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ELECTROMECHANTCS OF COMPRESSIBLE, INVISCID ¥FLUIDS

PROBLEM 13.1

In static equilibrium, we have

~Yp - ngr =0 (a)
Since p = pRT, (a) may be rewritten as
rT 90 4 pg = 0 (b)
dx,
Solving, we obtain
- x
b= o, RT ™1 (c)

PROBLEM 13.2
Since the pressure is a constant, Eq. (13.2.25) reduces to

dv
VT JyB (a)

where we use the coordinate system defined in Fig. 13P,4. Now, from Eq. (13.2.21)
we obtain

Jy = t’J(Ey + vB) (b)

If the loading factor K, defined by Eq. (13.2.32) is constant, then

- KvB= +E (c)
"Thus, Jy = gvB(1-K) ) (d)
Then pv %% = - ovB?(1-K) (e)
or B2 A ‘
v GB2(1-K) = - g(1K) -1
o} iz = 0B° (1-K) 0(1 K) NG (£)

From conservation of mass, Eq. (13.2.24), we have

V48 = PAGR)V (8)
Thus
p.V.A 2
iidi dv _ L
v dz - TOUSKB A . (b)
Integrating, we obtain
- 0(1-K)Bi
fn v = — C 1)
P14
or z
v= ve zd N
Pi V4
where ld = Eii:iiﬁz_——. and we evaluate the arbitrary constant by realizing that

v=yv, at z = 0.
i
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.3
Part a
We assume T, Bo’ W, O, cp and c, are constant. Since the electrodes are short-

circuited, E = 0, and so
J,= VvB_ (a)

We use the coordinate system defined in Fig. 13P.4., Applying conservation of energy,
Eq. (13.2.26), we have

pv g;(%‘vﬁ = 0, where we have set h = constant. (b)
Thus, v is a constant, v = vy Conservation of momentum, Eq. (13.2.25), implies
dp _ _ 2 .
dz viBo (e)
- . 2
Thus, p = v,Bz + p, (D
The mechanical equation of state, Eq. (13.1.10) then implies
v.B°z + p v, B2z
. G S N . (e)
P = RT R T Pi = TRT
From conservation of mass, we then obtain
viB;z
piviwdi = <— <t 0 vy wd(z) (£)
Thus pidi
d(z) = r*—-—;zﬁzz—— ()
0
(pi— RT >
Part b
Then viB; 2
p(z) = o, - —xv— (h)

PROBLEM 13.4
Note:

There are errors in Eqs. (13.2.16) and (13.2.31). They should read:

— 2 ] - 2

L a0y {ov-1) (yi®)E + ¥[2 +(r-D)M?]v B} I, (13.2.16)
W Tdx, (1 - 4 pv, o
and
1de®) 1 [(-1) A+HHE + Y 2 + (y-1)N?} v B_] s
0 Xm - Y Y 7Y Y V.2, val
2
_ 12 + (y-1u2]1dA

Y & (13.2.31)

Part a

We assume that o, v , Bo’ K and.M are constant along the channel. Then, from

the corrected form of Eq. (13.2.31), we must have
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID.FLUIDS‘

PROBLEM 13.4 (continued)

