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ELECTRO:ECHANTCS OF COMPRESSIBLE, INVISCID FLUIDS


PROBLE4 13.1


In static equilibrium, we have


-Vp - pgi, = 0 

Since p = pRT, (a) may be rewritten as 

RT - + pg = 0
dx 

Solving, we obtain 
-L x 
RT 1 

p = p e a


PROBLEM 13.2 

Since the pressure is a constant, Eq. (13.2.25) reduces to 

Ov dv = - JB 
dz y 

where we use the coordinate system defined in Fig. 13P.4. Now, from 

we obtain 

Jy = (Ey + vB) 

If the loading factor K, defined by Eq. (13.2.32) is constant, then


- KvB = + E 

Thus, J = avB(1-K) 
y


Then pv dv _- avB2 (1-K)


or dv B Ai

SPdv = _ GB2(1-K) = 

- o(I-K)

jdz A(z)


From conservation of mass, Eq. (13.2.24), we have


PiviAi = pA(z)v 

Thus 

PiviAi dv 2 

dz = -a(l-K)Bi Ai 

Integrating, we obtain 
- a(l-K)Bi 

9n v = z + C 

v 


a 

v= vie d


Oi vi
Pi ViwhereZ
d a(l-K)B and we evaluate the arbitrary constant b


v = v. at z = 0.
1 

(a)


Eq. (13.2.21)


(b)


(c)


(d)


(e)


(f)


(g)


(h)


(i)


(j)


y realizing that




ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS 

PROBLEM 13.3


Part a


We assume T, Bo, w, a, cp and c are constant. Since the electrodes are short-

circuited, E = 0, and so 

J = vB (a)y o, 

We use the coordinate system defined in Fig. 13P.4. Applying conservation of energy,


Eq. (13.2.26), we have


v v2) = 0, where we have set h = constant. (b) 

Thus, v is a constant, v = vi. Conservation of momentum, Eq. (13.2.25), implies 

- ViBo2 (c)

dz io


Thus, p = - viBz + p (d) 

The mechanical equation of state, Eq. (13.1.10) then implies

v.B2z +i V B2z


RT - RT = i RT (e) 

From conservation of mass, we then obtain


Piviwdi = (- + vi wd(z) (f) 

Thus 

( pld 
d(z) = (g)

viBoz 

Part b 

Then v.B 2 z 
p(z) = Pi 1RT (h)i RT 

PROBLEM 13.4 

Note: 

There are errors in Eqs. (13.2.16) and (13.2.31). They should read:


1 d(M 2 ) {(Y-1)(1+y1M2 )E 3+ y[2 +(y-1)M2 ]v 1B 2 } J3 
S dx r M - -- (13.2.16) 

and


2 d(M2 )  
i d ) (1M) ) [(y-I)(I1+yM2)E 2 } 3

M2 dx (1- ( 

+ '2 + (y-1)M v1 2] P3 1 2 ypv 

[2 + (y-1)M2 ]dA 
S A dx (13.2.31) 

Part a


We assume that 0, y , Bo, K and.M are constant along the channel. Then, from


the corrected form of Eq. (13.2.31), we must have




ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS 

PROBLEM 13.4 (continued) 

0 = 1- [(y-l) (l+M2)(-K) + y(2+(y-1)M2 )] -K) [2 +(y-1)M ] (a) 

Now, using the relations 

v 2 M2yRT 

and p pRT 

we write 

v M2 

Yp pv 

Thus, we.obtain 

1 dA [(y-)(l+yM2 )(-K) + y(2+ (y-1)M2)] 
A2 dz 2 + (y - 1)M2 

B20C(l-K)M 2 

pVA 

(b) 

(c) 

From conservation of mass, 

pvA = piviAi 

Using (d), we integrate (c) and solve for A 
Ai 

(d) 

to obtain 

where 

A(z) 
Ai 

1 
1 - ýz 

[(y-1)(1+ yM12)(-K) + y(2 +(y-l)M 

Sivi[ 2 + (y-l)M2 ] 

