
THE DISCRETE-TIME FOURIER TRANSFORM


1. Lecture 4 - 44 minutes 
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2. Comments


In the previous lecture we developed the notion of the frequency


response of LSI systems and discussed the determination of the


frequency response from the unit sample response. We begin this


lecture by developing an inverse relation by interpreting the


expression for the frequency response as a Fourier series expansion,


the coefficients for which are the unit sample response values. We then


consider the generalization of the frequency response representation of


LSI systems to the Fourier transform representation of sequences.


Throughout this set of lectures we will exploit various Fourier


transform properties. Many of these properties are derived in a similar


manner and it is useful to understand the style in which they are
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derived rather than simply memorizing the properties. In the lecture


the convolution property and some symmetry properties were discussed.


A number of other important properties are presented in the text and


should be carefully reviewed.


The lecture concludes with a discussion of the relationships between


continuous-time and discrete-time Fourier transforms. In particular


you should be aware from your background in continuous-time linear


system theory of the form of the Fourier transform of a sampled time


function. Converting a sampled time function to a sequence introduces


in essence a "time" normalization since the spacing of sequence values


is always interpreted to be unity. Equivalently this time normalization


corresponds in the Fourier domain to a frequency normalization.


3. Reading


Text: Review section 2.6 (page 39). Read sections 2.7, 2.8, 2.9 and

sections 3.1 through 3.5.


4. Problems


Problem 4.1


Determine the Fourier transform of each of the sequences below:


(a) 

x(n) = 6(n - 3) 

1 1


0 1 2 3 

Figure P4.1-1


(b)=11 
x(n) = 6(n + 1) + 6(n) + 6(n - 1)


0


Figure P4.1-2 n

(c) x(n) = a u(n) 0<a<l 

0 1 2 

Figure P4.1-3
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(d) x(n) = u(n + 3) - u(n - 4) 

-3 -2 -1 0 1 2 3 

Figure P4.1-4


Problem 4.2


(a) Consider a linear shift-invariant system with unit-sample response 

h(n) = = a n u(n), where a is real and 0 < a < 1. If the input is 

x(n) = Sn u(n), 0 < |6| < 1, determine the output y(n) in the form 

y(n) = (k1an + k2 n) u(n) by explicitly evaluating the convolution 
sum. 

(b) By explicitly evaluating the transforms X(e ]W), H(e 3W) and Y(eJ")


corresponding to x(n), h(n), and y(n) specified in part (a), show that


Y(ejW) = H(ejW) X(ej) 

Problem 4.3


Let x(n) and X(ej) represent a sequence and its transform. Do not 

assume that x(n) is real or that x(n) is zero for n < 0. Determine in 

terms of X(ejW) the transform of each of the following: 

(a) k x(n)


(b) x(n - n ) where n0 is an integer 

(c) n x(n)


Problem 4.4


Let ha(t) denote the impulse response of a linear time-invariant


continuous-time filter and hd (n) the unit-sample response of a


linear shift-invariant discrete-time filter. ha (t) is given by


h(t)= ae-at t > 0 a > 0 a

0 t < 0


(a) Determine the analog filter frequency response and sketch its


magnitude.


(b) If h (n) = c h (nT), determine the digital filter frequencyd a 
response and determine the value of c so that the digital filter has 

unity gain at w = 0. Sketch the magnitude of Hd (ejW) 
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Problem 4.5


One context in which digital filters are frequently used is in filtering


bandlimited analog data as shown below:


digital 
Sampler- filter 

XA(t) T A(t) 
C/D x (n) 3WH(e y (n) 

D/C yA (t) LPF yA(t) 

Figure P4.5-1


Assume that the sampling period T is sufficiently small to prevent


aliasing. The system labelled D/C is a discrete to continuous time


converter, i.e. the inverse of a continuous to discrete time converter.


The system labelled LPF is an ideal lowpass filter with a gain of T in


the passband and cutoff frequency of rad/sec. The overall system is


equivalent to a continous-time filter. Indicated below are two choices


for T and the digital filter frequency response H(eJW). For each of


these, sketch the frequency response of the overall continuous-time system.