vB?g(1-K) 2
= 1 _ 2y ¢ _1ym2 _ 12 +(¢y-1)M°) dA
0 T [(y-1) (14+yM?) (-K) + y(2+(y-1)MI) - I I (a)
Now, using the relations
vZ = MZyRT
and p = pRT
we write
2
v M
Tl ®
Thus, we. obtain Bzo(HK)Mz
1 oaa LD QM) R + (24 (-] S
A7 qz 7 ¥ (y - D2 : ()
‘From conservation of mass,
pvA = .,V AL ' (d)
Using (d), we integrate (c) and solve for Aiz)
i
to obtain
A(z) 1
Ai Tl - B,z (e)
where
[(y-1) (1+ M%) (-K) + ¥(2 +(y-1)M)loB2M? (1-K)
1 = 12
p v, L2 + (y-1)M7]
We now substitute into Eq. (13.2.27) to obtain
vB2(1-K)o
1dv _ _ 1 __ 1) (- o _1da
vz~ ey O DR + vl Yp A dz (£)
Thus may be rewritten as . .
oB“ (1-K)M B8
1l dv 1 [ (o) 1
$&% T O [(v-l)(-x)+y1-—————————] A (@)
v dz (1-M2) piviAi Ai
Solving, we obtain
_B )
tn v = —B—:—— fn(L - B,2) + fn v, (h)
or
V‘(,z) = (1- Blz)_Bz/Bl (1)
i .
. 1 [(y-1) (K) +y]oB] (1-K)M*- B,
where =
82 (1-M2) Py Vi

Now the temperature is related through Eq. (13.2,12), as
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.4 (continued)

M2yRT = v?
2
Thus T(Z) _ (V_)
Ty Vi
From (d), we have
o) _ Vi A
pi v A
Thus, from Eq. (13.1.10)
pG) . Y1k o1
Py v A Ti

Since the voltage across the electrodes is constant,

= -V _ _
E = ) Kv(z)B0
or w(z) = KvyB vy S | .
l(v(z)Bo v(z) i
Thus, wiz) _ Vi
vy v(z)
Then W
d(z) - A(z) i
di Ai w(z)
Part b

We now assume that o, v, Bo’ K and v

Eq. (13.2.27) we have

1
0 = o) E(rl)(—K) +Y]viB§

But, from Eq.

B

Py

where 83 =

Substituting the results of (b), into (a) and solving for

A(z)

A

where R =
4

i

—1-Kg

Yp

(13.2.25) we know that

1 -

(1-K)

g

[(y-1) (-K) + v]

_ 2
(1 K)oviBoz

av,
1

Pi

BZ
(o]

Py

y -

"
Py

B“/B3

From conservation of mass,

p(z)

p

i

A(z)

2
viBo

Py

1- Baz

(1-K)o

82

A

are constant along the channel.

A(z)

i

Then,

» We obtain

(3

(k)

1)

(m)

(n)

(o)

(r)

(9)

from

(r)

(s)

()

(w



ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.4 (continued)
and so, from Eq. (13.1.10)

T(z) _ plz) “i )
Ti pi p(z) :
As in (p)
w(z) _ Vi _
Wy T ov(z) 1 ()
Thus
d(z) A(z)
= A2iz) (x)
di Ai
Part c
We wish to find the length £ such that
1
CT@QR) +5 [v(R)]2
P 2 = .9 6]

1 4
CPT(O) + 35 [v(o)]

For the constant M generator of part (a), we obtain from (i) and (k)

2 - 28,/8 -28,/8
v(2) 1 2 A T P 2751
cp[vi T, + 5 v(R)] Cp(l - B, T, + 5lv; 1-8,20)]

v (o) o 1 2 s
PH T, + = [V(O)] Cp Ti + 5 Vi @

Reducing, we obtain

- 28,/8,
1 -8,2) = .9 (aa)

Substituting the given numerical values, we have
B, = .396 and B /B = - 7.3x 1072
We then solve (aa) for &, to obtain

2 R 1.3 meters

For the constant v generator of part (b), we obtain from (s), (t), (u) and (v)

p(R) Pi lvz
pi p; p(R) i

" = .9 (bb)
Cp Ti + E'Vi
or
(1- Bu/By) |
CT (1- Bal) + 2
1 " = .9 (cc)
Cp Ti+5 Vi

Substituting the given numerical values, we have
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.4 (continued)

63 = .45 and B“/B3 = ,857

Solving for £, we obtain

2 & 1.3 meters.
PROBLEM 13.5

We are given the following relations:

1
B B Y1 Y (MY
A(z)

B, ~ L w2  d@@) “\A(z

and that v, 0, Y, and K are constant.