2)]B2M2 (1-K) 

(e) 

We now substitute into Eq. (13.2.27) to obtain 

vB2 (1-K)o
1 dv 1 o 1 dA 

S (-M) [(y-l)(-K) + y] A dz-vdz (-M2) Yp A dz 
(f) 

Thus may be rewritten as 

d = (-M 2 ) [(y-l)(-K) + y] iiAi A 
v dz (1-M2) p viAi Ai 

Solving, we obtain 

- 82 
£n v = n(l - 8 z) + en vi 

or v(z) = (1 - 8 z)2/ 1 

Vi 1 

i [(y-l)(-K) +y]Bo2 (1-K)M2 -
where 82 = (-i 2 ) i vi 

01 

(g) 

(h) 

(i) 

Now the temperature is related through Eq. (13.2.12), as 
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PROBLEM 13.4 (continued)


M2 yRT = v 2 
(j) 

Thus T(z)i 2 
(k) 

From (d), we have


P(z) = vi Ai 
Pi v A ( 

Thus, from Eq. (13.1.10)


p(z) = Vi Ai T 

Pi v A Ti (m) 

Since the voltage across the electrodes is constant,


w( - Kv(z)B (n) 

or KviBoi Vi

w(z) = Kv(z)B wi (o)Kv(z)B0 v(s) 

Thus, w(z) vi

wi v(z) 

Then

d(z) A(z) i 

(q)
di Ai w(z) () 

Part b 

We now assume that a, y, Bo, K and v are constant along the channel. Then, from 

Eq. (13.2.27) we have 

0 = 1-) C(y-l) (-K) + y]viB2 (-K) 1 A
Cl-M 2 ) 1li0 yp A dz 

But, from Eq. (13.2.25) we know that


(l-K)v. B2z 
-- 1 ­
 = 1- 3z (s)

Pi Pi


ov. B2 

where = (l-K) 1 0 
Pi 

Substituting the results of into

A(z) _ i 

b),pi (-Ka) and solvin for we obtain 

i A(z) (u)
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PROBLEM 13.4 (continued) 

and so, from Eq. (13.1.10) 

T(z) = p(z) Pi (v) 
T. Pi p(z) 

As in (p) 

w(z) vi 
wi 

= 
v(z) 

= 1 (w) 

Thus

d(z) = A(z) (x) 
di A 

Part 	c

We wish to find the length Z such that


C T(i) + [v ]2 
p C 1 

z = .9 	 (y) 
C T(o) + [v(o)] 

For the constant M generator of part (a), we obtain from (i) and (k)


C 1 2 1 221 1 1 -28 /Bl 

C Ti [ () ]2 C T i +1 2 9 
p Vi 1 2 p iT(z) 2 i (Z 

Reducing, we obtain


- 26 /8 

(1 - ) 2 .9 (aa) 

Substituting the given numerical values, we have


-2

, 1 = .396 and 2/82 1 = - 7.3 x 10

We then solve (aa) for Z, to obtain 

k % 1.3 meters 

For the constant v generator of part (b), we obtain from (s), (t), (u) and (v) 

CT i ) + v 
pI 2 i 

C T + S= 2 .9 (bb) 

p i 2 i 
or


(1- 8 4/ 3) 1 
2

C T. (1 - B ) v2
C 1 = .9 (cc) 

C T + L 2 v 
p i 2 1 

Substituting the given numerical values, we have


83 
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PROBLEM 13.4 (continued)


= 
B .45 and B /B = .857 

Solving for Z, we obtain


Z 1.3 meters.


PROBLEM 13.5


We are given the following relations:


B(z) E(z) wi di Ai' I/2

B. E. w(z) d(z) (z)


and that v, 0, y, and K are constant.


