8 Continuous-Time
Fourier Transform

Solutions to
Recommended Problems

S8.1
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Figure S8.1-1

Note that the total width is T',.
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Figure S8.1-2

(¢) Using the definition of the Fourier transform, we have

© . Ty/2 ) T

X(w) = j x(t)e 7t dt = J. le 7“*dt sincex(t) =0 for |t|> E‘

—o —Ty/2
. T

Ty/2 -1 2 sin ?l

= __(e —joT1/2 __ eijl/Z) =
~Ty/2 jw [}

—1

= —2¢ —jwt
Jw

See Figure S8.1-3.
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(d) Using the analysis formula, we have
a == j Z(t)e ! dt,
To To
where we integrate over any period.
To/2 1 T1/2
a, = — a"c(t)e ~Jjk(2x/To)t dt = — f e ~Jk(2x/To)e dt
o J~Tos2 To J-1y2 ’
a, = 1 1 (e ~F*Ti/To _ gikeTu/Toy — sin kw(T,/T,) - sin 7(2k/3)
To| e 2m 7k wk
J T,
sin 7 2?1(
la, | =
K nk
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Figure S8.1-4

Note that a, = 0 whenever (27k)/3 = 7=m for m a nonzero integer.
(e) Substituting (27k)/T, for w, we obtain

_ 1 2sin(akT\/Ty) _ sin xk(T\/T,) _
27k/T, B wk =

(f) From the result of part (e), we sample the Fourier transform of x(t), X(w), at
w = 2nk/T, and then scale by 1/T, to get a,.

1
T X(w)

w=(2rk)/Ty TO
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S8.2

(@) X(w) = J x(t)e 7t dt = J. 8(t — b)e 7' dt = e 7** = cos bw — j sin bw,

by the sifting property of the unit impulse.
| X(0)] = |e”] =1 for all w,

o Im{X(w)}] . [—sinBw)
4X(w) = tan™! [_—Re{X(w)} = tan ‘(———COS Ew ) = —bBw

1X(w)| *X(w)

Figure S8.2-1

) X(w) J e " “u(t)e et dt = f e e It dt

— 0

o
—(a+iw)t

e

= joo e—(a+jw)t dt = -
0 a+ jw

0

Since Re{a) > 0, e ' goes to zero as t goes to infinity. Therefore,

-1

X0 =5 P e
1 1 \1" 1
1 X(@)| = [X(@X* (@] = [a + jo (a —m)] @+ o
X x*
Re{X(w)) = (w)J; W S
X(w) — X* -
Im{x(w) = X 2 - @ +ww2’
R Im{X(w)}} - —tan'?
<4 X(w) = tan [ Re(X(w)) = —tan p

The magnitude and angle of X(w) are shown in Figure S8.2-2.
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(c) X(w) = J e 1Dy (1)e ~iet gt = J o (~ 14Dt —dut gy
—oo .
= _.—1.__——-— [—1+5(2—w)]t ®
—1+jC—-w 0

Since Re{—1 + j(2 — w)} < 0, lim,_o, ' 7' 7@~ = 0. Therefore,

X " T
|X(@)] = X(@X @) = ﬁ
Retxe) = X - s
Ifx(a)) = TR L=,
4X(w) = tan™' [%%é%] = —tan'(w — 2)

The magnitude and angle of X(w) are shown in Figure S8.2-3.
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% X(w)

|

EE]

€

ENE]

[NYE]

Figure S8.2-3

Note that there is no symmetry about w = 0 since x(¢) is not real.

