
NETWORK STRUCTURES FOR FIR SYSTEMS AND PARAMETER QUANTIZATION EFFECTS

IN DIGITAL FILTER STRUCTURES


Solution 13.1


(i) Since H(z) has only real zeros we will use only first-order


sections in the cascade form. Then Figure S13.1-1 represents one


possible ordering for these sections.
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Figure S13.l-1


(ii) For the direct form we first express H(z) as 

69 -2 - -3 + z-4
H(z) = 1 - 7 -l4 8 zZ- TZ 

The direct-form structure is then as shown in Figure S13.1-2
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Figure 13.1-2
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(iii) Since the unit-sample response is symmetrical the filter


is in fact linear phase. The linear phase form is as shown in


Figure S13.1-3.
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Figure S13.l-3


(iv) The coefficients in the frequency-sampling structure are the


samples of the frequency response equally spaced in frequency. To


evaluate these frequency samples it is convenient to rewrite H(z)


in the form


H(z) = z z - - - z- + z 

or


H(z) = z (z +z) - (z+z 1 ) - 6] 

Then
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Because of the conjugate symmetry of the Fourier transform,
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The frequency sampling structure, in the form of chalkboard (b) lecture 13, is

then as shown below:
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Figure S13.1-4


In this form the sections involve complex coefficients. By utilizing


the conjugate symmetry of the frequency samples the network can be


rearranged in terms of second-order sections with real coefficients.
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Specifically the transfer function corresponding to the recursive


part of the network of Figure S13.1-4 is given by


G(Z) = H(0) + H(1) + H(4) J7 + H(3)
-l1 .2rT + 

1-z~ -j3- l1 -1 
l-e z l-e z 1-e 5 

The terms paired in brackets are complex conjugates, i.e.,
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H(2) = H (3) and e-J-g-= e.J-a


Continuing these complex conjugate terms, G(z) can be expressed


as


2Tr


2Re [H (1) ]-2z~ 1Re [R (1) e J 5

G (Z) = H (0) +
1-z 1
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leading to the structure shown in Figure S13.1-5.
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Figure S13.1-5 

Solution 13.2


(a) The form of the desired transfer function is easily obtained by 

expressing h(n) in the form 

h (n) = [e e jw0nu(n) + e je jOn u (n) ] 

Thus 

A e $ - j$ cos$--~1cosw(0­


H(z) = 1 
l-Ve2z- l­
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Thus, 

a1 =­

(b) The form of the transfer function for the coupled form network 

is (see Problem 11.3) 

H2(z) = b z~1/[i-2a2Z 1 + (a2+b2)z2 

Thus to obtain a unit-sample response of the desired form, A cos$ = 0 

and A cos(w 0-q)=-l. The coefficients a2 and b2 are given by 

a2 = cosw 0 ~ 

b = sin0 ~7 

(c) For the direct form filter since the coefficient b is unity, it


is not affected by quantization. For the coefficient a1 , the


quantized value is


a1 1 = 1.375 

The resulting transfer function is


1
H1 (z) = 1li+z 2 

1 z 1+z-2z
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Since this is still in the form of the desired H(z), the unit-sample


response will still be of the form of Eq. (13.2-1). With the


quantized coefficient, 2 cosw 0 is now equal to 11/8 so that


0 = .26w 

For the coupled form, the quantized coefficients are given by
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a^ 

2 = b
^ 

2 = T5 = 0.625 

Thus H2 (z) with quantized coefficients becomes


H2 (z) = (5/8)z~ 1 5 - 25 -2 

In comparing this with the desired H(z) we note that since the co­


efficient of z-2 is not unity, the resulting unit-sample response will


not be of the desired form. In particular, the unit-sample response


will be of the form of a damped sinusoidal sequence, corresponding


to the fact that the poles of the coupled form system with quantized


coefficients have moved inside the unit circle. In contrast, the


poles of the direct form system with quantized coefficients remain


on the unit circle but are displaced in angle. These results are of


course consistent with the differences in the quantization grids for


the two stru'tures, as illustrated in Figures 6.49 and 6.51 of the text. 

Solution 13.3


N-1


(a) H(k) = h(n) Wnk
N


n=O


N N


= h(n) Wnk + h(N-1-n) W N-n)k


n=O n=O


which, because of the symmetry constraint becomes


N _ 

H(k) - h(n) _W + W;N-n)k 

n=O 

For k = N 
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(b) H (k) h (n) [Wnk + W 1-n)k 
= N 

n=0


1 N-1 

h (n) WN 2 k 
[Wk(n- N-) + W-k(n- 2N N 

n=0
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=W 2 )knd 2h (n) cos [2kNn=0 N2 (n- N1 

The summation in the above expression is real. Let us assume for


convenience that it is also positive. If it is not, then for those 
values of k for which it is negative, an additional phase of 7 

will be added. Then, with this assumption, 

N-1


ej(k) 2 
e= WN 

or 

6 (k) = - T(N-l)k = - 7rk +NT N 
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cos(Rk - 7k) - z 1 cos -k - Tk) 
(c) Hk (z) = 

1-2z cos(-) + Z
N


(-1)kcosr (1-z~1 

1-2z~ cos (-) + z-2 
N


Thus, from Equation (4.49) of the text. 
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Figure S13.3-1 
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where the subnetworks Hk (z) are of the form 

Cos ­
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Figure S13.3-2
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