Part a


From Eq. (13.2.33), 

J = (1-K)ovB (a) 

For constant velocity, conservation of momentum yields 

dp = - (1-K)ovB2 
(b)

dz


Conservation of energy yields


pvC = - K(1-K)G(yB) 2 
(c)

pdz


Using the equation of state,


p = pRT (d) 

we obtain 

dP dT (l-K) B2 (e)
T -- + p - -K OvB (e)

Tdz + dz R 
or


T + (-K) (1-K)ovB2 (1-K)OvB 2 (f)
dz C R


p 
Thus, T = vB2 (1-K) + (g) 

dz R + 
(g) 

Also B.i2 (A.)

2 1 1 

A(z) 

and and
.A. = p(z)A(z) 
11 

=
Therefore dT d-


and dT 

=
p c d 


p dz 

ovB'f di(1-K)(-2 + --- ) P(!) 

Bp


-K(1-K)av (i)

Pi 
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PROBLEM 13.5 (continued)


and so 

dT K(1-K)OvB2i () 
dz picp 

Therefore 2 
OvBi 

T = - K(1-K) - z + T (k) 
PiCp 

Let 2 
Let -K(1-K)avBi 

= Pi Cp (i) 

Then 

T = Ti C-az + 1) (m) 
1 

+ ovB (1-K)( K i 
S i cp R dz (n) 

pi (az + Ti) 

We let K 1 

SvB(-K)( Cp R 
P. a 
P i e


KR


Integrating (n), we then obtain


in p = 8 in(az + Ti) + constant 
or 

=z + 8 
p= i - 1 ) (o) 

Therefore

A


A(z) = 
() 

Ti


Part b


From (m),


T() at + T
T(a) i 

.8

Ti Ti


or

-l- . -. 2

Ti


Now


K(1-K)viBi
2


E ­

Ti Pic Ti 

But R Ti Pi 
c T = = = 2.5 x 10 6 

pi (1) pi(1­

y i y




ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS


PROBLEM 13.5 (Continued)


Thus -2
Thus - .5(.5)50(700)16 - 8.0 x 10-2 

Ti .7(2.5 X 10 6) 

Solving for R, we obtain 

z= •2x 102 = 1.25 meters

8


Part c


(Xz

p= pi ( •.+ 1) 

Numerically 

8= - 1 1 1 % 6. 
KR (l1)K 

Thus 

p(z) = .7(1 - .08z) 6 

Then it follows: 

7 7 
p(z) = pRT = Pi(1 - .08z) = 5 x 10S(l - .08z) 

T(z) = Ti(l - .08z) 

From the given information, we cannot solve for Ti, only for 

Pi v 2


RT. = - = -i 7 x 10 s


I Pi yM


Now vi v2


yRT(z) yp(z)


.5 
1 - .08z 

Part d 

The total electric power drawn from this generator is 

p VI = -E(z)w(z)J(z)£d(z)


= - E(z)(1-K)GvB(z)£d(z)w(z)


= - Eiwi(1-K)ovB diz


=E -KvB

i 

Thus pe = K(vB )2 w diO (-K) 

= .5(700)216(.5)50(.5)1.25 

= 61.3 x 106 watts = 61.3 megawatts 

86




ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS 

T (z) 
T 

ST (z) 
Ti 

(1 - .08z) 

p(z) 
1.25 

p(z) = 7ý(1 - .08z) 6 

p(z) 1.25 

p(z) = 5 x 10 5 (1 - .08z) 7 

m (z) 

1.25 

M2 (z) = 
(1-

.5 
.08z) 