Part a

From Eq. (13.2.33),

J = (1-K)ovB
For constant velocity, conservation of momentum yields
e - - - 2
ds (1-K)ovB
Conservation of energy yields
ar _ _ 2
vapdz = K(1-K)o(vB)

Using the equation of state,

P = ORT

we obtain
dp dT (1-K) 2

T iz + [ Brpy - TR ovB
or

N G 9) (1-K)ove* _ _ (1-K)ove®

dz Cp R

Thus, ;A

rd0 _ 200y (=14 K

T 42 ovB (lK)< R+cp)
Also 2

42 Bi (Ai)

A(z)

and

piA; = P(2)A(2)

ovB2 (1-K) (- = + &
Therefore T do _ 1 R c” -)
az = 0 - p(=
i 2

and dT BiD

p cp -E = =K(1-K)ov —p—l'
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

continued) 4

PROBLEM 13.5 (
and so

ar

dz
Therefore

T =
Let

o =
Then

T

gyg _

o}
We let

] =

Integrating (n

K(l-K)OVBi

P31 .
2
0’VB i

- K(1-K) z+ T

icp i
—K(l—K)ch;

pi cp

oz
Ti(,-r—i + 1)

2 K 1
+ ovB(1-K) ( < T R)

dz

04 (oz + Ti)

+ ovB2 (1K) ( C“—D - 5)

p; o©

°
KR~ *

), we then obtain

&n p= B n(az + Ti) + constant

or
o = o, (41 )8
i
Therefore
Ai
A(z) =
8
(Z+1)
Ty
Part b
From (m),
T(L) ol + Ti B
T = T = .8
i i
or ol
T = -.2
i
Now )
o _ K(l—K)oviBi
Ti picpTi
But R Ti Py
c T = = =
pi

1, 1
-9 -9

2.5 x 108
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.5 (Continued)

Thus a _ - .5(.5)50(700)16 -2
T = : = -8.0x10
i .7(2.5 % 10%)
Solving for %, we obtain
L= ﬁ% x 10° = 1.25 meters
Part c
B
= gz
p= pCg +1
i
Numerically
c
B= & -1= —F—-1 % 6.
(1-)K
Thus Y

po(z) = .7(1 - .08z) ©
Then it follows:
p(z) = oRT = p. (1 - .082; =5 x 105(1 - .OSzf
T(z) = T,(1 - .082)

From the given information, we cannot solve for Ti’ only for

p v
R, = = = L& 7x 10
§ B
Now v.? v? vZ p, (%E +1
Mi(z) = 1 - A @) = =4 ;
YRT (z) yp(z) P Y oz o\ (B+H)
Pi T,
- e
1 - .08z
Part d
The total eélectric power drawn from this generator is
p° = VI = -E(z)w(z)J(z)2d(z)
= - E(z)(1-K)ovB(z)Ld(z)w(z)
= - Eiwi(l-K)GvBidiZ
But
Ei = —KvBi
Thus e _ 2 _
P = K(vBi) widiG(l K) %

.5(700)216(.5)50(.5)1.25
61.3 x 10° watts = 61.3 megawatts
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

T(z)
Ty
A
T(z) _
T = (1 - .082)
Z
1.25
p(z)
1 p(z) = .7(1 - .082)°®
zZ
p(z) 1.25
A
p(z) = 5 x 10° (1 - .082)7
. 1.25
M2 (z)
/\ 2 - .5
/ Mo (z) = (1-.082)
z
1.25
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ELECTROMHECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.6

Part a
We are given that
1
F- T 40 7
x3 %
and
' o = % _fo ¥
e 9 L')/ax%
The force equation in the steady state is
dv_ __ _
pmvx dx ix = pe E
Since pe/pm = q/m = constant, we can write
d(12) . akte %
dx\2 "x m 3 ng

Solving for v we obtain

x
- 2
“
v =\/-2£v(£)
X m o\L

Part b

(a)

