integrating, we have

oG
A B%w
V = dlo_i'i'mf idt (d)
1 0
Definin R, = A
8 i of,d
and
C =M—.
i wB?2
we rewrite (d) as o
V= iR +-1T—Iidt (e)
i Ci
0
The equivalent circuit implied by (e) is

R,
1 .
i

A v
1

PROBLEM 12.33
Part a
We assume that the capacitor is initially uncharged when the switch is closed

at t = 0. The current through the capacitor is

dv v
{ = ¢ L2 - -L
i= C dt O'Q,d( - + VOBO> (a)
or
dVC . ofd v OZdvo Bo ®)
dt wC 'C C
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.33 (Continued)
The solution for VC is

-t/
Vo= vBuw(l-e ) ()
with wC
T = Sid° where we have used the initial condition that at t = 0, the vol-

tage cannot change instantaneously across the capacitor. The energy stored as

t > o, is

1 2 1 2
W, = = = =
o 5 C Ve 7 C(voBow) (d)
Part b
The pressure drop along the fluid is
iB
- _o°o _ 2 -t/T
Ap = d BOVOOR‘ e ' (e)

The total energy supplied by the fluid source is

o0

Wf = L Ap vodwdt
_ f:("oBo)z otwde /T at 3
= - OQ(VOBO)2 dee_t/T )

We= Clv B)? (g)

Part ¢

We see that the energy supplied by the fluid source is twice that stored in the
capacitor. The rest of the energy has been dissipated by the conducting fluid. This
dissipated energy is

L]
Wy f v, idt (h)
0
o

= J + (voBo)zw(l - e—t/T)Glde—t/T dt

)
oldw(v B )? Efe_t/T+ I e_Zt/T]
oo 2

[+~]

0

= 2 1
Uldw(voBo) 5 (1)
Therefore
= L 2 ‘
Thus '
wfluid - welec + wdissipated (k)

As we would expect from conservation of energy.
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.34

The current through the generator is

i \'/
E:a- = g( i VBO) (a)

Since the fluid 1s incompressible, and the channel has constant cross—-sectional area,

the velocity of the fluid does not change with position. Thus, we write Newton's law
as in Eq. (12.2.41) as

oV

LY

where U is the potential energy due to gravity. We integrate this expression along

= - V(p+U) +J x B )]

the length of the tube to obtain

v iBo
Pyt = g ek, tx) (e)
Realizing that X, = Xy
and v = dx, (d)
dt
We finally obtain
2 2
d X, N oBoﬂ,ldxa . 2 . - GBOV El @
dtz pl dt 2 a wp L
We assume the transient solution to be of the form
x, = x St (f)
Substituting into the differential equation, we obtain
) UBglls 2g
—0 > + = .
M) 2 0 (g)
Solving for s, we obtain
oB*g oB2g, \?
1
s = - =2 + o 1\ _ 28 (h)
208 - 200 ] 2
Substituting the given numerical values, we obtain
s = = 29.4
1
s, = -.665 (1)
In the steady state
oBoVR,l
x = W oy .075 meters (1
Thus the general solution is of the form
- s, t s,t
X, 075 + Ale + Aze (k)

where the initial conditions to solve for A1 and A2 are
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.34 (continued)

xa(c=0) = .0
*q )
35 (t=0) =0
.075 s 075 s
T = :
hus, A2 — - 1 = .0765 and.A = - .____3_ = .00174
27 % ! 5,7 %)
Thus, we have:
x, = .075 + 00174294t _ 7656665t
x
a
075 &=
R { - .y
T { }
1 2 3
Now the current is
v dx
" lldO( v Bo EEO s, t s,t
= ndo[ 5 - B 0s,8,6%% + 5,0,0%20)] (m)

100 - 2 % 103(slA1eslt + szAzeSZt) amperes
—2% 4 ¢ -.665¢L
100(1 + e - e )

