
THE DISCRETE FOURIER TRANSFORM
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Solution 9.3 

Since X (k) = -
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Note that this corresponds to x1 (n) circularly shifted to the right by


two points.


Solution 9.6


We wish to compute X1 (k) given by
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Thus X (k) is the 10-point DFT of the sequence
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In all of the following equations the DFT computed is valid only in the 

range O<k<N-1 and is zero outside that range. This permits us to keep 

the equations somewhat cleaner by suppressing the use of the function 

RN (k). 
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j sk j 2x (k+N/ (k
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All of the above properties can alternatively be obtained from the basic


DFT properties of sections 8.7 and 8.8, or the z-transform properties of


section 4.4. Many of the properties used in this problem have important


practical applications. g5 (n), for example, corresponds to augmenting a


finite length sequence with zeros so that a computation of the DFT for


this augmented sequence provides finer spectral sampling of the Fourier


transform.
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