DISCRETE-TIME SIGNALS AND SYSTEMS, PART 1

Solution 2.1

x(n) is periodic if x(n) = x(n + N) for some integer value of N. For the sequence in (a),

$$x(n + N) = A \cos \left(\frac{3\pi}{7} n + \frac{3\pi}{7} N - \frac{\pi}{8}\right)$$

x(n + N) = x(n) if $\frac{3\pi}{7}$ N is an integer multiple of 2π . The smallest value of N for which this is true is N = 14. Therefore the sequence in (a) is periodic with period 14.

For the sequence in (b),

$$x(n + N) = e^{j(\frac{n}{8} + \frac{N}{8} - \pi)}$$

$$= e^{j(\frac{n}{8} - \pi)} e^{j\frac{N}{8}} = x(n) e^{j\frac{N}{8}}$$

The factor $e^{\textstyle \frac{1}{8}}$ is unity for (N/8) an integer multiple of 2π . This requires that

$$\frac{N}{8} = 2\pi R$$

where N and R are both integers. This is not possible since π is an irrational number. Therefore this sequence is not periodic.

Solution 2.2

$$x(n) = -2\delta(n + 3) - \delta(n) + 3\delta(n - 1) + 2\delta(n - 3)$$

Solution 2.3

Each of the systems given can be tested against the definitions of linearity and time invariance. For example, for

(a),
$$T[x_1(n)] = 2x_1(n) + 3$$

 $T[x_2(n)] = 2x_2(n) + 3$

Since
$$T[ax_1(n) + bx_2(n)] = 2[ax_1(n) + bx_2(n)] + 3$$

and
$$aT[x_1(n)] + bT[x_2(n)] = 2ax_1(n) + 2bx_2(n) + 3(a + b)$$

The system is not linear. The system is, however, shift-invariant since $T[x(n-n_0)] = 2x(n-n_0) + 3 = y(n-n_0)$.

In a similar manner we can show that:

- (b) is linear but not shift-invariant
- (c) is not linear but is shift-invariant
- (d) is linear and shift-invariant

Solution 2.4

To determine y(n) we evaluate the convolution sum eq. (2.39) of the text. For part (a), the sequences x(k) and h(n-k) are indicated below as functions of k:

Figure S2.4-1

Since h(n - k) is zero for k > n, and is unity for k < n,

$$y(n) = \sum_{k=-\infty}^{+\infty} x(k) h(n - k) = \sum_{k=-\infty}^{n} x(k)$$

as sketched below:

Figure S2.4-2

Part (b) can likewise be done graphically. Alternatively since $h\left(n\right) = \delta\left(n+2\right)$,

$$y(n) = \sum_{k=-\infty}^{+\infty} h(k) x(n - k)$$

$$= \sum_{k=-\infty}^{+\infty} \delta(k + 2) x(n - k)$$

Since $\delta(k+2)=0$ except for k=-2, and is unity for k=-2 y(n)=x(n+2).

For part (c) x(k) and h(n - k) are as sketched below:

Figure S2.4-3

Graphically we see that for n < 0, x(k) h(n - k) is zero and consequently y(n) = 0, n < 0. For $n \ge 0$

$$y(n) = \sum_{k=0}^{n} \alpha^{k} \beta^{n-k} = \beta^{n} \sum_{k=0}^{n} (\alpha/\beta)^{n}$$
$$= \beta^{n} \frac{1 - (\alpha/\beta)^{n+1}}{1 - (\alpha/\beta)} = \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha}$$

Consequently for all n,

 $y(n) = \left[\frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha}\right] u(n) \text{ which is a decaying exponential for } n \ge 0.$

The answer for part (d) is:

Figure S2.4-4

Solution 2.5*

$$x(n) * h_1(n) = x(n) * [\delta(n) - \delta(n-3)] = x(n) - x(n-3)$$
.

Therefore with x(n) as a unit step, $x(n) * h_1(n)$ is:

Convolving w(n) graphically with $h_2(n)$

Figure S2.5-1

For
$$n < 0 h_2(k) w(n - k) = 0$$

For
$$n = 0$$
 $y(n) = 1$

For
$$n = 1 y(n) = 1 + (.8)$$

For
$$n \ge 2$$
 y(n) = (.8)ⁿ⁻² + (.8)ⁿ⁻¹ + (.8)ⁿ

Figure S2.5-2

(b) The convolution of $h_1(n)$ and $h_2(n)$ is:

$$h(n) = h_1(n) * h_2(n) = (.8)^n u(n) - (.8)^{(n-3)} u(n - 3)$$

Figure S2.5-3

The convolution of this result with a unit step results in

$$-y(n) = \sum_{k=-\infty}^{n} h(k)$$

or

$$y(n) = 0 \qquad n < 0$$

$$y(0) = 1$$

$$y(1) = 1 + .8$$

$$y(2) = 1 + (.8) + (.8)^{2}$$

$$y(3) = 1 + .8 + (.8)^{2} + (.8)^{3} - 1 = .8 + (.8)^{2} + (.8)^{3}$$

$$y(4) = 1 + .8 + (.8)^{2} + [(.8)^{3} - 1] + [(.8)^{4} - .8]$$

= $(.8)^{2} + (.8)^{3} + (.8)^{4}$

etc.

Solution 2.6*

The fact that $x(n) = z^n$ is an eigenfunction follows from the convolution sum. Specifically

$$y(n) = \sum_{k=-\infty}^{+\infty} h(k) x(n-k) = \sum_{k=-\infty}^{+\infty} h(k) z^{(n-k)}$$

$$= z^{n} \sum_{k=-\infty}^{+\infty} h(k) z^{-k}$$
(S2.6-1)

Since the summation in the equation (S2.6-1) does not depend on n, it is simply a constant for any given z.

While the complex exponential z^n is an eigenfunction of any linear shift-invariant system, z^n u(n) is not. For example, let h(n) = δ (n-1). Then with x(n) = z^n u(n), y(n) = z^{n-1} u(n-1), which is not a complex constant times x(n).

MIT OpenCourseWare http://ocw.mit.edu

Resource: Digital Signal Processing Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.