S8.3

@ X = |

oo

x4(t)e ¢t dt

Substituting for x;(t), we obtain

Xy(w) =

jm [ax,(t) + bxy(t)]e —iet gt

j ax,(te 7t dt + j ba,(t)e 7t dt

aj x,(t)e 7 dt + b.[ x(t)e 7t dt = aX (w) + bXy(w)

(b) Recall the sifting property of the unit impulse function:

Therefore,

J.w R()o(t — ty) dt = h(t,)

J 218(w — wo)e’™ dw = 2me
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(O]

Thus,
1 e ) .
—_— 278w — wy)e’t dw = e’«o!
27|' — o0
Note that the integral relating 2x6(w — w,) and e’ is exactly of the form
1 ol )
x(t) = — j X(w)e’™* dw,
27!' —o
where x(t) = e’ and X(w) = 273(w — w,). Thus, we can think of e¢’* as the

inverse Fourier transform of 2x6(w — w,). Therefore, 2rd(w — w,) is the Fourier
transform of e’«o!,

Using the result of part (a), we have

X(w) = g{j(t)} = [ Z akejk(zr/m] = Z a, F {ejk(Zx/T)t}

k=- k=—oo
From part (b),
) 27k
7 Jk(2x/THt _ 2 6 —_—
{e } ™ (w T )
Therefore,
. ad 27k
X = Y 2ras (w ~ i)
k=—o0 T
(&) -
X(w)
4n
2 sin 27 3 { 2sin 27
[ w
2m
;4w i 4n
sin 3 sin 3
Figure S8.3
S8.4
(a) We see that the new transform is

X.(f) = X(w)

w=2nf

We know that

1 *© )
x(t) = — f X(w)e’' dw
271’ w=—00
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Let w = 27f. Then dw = 2xdf, and

1 [= 4 o |
x(t) = o J;hm X(2rf)e*2x df = Jf=_m X (e’ df

Thus, there is no factor of 2= in the inverse relation.

X,
T
!
-2 _1 1 2
Tl Tl Tl Tl
Figure S8.4

(b) Comparing

X, () = x(t)e ™ dt  and X(w>=J x(t)e 7 dt,

e -

we see that

1
Xy(v) = Vor X(w)

The inverse transform relation for X(w) is

or X)) = VorX,(w)

w=v

i ) 1 = A
x(t) 511; J_mX(w)e]”t dow = o J-_w Vor Xy (w)e’ dw

1 J‘°° )
— X,(v)e’ dv,
o ) (V)

where we have substituted v for w. Thus, the factor of 1/2x has been distributed
among the forward and inverse transforms.

S8.6

(a) By inspection, T, = 6.
®) a = Ti a(t) e KTt gt

0o JTp
We integrate from —3 to 3:

’ 1 .
= J [lé(t + 1) + 8(t) + S8t — 1)}e‘f"(2”6”dt
6 )2 2

— l l j2xk/6 l —j2rk/6 | — l 2"&
—6<2ef +1+2e —61+cos6

S8-7
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SO
&(0) = fjm%(l + cos 2%") oo
© @B Xi(o)= j _0; x(t)e 7t dt = f _Z [$8(t + 1) + 8(t) + 3(t — 1))e 9t dt
=t + 1447 =1+cosw
(i) Xy(w) = f : xy(t)e 7t dt = J _O; [3(t) + $5(t — 1) + $5(¢t — 5)le 7 d¢

1 + de7° + fe o

(d) We see that by periodically repeating x,(t) with period T, = 6, we get &(t), as

shown in Figure S8.5-1.
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Figure S8.5-1

Similarly, we can periodically repeat x,(t) to get Z(t). Thus T, = 6. See Figure
S8.5-2.
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Figure S8.5-2

(e) Since Z(t) is a periodic repetition of x,(t) or x,(t), the Fourier series coefficients
of Z(t) should be expressible as scaled samples of X;(w). Evaluate X ,(v) at w =
27k/6. Then

27k 1 2wk
Xl(w) w=27k/6 - 1 + cos —‘6_ - 6ak =% = EXI (T>
Similarly, we can get q, as a scaled sample of X,(w). Consider X,(27k/6):
27k 1 1 )
—_— ) = _ p —J2xk/6 — , —Jjl0xk/6
Xz ( 6 ) 1 + 2 e + 2 e

But e—lefk/6 =e —Jj(10xk/6 —2xk) — ej21k/6. Thus,

27k 2
X, (%—-) =1+ cos—:;E = 6a,.