(b)

(c)

(d)

(e)

The total force per unit volume acting on the accelerator system is

F= pE
Thus, the total force which the fixed support must exert is

ftotal =T IFdVixz

16 €' W -

T | = ——— x Adx 1
27 L9 X
2

- eV
ft:ot:al =—§ S20 AT

9 L2 X

PROBLEM 13.7

Part_a

We refer to the analysis performed in section 13.2.3a.

for the velocity is, Eq. (13.2.76),

3 a 32

The boundary conditions are
v(-L) = V0 cos Wt
v(0) 0

We write the solution in the form

88
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The equation of motion
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.7 (continued)

v(x,t) = RelA oJ (we=kx,) I (wttkx, ) (b)
where k = w
a

Using the boundary condition at x = 0, we can alternately write the solution as

1

v = Re[A sin kxlert]
Applying the other boundary condition at X == L, we finally obtain
A
= - -9 _
v(x{t) = Sin KL sin kxl cos wt. (d)

The perturbation pressure is related to the velocity throughEq. (13.2.74)

v' ap’

°3 ° ° Bxl (e)
Solving, we obtain

pV W Ip!

szniL sin kxlsin wt = - %E— (£)

1

or povow

p' = ¥ sin KL cos kxl sin Wt (g)

where po is the equilibrium density, related to the speed of sound a, through
Eq. (13.2.83).

Thus, the total pressure is

pVw
p= p,tp =p, + EQE%;—EE cos kx sin wt (h)
and the perturbation pressure at x; = - L is
pV.a
p'(-L, t) = E%EQEE cos kL sin wt (i)
Part b

There will be resonances in the pressure if

sin kL = 0 (1)
or kL = naT n=1,2,3.... (k)
Thus
- oam
w = - a ' ¢9)

PROBLEM 13.8
Part a
We carry through an analysis similar to that performed in section 13.2.3b.

We assume that

89
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.8

=_ = .

B 13 [uoH° + uoﬂa (xl,t)]
Conservation of momentum yields

p—EZL = -2 (H_ + H!
D - Bxl Jzuo o 3) (a)

Conservation of energy gives us

ol wrly e -2 vy +IE (b)
Dt 2 Z)xl 1 2 2
We use Ampere's and Faraday's laws to obtain
]
-—aHa= -J ()
axl 2 ¢
and SE 1 OH"
_——2= - ° 3 (d)
axl at
while

Ohm's law yields

J = ofE -vB] (e)
2 2 1 3

Since ¢ + o

E = v B (£f)
We linearize, as in Eq. (13.2.91), so E2 X vluoHo

Substituting into Faraday's law
B ]
ov aH3

Bolo 3% = " Mo 36 (8)

Linearization of the conservation of mass yields

ap' avl
3t - T Po EET (h)
Thus, from (g)
U H , IH'
003p _ 3
o, e~ Moot (1)
Then
Ho 0o
T

Linearizing Eq. (13.2.71), we obtain

op' _ Yo pp 0
Dt Po Dt
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.8 (continued)

Defining the acoustic speed

23
YP,
a; =\ where P, is the equilibrium pressure,
%o 2
-, _too
Py P, 5
we have
pl = aszpv )

aV ] 3H
1l _ _9p_  _ 3
Po at ox, Ix oHo )
or, from (j) and (%),
aV [] ]JHZ
1. 3 [(_,2_00
Po 3t 9x < s po) w

{

Differentiating (n) with respect to time, and using conservation of mass (h), we

finally obtain

3 2y 2
1= 2y HoHL P\ v, ©
at? s p ax ?
Defining ° 1
M HS
az = azs + o (P)
we have °
3%y 3 2%y
1 a2 1 (q)
at? ax * 4
Part b

We assume solutions of the form

3 (we-kx ) (wt+kx )