1.25 
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PROBLEM 13.6


Part a


We are given that


E--i 
4 Vo x 

X 
x3 Lj/3 

and 
4 Eo VO 

e 9 L'3 x 

The force equation in the steady state is


dv 

pv d• i x = p Em xx 	 e 

Since pe/p = q/m = constant, we can write 

Vd O /3 
v2A2 	 = V4 X!3 

dx2Vx m) L3 

Solving for v we obtain

x 

Part 	b


The total force per unit volume acting on the accelerator system is


F = 	 peE 

Thus, the total force which the fixed support must exert is


f = - FdVi 
total x 

EV 2 

-16 E0 0 -3 Adx­
=-f - x Adx i 

27 L8 x 
0


f 8 oo 
total 	= 8 2 Ai 

9 x


PROBLEM 13.7


Part a


We refer to the analysis performed in section 13.2.3a. The equation of motion


for the velocity is, Eq. (13.2.76),


•-2 a2 v2V 2 2(a) 
3-ý = a ax 2 (a) 

The boundary conditions are


v(-L) = V cos Wt 

v(O) = 0 

We write the solution in the form


http:13.2.3a
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PROBLEM 13.7 (continued)


v(x t) = Re[A ej(wt-kx )+ B ej(wt+kx l ) ]  	 (b) 

where a

a 

Using the boundary condition at x1 = 0, we can alternately write the solution as 

v = Re[A sin kx e j t I 

Applying the other boundary condition at x = - L, we finally obtain 

V 
v(xt) = - sin kL sin kx cos wt. (d) 

1 sin kL 1


The perturbation pressure is related to the velocity throughEq. (13.2.74)


Pov' 3 a(e)' 
at -x, 

Solving, we obtain 

0Vo f) 
oLs sin kx sin wt = - (f)

sinkL 1 x 
1 

or p V 

p = 0 0 k cos kx sin wt (g)
k sin kL 1 

where po0 is the equilibrium density, related to the speed of sound a, through


Eq. 	(13.2.83).


Thus, the total pressure is 
p Vw 

P= + p + k sin kL cos kx sin at (h) 

and the perturbation pressure at x, = - L is


00Voa

p'(-L, t) = sin k cos kL sin wt 	 (i)

sin kL


Part b


There will be resonances in the pressure if


sin kL = 0 (j) 

or kL = n7 n = 1,2,3.... (k) 

Thus 

w a 	 (a)
L 

PROBLEM 13.8


Part 	a


We carry through an analysis similar to that performed in section 13.2.3b.


We assume that


E = 	 iE 2 (xl,t) 

J= 	i2J2 (x, t) 

http:13.2.3b


ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS


PROBLEM 13.8 

B = i [P H + i H' (x ,t)]3 00 03 1 

Conservation of momentum yields


Dv

= D 1 .x +J2 o(Ho + H3) (a) 

Dtax 1 20 0 

Conservation of energy gives us


D 1 2 
p - (u + v ) = pv + J E (b)

Dt 2 1 ax 1 2 2 

We use Ampere's and Faraday's laws to obtain


aH'

-@ = - - JJ 

ax 2 
(c) 

and

DE P oaH 

a2 x (d)
3x, at 

while


Ohm's law yields


J = ([E - v B i (e)
2 2 13


Since -+ oo


E = vB (f)

2 1 3 

We linearize, as in Eq. (13.2.91), so E ' v p H 
2 100O


Substituting into Faraday's law


av, alH'
3 

Linearization of the conservation of mass yields


= at o )v (h) 

Thus, from (g)


,H'

ooy_ 3


p at o at () 

Then


Ho 
 Po


H'3 p'


Linearizing Eq. (13.2.71), we obtain


p= o D' (k)
Dt p Dt
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PROBLEM 13.8 (continued)


Defining the acoustic speed


as \ 0o/ where p is the equilibrium pressure,

2
(oH


= 
P0o p 2 

we have 

p' = as22 (p) 

Linearization of convervation of momentum (a) yields 

av 9H'


p 1 = - T 3 o Ho(m)
o at 3xl x oHo 	 (m1 
or, from (j) and (Z),


Iv, ao a2 0 

Po at= -s (n) 