Sketching, we have

i

100

-+

-

-
[ad
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.35
The currents Il and I2 are determined by the resistance of the fluid between

the electrodes. Thus

VooDx
Lt @
and V_ODy
2 w

The magnetic field produced by the circuit is

_ W _
B= — (I, - IDI, (c)
or B = —-zu°N V oD(y- x)1 (d)
w [o] y 2

From conservation of mass,

y= (L-x) (e)
_ u NV oD _
Thus  §. & _0©° _ (- 21 (£)
w

The momentum equation is

v
P 3t
Integrating the equation along the conduit's length, we obtain

= - V(p+U) +J x B ()

v

o) SE-(ZL + 2a) = -pg(y-x) - JOBL (h)
Now
= - 9%
v 3t (1)
so we write:
. 2 u NV oDL
X o o
2p(L + a) FYS) + | pg + Jo R (2x - L)= 0 D)
We assume solutions of the form
x = Re x 5% + %— (k)
Thus ] . UONVOCD
s° + (L+a) + pwZ (L + a) Job = 0 (2)
Defining
2 UONVOODJOL
2 _
YoT Tra T T vt (m)
we have our solution in the form
Xx = A sin Wt + B cos w,t + % (n)
Applying the initial conditions
x(0) = L and d§£0) - 0 (o)
we obtain x = %-(1 + cos wot) (p)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.36
As from Egqs. (12.2.88 - 12,2.,91), we assume that

YT Tele
B= B I +TgBy (a)
TJ=TJ +13J
rr zZ 2
E= Tk +TE
rry zZ 2

As derived in Sec. 12.2.3, Eq. (12.2.102), we know that the équation governing Alfvén

waves is .
2 2
3t2 1,0 3%

For our problem, the boundary conditions are:

at z =0 E =0
r

(o)

at z = 2 Vg = Re[Qrgjwt]
As in section 12.2.3, we assume

vy = Re[A(r)vg(z)el) ' (d)
Thus, the pertinent differential equation reduces to

a?v "

~d—-z-z- + kv = 0 (e)

UpP
where k=w [—5
B,

The solution is

vg = C, cos kz + ¢, sin kz (f)
Imposing the boundary condition at z = ¢, we obtain

A(r)[Cl cos k& + c, sin k8] = Qr (g)
We let r

A(r) = ¢ (h)
and thus

QR= C, cos k& + C, sin k& (1)
Now

E.= - VgB, &P
Thus, applying the second boundary condition, we obtain

=0) = 0

vg(2=0)
or c, =0 (k)
Thus _ SR

€, ® Sih k2 2
Now, using the relations

E_= - vgB, (m)
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PROBLEM 12.36

ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

(continued)

3

3z

1 86

Ho 9z r
A

9E 9B

ar ot
By i

a(rBe)

we obtain

v =

=
]

(]
H

Z

PROBLEM 12.37

Part a

We perform a similar analysis as in section 12.2.3, Eqs. (12.2.84 =~

From Maxwell's

VXE-=

which yields

oK
D A

9z

Now, since the fluid is perfectly conducting,

or E =
y

Re

= Re

ar z

f r j t]
'______ W
Re oin KL sin kz e .

Qra k
Tastn kg o8 ke ]

r QrBo k2

jwt:\
———————— gin kz e
hbj(usin kg

2 QB k
J = Re{————il————- cos kz ejw%

uoj(usin kg

equation
- &
at

3

It 'x

E+vxB = 0
S

v B
X o

Substituting, we obtain

v

B, X
° 92

3B
=
it

The x component of the force equation is

v
X _
P ot
where

3T
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.37 (continued)
Thus

avx Bo QBX
S TR S P (h)
Eliminating Bx and solving for Vs we obtain
v B2  3%v
X _ o X 1)
3t U 0 322
or eliminating and solving for Hx’ we have
?H B2  3%H
x _ o X (4)
3 t? H P 322
where
B = uH, (k)
Part b
The boundary conditions are
vx(—z,t) = Re vel¥t (L)
Ey(O,t) = 0~ v, (0,t) = 0 (m)
We write the solution in the form
v = A ej(wt—kz) + B ej(wt+k2) (n)
X
where
k = —ru°p
w Bo
Applying the boundary conditions, we obtain
_ _ _V sin kz [ jwt
vx(z’t) = Re [_ sin k& ] e (o)
Now v 3B
X - X (p)
o 3z at ' P
or
- B,Vk cos kz ~
sin kg - jwuo Hx ()
Thus - BoVk cos kz Jut
Hx = Re[ jwuo sin KL e (r)
Part c
From Maxwell's equations
_ BHx _
VxH= i —=— (s)
Thus y 32
_ _ BOsz sin kz jut
J = iy Re ———‘——jw uo sin KL e (t)
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ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12,37 (continued)

Since VeJ = 0, the current must have a return path, so the walls in the x-z plane
must be perfectly conducting.

Even though the fluid has no viscosity, since it is perfectly conducting, it
interacts with the magnetic field such that for any motion of the fluid, currents are
induced such that the magnetic force tends to restore the fluid to its originmal
position. This shearing motion sets the neighboring fluid elements into motion,

whereupon this process continues throughout the fluid.
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