V = Re [Ae + A el ] (r)
1 1 2
where k = 2
a
The boundary condition at x, =- L is
V(-L,t) = vs cos wt = VsRe eJut (s)
and at x =0
! dv (0,t)
140,8) _ ' '
M ‘ P AJ( + u HH AJ( (t)
1=0 =0
From (h), (j) and (%),
13p' _ _ dv
a Jt o) —L (u)
s Ix
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.8 (continued)

H! '
3
T © ._g_a )
o s Po
Thus
dv,(0,t) ung ' a®
M dt =A;—z—6——+lp=A?—p (w)
s o s
From (u), we solve for p’l to obtain:
x=0
2
Poag K
] e - 0’8 _ jwt
p (4, —A)e (%)
x1=0
Substituting into (s8) and (t), we have
a z poagk
Mjw(Al+ Az) = A (;S—) '——;’— (Al_ Az)
and - (¥
Ale+jk2+ Aze jkl = VS

Solving for Al and Az’ we obtain ’ .

i (Mjw + Aap )V_
1 2(~Mw sin k& + Aapocos k2)

i (Aap | - Mjw)V_ (2)
2 2(-Mw sin k& + Aa p,cos k%)

A

A

Thus, the velocity of the piston is

v (0,t) = Re [A +a )&
Aapovs

- Mw sin k& + Aapocos k®

vl(O,t) cos Wt (aa)

PROBLEM 13.9
Part a

The differential equation for the velocity as derived in problem 13.8 is

v 3%y
1 2 1
el B R (2)
h 12
where a2 = a2 + 0 O
S po
2 Ypo 1/2 ung
with a” = ('—Q where Py = P, - 7T3

Part b

We assume a solution of the form
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.9 (continued)

w

j(wt—kxl)] wvhere k = 2

V(xl,t) = Re [De

We do not consider the negatively traveling wave, as we want to use this system as
a delay line without distortion. The boundary condition at X = = L is

V(-L,t) = Re vsej‘*’t

and at xl = 0 is

dv_(05t)
M = ' - '
M e p'(0,t)A BVI(O,;)+ “o“oﬂa A (b)
From problem 13.8, (h), (j) and ()
" avl H' '
LI 2.1 9 = - — —-——--3 = —Z-B—
P agh * 3t Po 3% and H aco
1 o s 0
Thus, (b) becomes
. . )
-l + &y A = 0 (c)
s
vhere ' o _fbD(_ jk) 2 jut . @
P B 7w 3¢
xTO
Thus, for no reflections
a z Apoa:
- B + (;__) —.—.a = 0 (e)
or
B = Aap (£f)

PROBLEM 13.10
The equilibrium boundary conditions are

T[- (L +L +0),e] = T

T(- (L +8),tlA, = - pA,

Boundary conditions for incremental motions are
1) T[- (L + L + 4),t] = T (t)
1 2 s d
2) - T[- (L1 + A),t]AS - p(—Ll,t)Ac =M Ez-vz(—Ll,t)
3) vl(-Ll,t) = ve[—(L1 + A),t] since the mass is rigid

and4) vz(O,t) = (0 since the wall at x=0 is fixed.

PROBLEM 13.11
Part a
We can immediately write down the equation for perturbation velocity, using

equations (13.2.76) and (13.2.77) and the results of chapters 6 and 10.
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ELECTROMECHANTCS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.11 (continued)
We replace 3/t by 3/3t + vV  to obtain

i 3 2 v _ 2 2.1
( + vV ax) vi = a_ 3°v

it o A2
Letting v' = Re G ej(wt-kx)

we have
(w=- kv Y = a2k?
o s

Solving for w, we obtain
= +
w k(Vo as)
Part b

Solving for k, we have

[

Vta
o s

k =

For V0 > ag, both waves propagate in the positive x- direction.