Differentiating (n) with respect to time, and using conservation of mass (h), we


finally obtain

S2v °H 2v


2V= ( a 2 (0 ) 

Defining 0 1 
2


p1H


a2 a2 +-0 (p)


we have 
s po


a 2 v 3 v 

1I 	 a2V 2(V) 

Part 	b 

We assume solutions of the form 

j ( kxV = Re [A ej (Ct-kx )+ A e wt+ )] 	 (r)
1 1 2 

where k = ­
a 

The boundary condition at x = - L is 

V(-L,t) = V cos wt = V Re ejwt (s)s s 

and at x = 0 

M dViot) = p 'A' + poH H A 	 (t)
dt oo 1

1=0 1=0


From 	 (h), (j) and (t), 

1-g__ = P v 
a2 at (ou) 

s ax 
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PROBLEM 13.8 (continued)


H'


Ho a Po

Thus 

dv,(0,t) oH2 2M dt =A a + I p' =A az-T-

From (u), we solve for p'j to obtain: 

x =0


Substituting into (s) and (t), we have 
a 2/Poak \ 

Mjw(A + A) = A(- ~)• ) (A ­1 A 2 ) 
1 2 a'\W /


Ale+jk£+ A2e-jki 

Solving for A and A , we obtain 
1 2


(Mjw + Aapo)V

A = s


1 2(-Mw sin kZ + Aap cos k£)


(Aap - Mjw)V
s


A2 2(-Mw sin kZ + Aa%cos kt) 

Thus, the velocity of the piston is 

wt
v (O,t) = Re [A + A ]e
j

S1 2 

Aap V 
v (0,t) = w s + Aaos Wt (aa)1 -Mw
Elsin kk +Aap cos kZCOWt 

PROBLEM 13.9 

Part a 

The differential equation for the velocity as derived in problem 13.8 is 

32v a2v 
1 2 1o 

Ft- - a aX 12 (a) 

where 2 2 00 
a = a + 

s Po 
2 p H2 a (YPo2 

with a = -•oP where p = p 2 

S Po 0 1 2 

Part b 

We assume a solution of the form 
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PROBLEM 13.9 (continued)


V(x ,t) = Re [DeJ(t-kx1)] where k = ­
1 a 

We do not consider the negatively traveling wave, as we want to use this system as 

a delay line without distortion. The boundary condition at x = - L is 

V(-L,t) = Re V ejWt
s 

and at x = 0 is 

dV 

;, dt = p'(O,t)A - BV (O,t)+ joHoH' A (b) 

From problem 13.8, (h), (j) and (9) 

av H' 
pa p ', =t - and - = 

s at o ax H a o 
1 S 0 

Thus, (b) becomes 

t a 2 
-BDej t + (-) p'A =0 (c)

S 

where PoD(- jk) 2 t (d)

pI =w j w s e (d) 

x0O


Thus, for no reflections


2 Ap0a2 

- B + (a) 0 (e)
a a

S
or 


B = Aapo (f)


PROBLEM 13.10 

The equilibrium boundary conditions are 

T[- (L + L + A),t] = T
1 2 0 

T[- (L + A),t]As = - PoAc 

Boundary conditions for incremental motions are


1) T[- (L + L + A),t] = T (t)
1 2 s d


2) - T[- (L + A),t]A - p(-L ,t)Ac = M - v (-L ,t)


3) v (-Ll ,t) = Ve[-(L + A),t] since the mass is rigid 

and 4 ) v (O,t) = 0 since the wall at x=0 is fixed. 

PROBLEM 13.11


Part a


We can immediately write down the equation for perturbation velocity, using


equations (13.2.76) and (13.2.77) and the results of chapters 6 and 10.


