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THE DISCRETE-TIME FOURIER TRANSFORM


Solution 4.1


The Fourier transform relation is given by

+C0 

X(ejW) = 1 x(n) e-jWn thus: 

n=-o +O0 

(a) X(e") 	=W 6(n - 3) e-jwn = e-jw3 

n=-o 

(b) X(e j) = 1 + 'ejW + 1 e- = 1 + cosw2 2f


(c) X(e W) =2 an e-jn =2 (ae jw)n 1 a
1 - ae


n=O n=O 
+3 6 7w 

(d) 	X(e ) =E e-jon = ej3 e- wn s


n=-3 n=O sin(w)


Solution 4.2


(a) 	In problem 2.4(c) we determined that the convolution of an u(n) and 

n u(n) was given by 

y(n) = n+1 _ n+1 u(n) 

y(n) = n+l n+l u(n) 

= [n a 	 + n _ (n) 

thus, k 	 a B and k a 

(b) From problem 4.1 (c) it follows that


. 1 
H(e 3 ) = 11 a-j
- a 

and


X(e j) = 1 
1 -e 
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The Fourier transform of y(n) as obtained in (a)


00 

Y(eS) =2 n+l _ n+l e-jwn 
n=0 

- jon n -jwn 

n=C, 

=n 

6 a- 1 - Se -3w -a 1 - ae- j 

=(1 - Be~5" (1 - ae - ) 

Solution 4.3


+00 +0 

(a) Xa(e j) = kx(n)e-jon = k x(n)e-jwn


n=-o n=-o 

= k X(ej) 

(b) Xb(e) x(n - n0) e-jn 

n=-co 

Making the substitution of variables


m = or n = n - n0 m + n0 

Xb (e) = x(m) e- j(m+n0 e-jon0 x(m) e-jom 

m=- 0 m=-00 

=e-jon 0 X(e jw) 

(c) The transform of x(n) is given by 

+0 

X (e3 w) = x(n) e-jwn


n=-o 

dX(ej w) - j ton
thus de) = (-jn) x(n) e 

dw


n=-o 

or +C0 

dX(e j = n x(n) e-jon


dw


= Xc (e


S4.2




Solution 4.4


(a) H = 	 h (t) e jQ t dt= aeat e-jQ t t a 
-a 	 0+ 

IHa (j)1 = 
2 + 	a2 

Thus |II(jQ)| is as sketched below: 

IH(jQ) I 

Figure S4.4-1 

(b) hd (n) = cae-anT u(n) = ca(e-aT )n u(n) 

thus H (e d 1 

ca 
- T - je-aT e-3 

For Hd(e ) 
jO 
= 1, c 

1 
= 

-e-aT 
a 

a 

With this choice of c 

IH (eJ ) 12 (1-
d 1 - 2e-aT 

thus lHd(ejW)I is: 

eaT 2 

cos w + e 2 aT 

Figure S4.4-2
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Note in particular that while the frequency response of the 

continuous-time filter asymptomatically approaches zero the frequency 

response of the digital filter doesn't. However as the sampling period 

T decreases, the value of IHd(ejW)| at w = 7 decreases toward zero. 

The difference in the minimum values of |Ha(jP)| and IHd(e W)I is


of course due to aliasing.


Solution 4.5


From the discussion in the lecture, we know that


1
x (jQ2) 2:(j + 2'rr 
A T A T


r=-co 
and


X(e JW) = XA()
XW e XA (j) IT = w 

Let us assume that XA(j) has some arbitrary shape as indicated below. 

Since we are assuming that T is sufficiently small to prevent aliasing, 

XA(jQ) must be zero for J|I > . Then XA(jQ) and X(e3W) are as 

shown in figure S4.5-1. Y(ejW) corresponding to the output of the


filter and YA(jQ) and YA(jQ) follow in a straightforward way and are 

as indicated in figure S4.5-1. Thus yA(n) could be obtained directly


by passing x(n) through an ideal lowpass filter with unity gain in


the passband and a cutoff frequency of 7T rad/sec. For the case in


part (a) the cutoff frequency of the overall continuous-time filter


is x 10 rad/sec and for the case in part (b) the cutoff frequency 

4 4is x 10 rad/sec.
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Figure S4.5-1 

S4.5 



* 
Solution 4.6


(1) and (2) can be verified by direct substitution into the inverse


Fourier transform relation. (3) and (4) follow from (1) since


Re [x(n)] = [x(n) + x (n)j and jIm [x(n)) = Ix(n) - x (n). 

(5) and (6) follow from (2) since Re[X(ew)] = X(elw) + X (eW)] 

and jIm [X(e")] = (X (e) - X (e~)3 . 

Solution 4.7*


If X(ejW) denotes the Fourier transform of x(n), then

r


x(O) = X(e j) dw


-Jr 

Thus, with y(n) denoting the convolution of f(n) and g(n) and since 

Y(e ) = F(e W) G(e j), we wish to show that 

y(O) = f(O) g(Q) 

+CO 

But yfn) = f(k) g(n - k) 

k=-co 

so y(O) = f(k) g(-k) 

k=-o 

Since f(k) is zero for k < 0 and g(-k) is zero for k > 0, 

f(k) g(-k) = f(0) g(O) 

k=-o 

Solution 4.8*


(a) Method A: 

Consider x(n) as a unit-sample 6(n). Then


g(n)=h(n) and r(n) = h(n) * g(-n) = h(k) h(-n+k) 

+0 k=-o 

Finally, s(n) = r(-n) = h(k) h(k + n)


k=-o


Consequently, h1 (n) = h(k) h(k + n)


k=- 0


S4.6 



To show that this corresponds to zero phase, we wish to show that 

h (n) = h1 (-n) since from Table 2.1 of the text with h (n), if 

h (n) = h1 (-n) then 

H (e )W = H (ejW) and hence the frequency response is real.


h (-n) = h(k) h(k - n) 

k=-o 

letting k - n = r, 

h1 (-n) = h(n + r) h(r) 

k=-o 

which is -identical to h (n).


Alternatively we can show that h1 (n) corresponds to a zero-phase


filter by arguing in the frequency domain.


Specifically,


Let g(n) = g(-n). Then Ge) - G, (e ) = X (e ) H (e) 

Also, R(e ) = X (e ) H (e W) H(e) = X (e jW) IH(e j)12 

and S(ejW) = R (e ) 

= X(e W) |H(ejW)12 

Thus, H (e ) = IH(e )|2. Since H (e )W is real, it has a zero phase 

characteristic. 

(b) Method B: 

G (e ) - X(e W) H(e )W 

R(e W) X (ej) H(e )W 

Y(e )-=) G (ej) + R(e )W 

- X(e j) [H(ejW) + H*(e )] 

= X(e j) [2 Re H(ejW)] 

Therefore H2 (ejW) = 2 Re H(e ) = 2 IH(e )I cos[(arg H(ejW)]) and 

consequently is also zero phase. 

(c) H (ejW) and H2(e ) are sketched below. Clearly method A is the 

preferable method. 
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H (eJ])


Figure S4.8-1


H (e"')
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Figure S4.8-2
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