(a) 	 H(e )W


1-=10 khz

1r 	 T 

4 4 
Figure P4.5-2


(b) 	 H(ej) 

= 20 khz
1 T 

7T T Tr iT 

4 4 
Figure P4.5-3


Problem 4.6*


In Sec. 1.6 of the text, a number of symmetry properties of the Fourier


transform are stated. All these properties follow in a relatively straight­


forward way from the transform pair. Following is a list of some of the
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properties stated. Prove that each is true. In carrying out the proof


you may use the definition of the transform pair as given in Eqs. (1.19)


and (1.20) of the text and any previous property in the list. For


example, in proving property 3 you may use properties 1 and 2.


Sequence Fourier Transform


1. x*(n) X*(e~j) 

2. x*(-n) X*(e )W


3. Re x(n) X (e ") 
e


4. j Im [x(n)] X0 (eW 

5. x (n) Re[X(eJW)] 

6. x0 (n) j Im [X(eJ)) 

* 

Problem 4.7


f(n) and g(n) are causal and stable sequences with Fourier


transforms F(ejW) and G(ejW), respectively. Show that


1f 7rF(e ) G(e ) dw =1 J F(ej) dw j!1G(e) dw 

Problem 4.8


In the design of either analog or digital filters, we often approximate


a specified magnitude characteristic, without particular regard to the


phase. For example, standard design techniques for lowpass and bandpass


filters are derived from consideration of the magnitude characteristics


only.


In many filtering problems, one would ideally like the phase characteris­

tics to be zero or linear. For causal filters it is impossible to have 

zero phase. However, for many digital filtering applications, it is 

not necessary that the unit-sample response of the filter be zero for 

n < 0 if the processing is not to be carried out in real time. 

One technique commonly used in digital filtering when the data to be


filtered are of finite duration and stored, for example, on a disc or


magnetic tape, is to process the data forward and then backward through


the same filter.


Let h(n) be the unit-sample response of a causal filter with an arbitrary 

phase characteristic. Assume that h(n) is real and denote its Fourier 

transform by H(ej ). Let x(n) be the data we want to filter. The 

filtering operation is performed as follows. 
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(a) Method A:


x(n) g(n) 
1. , h(n) 

g(-n) r(n) 
11. , h(n) 

iii. s(n) = r(-n) 

Figure P4.8-1 

(1) Determine the overall unit-sample response h1 (n) that relates


x(n) and s(n), and show that it has a zero-phase characteristic.


(2) Determine |H1(e3W)| and express it in terms of H(e]) and 

arg[H(e W)I. 

(b) Method B: Process x(n) through the filter h(n) to get g(n). Also


process x(n) backward through h(n) to get r(n). The output y(n) is


then taken as the sum g(n) plus r(-n).


x(n) g(n)

i. h(n) 

.. x(-n) h(n) r(n) 

iii y(n) = g(n) + r(-n) 

Figure P4.8-2


This composite set of operations can be represented by a filter, with


input x(n), output y(n), and unit-sample response h2 (n).


(1) Show that the composite filter h2 (n) has a zero-phase characteristic. 

(2) Determine |H2 (e3)W| and express it in terms of IH(eJw)j and


arg [H(ejW ). 

c. Suppose that we are given a sequence of finite duration, on which


we would like to perform a bandpass, zero-phase filtering operation.


Furthermore, assume that we are given the bandpass filter h(n), with


frequency response as specified in Figure P4.8-3, which has the


magnitude characteristic that we desire but linear phase. To achieve


zero phase, we could use either method (A) or (B). Determine and


sketch|H1(e3W)Iand |H2 (elw)|. From these results which method would you
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use to achieve the desired bandpass filtering operation? Explain why.


More generally, if h(n) has the desired magnitude but a nonlinear phase


characteristic which method is preferable to achieve a zero phase


characteristic?


|H(eW ) I 

l ... ---

Tr 3Tr 7T 

arg [H(e W)]


Figure P4.8-3


4.8 



MIT OpenCourseWare 
http://ocw.mit.edu 

Resource: Digital Signal Processing 
Prof. Alan V. Oppenheim 

The following may not correspond to a particular course on MIT OpenCourseWare, but has been 
provided by the author as an individual learning resource. 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