93
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PROBLEM 13.11 (continued)


We replace 3/at by 3/at + v-V to obtain


(-+ V )v' = a 
2 

2V

t o x sax


Letting v' = Re V j(t-kx)


we have

a2k 2


(W- kV S
)2 = 

as


Solving for w, we obtain


W = k(V ± as) 

Part b


Solving for k, we have


k = V±a

V+a

o s


For Vo > as, both waves propagate in the positive x- direction.


PROBLEM 13.12


Part a


We assume that


E = i E (x,t) 
z z


J = i J (x,t)
zz z

B= i o1[H + H'(x,t)]


y y 

We also assume that all quantities can be written in the form of Eq. (13.2.91) . 

Vx p' - Jz Ho (conservation of momentum (a) 
linearized) 

The relevant electromagnetic equations are


aH'


Yx = J (b)
ax z


and

3E aH'


z 0o----
3x at (c)


and the constitutive law is


Jz = (E + VxpoH ) (d)
z z xoo


We recognize that Eqs. (13.2.94), (13.2.96) and (13.2.97) are still valid, so eav


1 I3' 


P at ax (e)




ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS


PROBLEM'13.12 (continued)


and


p' a2P' (f)

S


Part b 

We assume all perturbation quantities are of the form 

^ j(wt-kx) 
v = Re[v e ]

x 

Using (b), (a) may be rewritten as


pojwv = + jkp + p0HojkH (g) 

and (c) may now be written as 

- jkE = jojwH (h) 

Then, from (b) and (d) 

- jkH = o(E + V oHo ) 	 (i)


Solving (g) and (h) for H in terms of v, we have 

vOVoH 

H = (j) 

- jk+po 9 

From (e) and (f), we solve for p in terms of v to be


p= kP asv (k)


Substituting (j) and (k) back into (g), we find


2 jk(po Ho)2 0) 
v


L2 00jk+ 'w

- Lk 

Thus, the dispersion relation is

k 2 

j(MoHo)20 
= 0 	 (m)(02 - k2a2) -_ k,

(+ 	 + j11w)po 

We see that in the limit as a + m, this dispersion relation reduces to the lossless 

dispersion relation 

_-2 k2(a2 + = 0 	 (n) 

Part 	c


If a is very small, we can approximate (m) as


W2- k2a2 _ j( 2 )H = 	 (0o) 
s fo 	w O kr


for which we can rewrite (o) as
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PROBLEM 13.12 (continued)


kl = 0 s - k2 2 O ( 2 2 

Solv ing for k , we obtain 

2 2 

()02_ j 0p 2 OHo ) w° 2) 0 02 
2 Po ok2= 22a 

O+ 
2 

a
s
 2as a
s


Since a is very small, we expand the radical in (q) to obtain 

_ O A oo
2 [12 

2 a . 
S O2] 

L o0 
2 

Thus, our approximate solutions for k are


EW (IIoHo)2 

k2 O 
a 

s 

( H ) 20 a (11 

The wavenumbers for the first pair of waves are approximately:


while for the second pair, we obtain


+ o 0 
k~+~lo~op 

The wavenumbers from (u) represent a forward and backward traveling wave, both with


amplitudes exponentially decreasing. Such waves are called 'diffusion waves'. The


wavenumbers from (v) represent pure propagating waves in the forward and 
reverse


directions.
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PROBLEM 13.12 (continued) 

Part d 

If 0 is very large, then (m) reduces to 

H2 H2 

W2- k2a2- o k 0 ; a2 = a2 + O (w) 
p0 Ow s Po 

This can be put in the form


k2= f(wk) (x) 
2 aa


where H2 k0 

f(w,k), =- 2 (Y)pOwa


As a becomes very large, the second term in (x) becomes negligible, and so


2 2
k -


However, it is this second'term which represents the damping in space; that is,


k + f(w,k) (z)

,a j2a 

Thus, the approximate decay rate, ki, is


H2 k

ki f(w,k)a o a (aa)

ki 2a w 2poaw• 

or 2 k H2 

2pa ai 2p a 0 w 0 