PROBLEM 13.12
Part a

We assume that

E = i? Ez(x,t)
i.= f? Jz(x,t) .
B= 1 u [H + Hy(x,t)]

We also assume that all quantities can be written in the form of Eq. (13.2.91) ,
v

1
p 2= -3 _g u H (conservation of momentum (a)
o St ax z oo i
linearized)
The relevant electromagnetic equations are
OH
3x Jz (®)
and IE, . OH]
% - %3¢ (e)
and the constitutive law is
J, = O(E, +vuH) (d)

We recognize that Eqs. (13.2.94), (13.2.96) and (13.2.97) are still valid, so

1o9pt . 0%
L 5% (e)
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.12 (continued)

and

— 2 1t
p' = ayp (£)
Part b

We assume all perturbation quantities are of the form

v, = Re[; ej(wt—kx)]

Using (b), (a) may be rewritten as
pdwv = + jkp + u H jkH (g)
and (c) may now be written as

- JKE =y _juH (h)
Then, from (b) and (d)
- jkH = o(E + vu H) (1)

Solving (g) and (h) for H in terms of v, we have

~ vou H
H = ) - )
- jk+0U0 m
" From (e) and (f), we solve for p in terms of v to be
P = TP,V (k)
Substituting (j) and (k) back into (g), we find
. 2
o P s i U 0 @)
o] W o s r_ jk+0u0w
L k
Thus, the dispersion relation 152 )
FUH) W k
W* - k*al) - —7=——— = 0 (m)
¢+ 5+ U woe

We see that in the limit as 0 + «, this dispersion relation reduces to the lossless

dispersion relation

uOHO
w? - kz(az + -—) = 0 (n)
s Do

Part c

If 0 is very small, we can approximate (m) as

2 : juwp o
2_ 2,2 _ w92 )} 2
- Kl - 3l 5 (1= ) 0 B

for which we can rewrite (o) as
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.12 (continued)

(uoHo uoHo 2
k"a: - k2 [wz— Jwo 5 + 5 wzo'zuo = 0 (p)
2 o o
Solving for k© , we obtain
2 2 !
2 (UOHO)Z (u H ) u wzcz )
w® - jwo 2 0 0
— W= juwo 5 5 (HOHO)
k2 = Po + o 2 o (q)
2 g ¢ 2a 2 Z
s 8 s

Since ¢ is very small, we expand the radical in (q) to obtain

- (u H Y 2
2 _ 00 H Ww"0o
2 [m Jwo o ] w?- :lpE (uoﬂo)2 ( . 0 (uoHo)z ‘
k= y, + 2{'L z - (r)
s

a wo
P ]

Thus, our approximate solutions for k are

(u H )
E’"jm o0
2 a P

L P (s)

8 .
d
an uowzoz e
) 0, G, o <u002\( 2 )
k™ & X uH (t
G-I A

o]

The wavenumbers for the first pair of waves are approximately:

., O 2
N w=-j ——Zpo (uoHO) \
k¥ T P / (u)
S

while for the second pair, we obtain

u
T ooy o )

K~

The wavenumbers from (u) represent a forward and backward traveling wave, both with
amplitudes exponentially decreasing. Such waves are called 'diffusion waves'. The
wavenumbers from (v) represent pure propagating waves in the forward and reverse

directions.
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ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.12 (continued)
Part d

If O is very large, then (m) reduces to
2

H N lJHz
wi- k2a?- 3 -2 KL o g, 2,2 4 00 (W)
P, OwW s P
This can be put in the form
w? £ (w,k)
2 W
S | @
where H2 K"
f(w.k)‘l=—~5;—w';7

As ¢ becomes very large, the second term in (x) becomes negligible, and so
2 _w?
Ny 6]

However, it is this second 'term which represents the damping in space; that is,

kvt [é -3 f (w,k) %]

a 20 W (2)
Thus, the approximate decay rate, ki’ is
H? k*
f(w,k)a _ o a aa
K ¥ 5w - ZpOwa‘bw (aa)
2
or 2
k % _.i{g._ kl. = —-H—or— (uz
i 200 a0 w? 2p a’c
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