Although X (w) # X,(w), they are equal for v = 27k/6.
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S8.6

(a) By inspection,

—at, 7
e u(t) - -
a + jw

Thus,

¥ 1
—-7t t -
u(t) 7 + jow

Direct inversion using the inverse Fourier transform formula is very difficult.
(b) Xy(w) = 20(w + 7) + 20(w — T),

e

1 [~ . 1 (= )
2t) = o j | X(@)e™ dw = o f 200 + ) + 8w — Dl do
1

1 ) ) 2
=—¢ 7" + — " = = cos Tt
s ™ T

(¢) From Example 4.8 of the text (page 191), we see that

2a

e ¢t <«
a® + o

However, note that

F
ax(l) == oX(w)

since
f ax(t)e 7' dt = « J x(t)e 7' dt = aX(w)
Thus,
1 F 1 1 F 1
et Iy - o3It
2a a® + o or 9 + ? 6 ¢

(@) X ()Xy(w) = X ()20(w + 7) + 26(w — T)]
2X.(—Td(w + T) + 2X(T)o(w — 7)

Xy(w) = T w + 7) + 7+ 47 w —T7)
—_ 1 * 2 — Juwt
1) = 5 f_w [7 e L ORI o L C 7)] e do
1 ) 1 )
= — —j7t — Tt
W =TT 7 +47°
Note that
Lo _1(ve) L 1 1(vEy
TH+47 T\ 2 7T—37 T\ 2
Thus
1\ V2 —j(Tt—x/4) JTt=m/a — V2 Ll
x4 t) = (7) 5 le +e 1= 77r cos |7t 1
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we 'j3w’ 0 =w= 1,
(® X, (o) = —we™™, —l1=w=0,
0, elsewhere,
1 [® . 1 1 o 0
x(t) = — J X(w)e]wt dw = — [ J- we ~i3vgiet do — j we gt dw}
27 J-w 27 0 1

Note that
eax
Ja:e‘”‘dx = —0‘7(ax - 1)

Substituting & = j(t — 3) into the integrals, we obtain
1 er—3w . 1 eiU—3h .
x(t) = o [m(](t — 3w —1) ‘0 - m(l(t — 3w —1)
which can be simplified to yield
cos(t—3)—1 sin(t — 3)]
(t — 3y (t —3)

0
)
-1

x(t) = :ll'[

Solutions to
Optional Problems

S8.7
(a) Yo = J:_m y(t)e 7 dt = j:w J:_w x(Dh(t — 1) dre 7 dt
T o — o
(b) Let r = ¢ — 7 and integrate for all 7 and r. Then
Y(w) = f :_w J :m x(nh(r)e 70 dr dr
= fco x(e " dr J- B h(r)e " dr
— X(HW T
S8.8

(a) Using the analysis equation, we obtain

1 T/2 ) 1
a = j 8(t)e KD dL = —
—71/2 T

T
Thus all the Fourier series coefficients are equal to 1/7.
(b) For periodic signals, the Fourier transform can be calculated from a, as
= 27k
X(w) =21 Y ad (w - —;—)

k=—-
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In this case,

Plw) = 2—;: 6(0) — _21r_k>

P(w)
2T
T
_4n _2n 0 2 An
T T T T
Figure S8.8

(¢) We are required to show that
Z(t) = x(t) * p(t)

Substituting for p(t), we have

x(t) * p(t) = x(t)*[ > At — kT)}

k=-w
Using the associative property of convolution, we obtain
2@ *pt) = > [x@)*d(t — kD))
k=-—o0

From the sifting property of i(t), it follows that

(=2}

@) *p) = Y x(t — kT) = &(t)

k=—o0
Thus, x(t) * p(t) is a periodic repetition of x(t) with period T.
(d) From Problem P8.7, we have
X(w) = X(w)P(w)

= X(w) i 2%5<w—%>

k=—o0 T

2 2r 2wk

= — X h —_—
k=z—:co T (w) (w T >

Since each summation term is nonzero only at w = 27k/T,

. 2. 2r _{2xk 27k
X(w) = — ———) B(w - —)
k=Z—oo T T T

From this expression we see that the Fourier series coefficients of Z(t) are

1 2nk
O = iX(T) ’

which is consistent with our previous discussions.
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