
COMPUTATION OF THE DISCRETE FOURIER TRANSFORM - PART 3 

Solution 20.1


6.10 6.12 6.13 6.14 6.18 6.21 6.22 6.23


(1) yes yes no no yes yes no no


(2) no yes yes no yes no yes yes


(3) yes no yes yes no yes yes no


(4) no yes no no no yes no no


(5) no no no yes no no no yes


Solution 20.2


(a) As discussed in the lecture, the coefficients in the inverse


DFT are the complex conjugates of the coefficients in the DFT. In


addition the inverse DFT has associated with it a scale factor of


1/N. Consequently to modify any of the radix-2 algorithms to


implement an inverse DFT, we replace the coefficients by their complex


conjugates and apply a scale factor of (1/N) to the output. An


alternative is to use the result of problem 2 lesson 18.


(b) and (c) The two algorithms which are particularly convenient when 

data is to be stored in and accessed from sequential memory such as 

disk are represented by the flow-graphs of Figures 9.16 and 9.24 of 

the text. Since the flow-graph of Figure 9.24 has data in 

normal order as its input, and the flow-graph of Figure 9.16 of the 

text has data in normal order as its output , it is most convenient 

to use the flow-graph of Figure 9.24 for the computation of the DFT and 

the flow-graph of Figure 9.16 for the computation of the inverse DFT.


(d) In the algorithm of Figure 9.24, successive points in an array


are computed by combining data from the first half and last half of


the previous array. Consequently the first half of the input data


should be stored on track A and the second half on track B. In
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computing the first array, the first half of the computed points are


stored in track C and the second half on track D. In computing the


second array we combine the data on tracks C and D, storing the


first half of the results on track A and the second half on track B.


(e) 	There are log2N arrays to be computed. Thus, if log 2N is even,


are
the results are on tracks A and B. If log 2N is odd, the results 


on tracks C and D. Furthermore, the DFT values are stored on these


tracks in bit-reversed order. For log 2N even, the even numbered


points are in bit-reversed order on track A and the odd numbered


points are in bit-reversed order on track B.


(f) The algorithm of Figure 9.16 which is to be used for the


inverse transform assumes that the input is in bit-reversed order.


Consequently it is not necessary to sort the DFT values into normal


order. In the algorithm of Figure 9.16 the computation of an array


involves combining successive points in the previous array to


obtain results in the first half and last half of the array being


computed. Assume that the results from the computation of the DFT are


stored on tracks A and B. As discussed in (e), the first half of


these points (the even numbered points) are on track A and the second 

half (the odd numbered points) are on track B. 

In implementing the flow-graph of Figure 9.16 we first combine


successive points from track A generating results for the first and


last half of the first array. When track A is completed, we


combine successive points from track B. Thus in using the output of 

the flow-graph of Figure 9.24 as the input to the flow-graph of


Figure 9.16 no rearrangement of data is necessary. The way in which


data is accessed and stored is however different for the two algorithms.


Solution 20.3


Let m denote a memory location (0 < m < N - 1) and m the corresponding 

bit-reversed location. According to the flow-chart of Figure P20.3-2


when counter A is equal to m, the data in locations m and m are


interchanged and when counter A is equal to m the data in locations


m and m are again interchanged. Consequently at the end of the


program in Vigure P20.3-2 the data is still in normal order. To


correct this it is necessary to ensure that an exchange between a


memory location and its bit-reversed counterpart is made only once.


One possible correction to the flow-chart of Figure S20.3-1 is


indicated in Figure S20.3-1. This correction also takes into


account the obvious fact that when m = m no exchange is necessary. 
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Figure S20.3-1


Solution 20.4 

With N = 9 we divide x(n) into three subsequences each containing 

three points as indicated in Figure S20.4-1 

1'9? 'TIlT ~ 
A B C A B C A B C 

Figure S20.4-1


Thus,
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8 2 2 
X(k) = x(n)W9nk =. x3r)W93rk +E x(3r + l)W9 (3r+l)k 

n=0 r=0 r=0 

Subsequence A Subsequence B


+Ex(3r + 2)W (3r+2)k


r=0


Subsequence C


Using the fact that W93 
= W3 
2 2 2 

X(k) = x(3r) W3rk + W k x(3r + 1) W3 rk + W 2kEx3r + 2) W3rk 

r=0r r0O 

The resulting flowgraph is shown in Figure S20.4-2.
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Figure S20.4-2


* 

Solution 20.5


(a) Assuming that we implement as multiplies all multiplications by 

WN in the flow-graph of Figure 9.20 of the text there are a total of 

Slog2N complex multiplications required. Thus by eliminating H


complex multiplications the percentage reduction is
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(N/2) 100% = 1 100%


(T)log2N log 2N


(b) Change line 5 to DO 20 L = 1, M - 1 

insert after line 16: DO 22 I=1,N,2


IP=I+l


T=X(I)+X(IP)


X(IP)=X(I)-x(IP) 

22 X(I)=T


(c) 	 SUBROUTINE FFT(XI,XR,M)


DIMENSION XI(1024), XR(1024)


N=2**M


PI=3.14159265358979


DO 20 L=1,M


LE=2** 	(M+1-L) 

LE1=LE/2


UR=1.0 

UI=0.0 

WR=COS(PI/FLOAT(LEl)) 

WI=-SIN(PI/FLOAT(LEl)) 

DO 20 J=1,LE1 

DO 10 I = J,N,LE 

IP=I+LE1 

TR=XR(I)+XR(IP) 

TI=XI(I)+XI(IP) 

TMR=XR(I)-XI(IP) 

TMI=XI 	(I) -XI (IP) 

XR(IP)=TMR*UR-TMI*UI


XI(IP)=TMR*UI+TMI*UR


XR(I)=TR


10 	 XI(I)=TI


TR=UR*WR-UI*WI 

UI=UR*WI+UI*WR


20 UR=TR


NV2=N/2


NMl=N-1


J=1


DO 30 I=1,NM1


IF(I.GE.J) GO TO 25


TR=XR(J)


TI=XI(J)
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XR(J)=XR(I)


XI(J)=XI(I)


XR(I) =TR 

XI (I) =TI 

25 K=NV2 

IF(K.GE.J) GO TO 30


J=J-K


K=K/2


GO TO 26


30 J=J+K


RETURN


END
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