THE DISCRETE-TIME FOURIER TRANSFORM

Solution 4.1

The Fourier transform relation is given by
4

X(ejw) = Zx(n) e-j(’m thus:

n=-o +o
(@ x(@*) = D em -3 eI = I3
n=-cw
(b) X(e?) =1+ % el® % e 3% = 1 + cosw
. b . ® . l
() x(eI¥) = E al' 70N _ E (ae” 39 = —s
1 - ae’ )
+3 6 . w
j - : _a sin(—5)
@ x(e?% = z ' eTJun _ eﬂmZe jun _ 2
=-3 =0 sin(2)
2

Solution 4.2

(a) 1In problem 2.4(c) we determined that the convolution of an u(n) and

8" u(n) was given by
Bn+l _ 0Ln+l
y(n) =} ————— ju(n)
B - «a
Bn+1 _ . n+l
y(n) = u(n)
B - a

_ n a n -8B

= [0. (a:—B—) + B (m‘ )] u(n)
thus k, = 2 and k. = _B_

! 1 a=B 2 B-a

(b) From problem 4.1 (c) it follows that

. 1
H(ed®) —
1 - ae
and
. 1
x(el?) = —T
1 - Be J
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The Fourier transform of y(n) as obtained in (a)

. n+l n+1 .
Y(ejw) _ 2 : B - O e~ Juwn

B - a

n=0 © o)
_ B an jwn _ o Z oP e—jwn
B - a B - a
n=0 n:=0
B 1 o 1
B - o 1- Be-jw B - a 1 - oae Jw
1

(1 - e 3% (1 - ae™IY)

Solution 4.3

+eo +o0
(a) Xa(ejw) = E kx(n)e-Jmn = k E x(n)e_]wn
n:—oo n:—OO
=k X(ejw)
4o
jwy _ N N -jwn
(b) Xb(e ) E x(n nO) e
n=-c
Making the substitution of variables
m=n - n, or n =m+ ny
400 4o
X, (e3%) = E x(m) e Jwmng) _ E e 39Ny y(m) eIV
m=— m=-—o
= e 1 x(e??)

(c) The transform of x(n) is given by

400
X (ejw) = E x(n) e_jwlrl
n:—oo
Jw * s
thus dxle” ) - ; (=jn) x(n) e Jwn
dw
n=-oo
or +00
jo .
j AX(e” ) _ z :n x(n) e Jun
dw
n=—0)
= X, (e7")
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Solution 4.4

4o
Q) = -iat - =it a
H (5Q) = th t X = at _-J -
(a) o () a( ) e dt ae e dt 0 F 3
-0 0
2
2 a
[H. (3 |° = 5—= . Thus |H(jR)| is as sketched below:
a QZ + a2

1

1

V2

a Q
Figure S4.4-1
(b) hym) = cae™® um) = ca(e™®)™ u(n)
jw ca ‘0 1 - e_aT
thus Hd(e ) = —arT — . For Hd(eJ ) =1, C =
1 -e e a
With this choice of c¢
_ 2
IH (ejw),Z - (1 - e aT)
d 1 - 2e_aT cosw + e—2aT

thus ]nd(ej”)l is:

Figure S4.4-2
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Note in particular that while the frequency response of the
continuous-time filter asymptomatically approaches zero the frequency
response of the digital filter doesn't. However as the sampling period
T decreases, the value of |Hy4 (e3®)] at w = 7™ decreases toward zero.

The difference in the minimum values of |H (39) | and IH (e3e )| is

of course due to aliasing.

Solution 4.5

From the discussion in the lecture, we know that

~

(o]
iy = L s 2Tr
X, (30 = 5 DX, (30 + 2
r=—m
and
Jw, _ 3 .
X(e’") = XA(JQ)

QT = w

Let us assume that X (§€) has some arbitrary shape as indicated below.
Since we are assnnlng that T is suff1c1ently small to prevent aliasing,
X, (3%) must be zero for el > % . Then XA(jQ) and X(e3¥) are as

shown in figure S4.5-1. Y(ejw) corresponding to the output of the
filter and §A(j9) and YA(jQ) follow in a straightforward way and are

as indicated in figure S4.5-1. Thus yA(n) could be obtained directly
by passing x{(n) through an ideal 1owpass filter with unity gain in

the passband and a cutoff frequency of rad/sec. For the case in

4T
part (a) the cutoff frequency of the overall continuous-time filter
is % X 104 rad/sec and for the case in part (b) the cutoff frequency
is % x 104 rad/sec.
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X, (30)
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Figure S4.5-1
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*
Solution 4.6

(1) and (2) can be verified by direct substitution into the inverse

Fourier transform relation. (3) and (4) follow from (1) since

*
Ix(n) - x (n)l.

Re [x(n)] = % [x(n) + x*(n)J and jIm [x(n))

NiE N

(5) and (6) follow from (2) since Re[x(ejw)] [x(ejw) + X*(ejw)]
and 3In [x(e?)] = 3 (™) - x"(7)].

Solution 4.7 %

If X(ejw) denotes the Fourier transform of x(n), then

™
_ 1 jw .
x(0) 'z_an(e ) du
=T
Thus, with y(n) denoting the convolution of f(n) and g(n) and since
v(el?) = F(e?¥) c(e?¥), we wish to show that

y(0) = £(0) g(0) .

4o
But y{n) = Z £(k) g(n - k)
k==w
so y(0) = S: £(k) g(-k)

k:—oo

Since f(k) is zero for k < 0 and g(-k) is zero for k > 0,

+oo
> £(k) g(-k) = £(0) g(0)
k==x

Solution 4.8%

(a) Method A:

Consider x(n) as a unit-sample §(n). Then

+c0

g(n)=h(n) and r(n) = h(n) * g(-n) =:z: h(k) h(-n+k)
+o0 k==
Finally, s(n) = r(-n) =Z h(k) h(k + n)

k==

)

=]

+00
Consequently, hl(n) =Z h(k) h(k +
k==x
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To show that this corresponds to zero phase, we wish to show that
hl(n) = hl(-n) since from Table 2.1 of the text with hl(n), if
hl(n) = hl(-n) then

. * =
Hl(ejw) = H (ejw) and hence the frequency response is real.
400

h, (-n) =!:£: h(k) h(k - n)

- 00

letting k = n = r,

+o0
hl(-n)==}E:h(n + 1) h(r)

=00

which is -identical to hl(n).

Alternatively we can show that hl(n) corresponds to a zero-phase
filter by arguing in the frequency domain.
Specifically,

Let ;(n) = g(-n). Then aﬁejw) = Gf(ejw) = X*(ejw) H*(ejw)
Also, R(ejw) = X*(ejw) H (ejw) H*(ejw) = x*(ejw) lH(ejm)lz

and S(ejm) R*(ejw)

x(e3¥) |u(e¥)|?

Thus, Hl(ejw) |H(ejw)|2. Since Hl(ejw) is real, it has a zero phase

characteristic.
(b) Method B:
G (39 = x(e?¥) H(eIY)

R(eI¥) = x"(e3¥) m(eIY)

Y(ed¥®) =c (3% + rR*(eI¥)

x(e39) [m(ed¥) + 5*(eI¥)

x(e3¥) [2 re H(eI¥)]

Therefore Hz(ejw) = 2 Re H(ejw) =2 IH(ejw)] cos[ (arg H(ejm)]) and

consequently is also zero phase.

(c) Hl(ejw) and Hz(ejw) are sketched below. Clearly method A is the

preferable method.
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Hl (ejw)

- - -

1 —
4
Figure S4.8-1

H, (e7%)

N

]

Figure S4.8-2
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