
DESIGN OF IIR DIGITAL FILTERS - PART 1 

Solution 14.1


(a) Applying the Laplace transform to both sides of the differential


equation we obtain


Ya(s) [s + 0.9] = Xa(s) 

or


a = H(s) 
Xa(s) s + 0.9 

Thus 

H (j2) = 
a j 

1 
+ 0.9 

and 
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Figure S14.1-l 

(b) Applying the z-transform to both sides of the difference equation


we obtain


Y(z) [z T 1] + 0.9 Y(z) = X(z)


or


H(z) z z + (0.9T -.1)]H~)=X(z) / 

with T = , 

H(z) = 10/9 Z 1 
z 9 

and


|H(ejW ) 10 
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For this particular choice for T the frequency response is constant,


independent of frequency in contrast to the analog filter, which is a


lowpass filter. While this is a particularly severe example of the


effect of transforming an analog filter to a digital filter by replacing


derivatives by differences, it emphasizes the fact that the frequency


response of the resulting digital filter will in general-be severely


distorted from that of the original analog filter.


(c) From the system function determined in part (b), the pole is at 

z = 1 - 0.9T. Assuming T to be positive, the pole is outside of 

the unit circle for T > 20/9. 

Solution 14.2


h(n) = ha (n I= e 0.9nT u(n) 

= (e-0.9T u(n) 

Thus


H(z) =1 Hz e-0.9T -l
1- e z 

The frequency response is given by


H(e ) = 1 _ 

1 - e- 9 TeJW 

The magnitude of which is sketched in figure S14.2-1.
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Figure S14.2-1


Thus the digital filter approximates a lowpass filter. Since the pole 

is located at z = e-0. 9T the pole is inside the unit circle and hence 

the system is stable for T > 0. 

Solution 14.3


(a) The step response of the analog filter is the integral of its


impulse response, i.e.
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t 

s a(t) = ha(T) dT 

Hence for t < 0 s (t) = 0 and for t > 0 

t 

s (t) = fe0.9T dT = [1 - e-0. 9 t] 

(b) s(n) = sa (nT) = 1 - e-0. 9 nT] u(n) 

(c) Let S(z) denote the z-transform of s(n). Then, since the 
z-transform of a unit step is 1 , H(z) is given by 

1 -z 

H(z) = (1 - z~)S(z) 

From (b),


S(z) = 1 - 1 1 0 1[.9 - 1 e .9 T z'l J 

and 

H ( z ) = 0.9 - 10 . 9T1l 

9 -0.9T 

_ l[z 1( -e0.9T 
0.9 Li - -0-9T z~1 

Solution 14.4


The most straightforward procedure is to expand Ha (s) in a partial-


fraction expansion and utilize the relationship between Ha(s) and H(z)


indicated on chalkboard (c) of lecture 14. Thus,


A A2

HA1 + A2


a s +l s + 2 

where 

A 1 = Ha(s) ( + 1) (s = - 1) 1 

A2 = Ha(s) (s + 2) s = - 2)= 2 

Then 

12 1 + z 1-e 2T -2e T 
H(z) - -T -l + -2T -1-T -1 -2T -1

H-e z l- e z (1 - e z )(l - e z 

* 

Solution 14.5


(a) Since c c < T there is no aliasing introduced in obtaining the dig­

ital filter from the analog filter. Thus the frequency response Hd(e of 
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the digital filter is most easily obtained using equation 5.8. Thus

+C0 

Hd (e$ ) - = H a T + j 2rk) 
k=-00 

and since


Ha(jQ) = 0 IQI ->Ir


H a (e ) T H aTV) Iw| < Tr 

=(3 TrTw) e-3 jw| < 0c T 

T

3~w e 1w! < Q T


T2


We note that this has the same shape as the analog frequency response


(because there is no aliasing) but with a scaling of the frequency axis.


jw
(b) If hd(n) = hd(n - nT), Hd(ejW ) and Hd(e ) are related by 

d d 

From (a) it follows, then, that n = . For n an integer, T must 

be an integer multiple of the sampling period T. 
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