
                                       
                                   

                                 
 

                                       
                                     
       

   
                                         

         

                                   
                               
             
                                       

                                     
                                         
                       

 

                                           
                                           
               

 

               

             

   

   

         

         

           

                                               
                       

                                 
                                           
               

                                   

   

                               

                                               

So far, weʹve plotted and visualized data in various ways. Today, weʹll see how to statistically back up some of the 

observations weʹve made in looking at our data. Statistics is a tool that helps separate newsmaking data‐backed stories from 

one‐off anecdotes. Usually, both kinds of stories start with a hunch, and statistics helps us quantify the evidence backing 

that hunch. 

Whenever you have a hunch (a hypothesis in statistician‐speak), the first thing to do is to look at some summary statistics 
(e.g., averages), and explore the data graphically as we did yesterday. If the visualizations seem to support your hunch, you 

will move into hypothesis‐testing mode. 

Two Running Examples 
For our first set of tests, weʹre going to use two running examples: campaign spending and a fun comparison of two townsʹ 
citizensʹ heights. Here are the two scenarios: 

One thing thatʹs been claimed about the 2008 election is that President Obama raised smaller quantities from a larger 
group of donors than Senator McCain, who raised a smaller number of large contributions. Statistical techniques will 
help us determine how true this statement is. 
Imagine two towns that only differ in that one of the towns had ʺsomething in the waterʺ the year a bunch of kids 
were born. Did that something in the water affect the height of these kids? (Note: This situation is unrealistic. Itʹs 
never the case that the only difference between two communities is the one you want to measure, but itʹs a nice goal!) 
Weʹll use statistics to determine whether the two communities have meaninfully different heights. 

Comparing Averages 

Letʹs start by comparing a simple statistic, to see if in the data we observe thereʹs any difference. Weʹll start by comparing the 

average heights of the two towns. (As an aside: it would help if you wrote and ran your code in dataiap/day3/ today, since 

several modules like ols.py are available in that directory). 

import numpy 

town1_heights = [5, 6, 7, 6, 7.1, 6, 4] 

town2_heights = [5.5, 6.5, 7, 6, 7.1, 6] 

town1_mean = numpy.mean(town1_heights) 

town2_mean = numpy.mean(town2_heights) 

print "Town 1 avg. height", town1_mean 

print "Town 2 avg. height", town2_mean 

print "Effect size: ", abs(town1_mean ‐ town2_mean) 

It looks like town 2ʹs average height (6.35 feet) is higher than town 1 (5.87 feet) by a difference of .479 feet. This difference is 
called the effect size . Town 2 certainly looks taller than Town 1! 

Exercise Compute the average campaign contribution for the Obama and McCain campaigns from the dataset in day 1. 
Whatʹs the effect size? We have an average contribution of $423 for McCain and $192 for Obama, for an effect size of $231. 
McCain appears, on average, to have more giving donors. 

Before we fire up the presses on either of these stories, letʹs look at the data in more depth. 

Graph The Data 

If you finished yesterdayʹs histogram exercise, then feel free to skip down to the box plot section 

The effect size in both of our examples seems large. It would be nice to more than just compare averages. Letʹs try to look at 
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a histogram of the distributions. We created a histogram of the two campaigns contributions, binned by $100 increments. 

import matplotlib.pyplot as plt
 

from collections import Counter
 

increment = 1
 

width= .25
 

town1_bucketted = map(lambda ammt: ammt ‐ ammt%increment, town1_heights)
 

town2_bucketted = map(lambda ammt: ammt ‐ ammt%increment + width, town2_heights)
 

town1_hist = Counter(town1_bucketted)
 

town2_hist = Counter(town2_bucketted)
 

minamount = min(min(town1_heights), min(town2_heights))
 

maxamount = max(max(town1_heights), max(town2_heights))
 

buckets = range(int(minamount), int(maxamount)+1, increment)
 

fig = plt.figure()
 

sub = fig.add_subplot(111)
 

sub.bar(town1_hist.keys(), town1_hist.values(), color='b', width=width, label="town 1")
 

sub.bar(town2_hist.keys(), town2_hist.values(), color='r', width=width, label="town 2")
 

sub.legend()
 

plt.savefig('figures/town_histograms.png', format='png')
 

This results in a histogram that looks like this: 

Not bad! The buckets are all exactly the same size except for one person of height between 4 and 5 feet in town 1. 

Exercise Build a histogram for the Obama and McCain campaigns. This is challenging, because there are a large number of 
outliers that make the histograms difficult to compare. Add the line 
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sub.set_xlim((‐20000, 20000)) 

before displaying the plot in order to set the x‐values of the histogram to cut off donations larger than $20,000 or smaller 
than ‐$20,000 (refunds). With bar widths of 50 and increments of $100, your histogram will look something like this: 

Ouch! I canʹt make heads or tails of that. It seems like Obama has a larger number of small donations, but there isnʹt a lot of 
granularity at that scale. For large datasets, a histogram might have too much information on it to be helpful. Luckily, 
descriptive statisticians have a more concise visualization. Itʹs called a box‐and‐whisker plot! The code for it is quite simple 

as well: 

import matplotlib.pyplot as plt 

fig = plt.figure()
 

sub = fig.add_subplot(111)
 

sub.boxplot([town1_heights, town2_heights], whis=1)
 

sub.set_xticklabels(("Town 1", "Town 2"))
 

sub.set_title("Town 1 vs. Town 2 Heights")
 

plt.savefig('figures/town_boxplots.png', format='png')
 

Hereʹs what we see: 
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Letʹs interpret this plot. We show town 1 on the left and town 2 on the right. Each town is represented by a box with a red 

line and whiskers. 

The red line in the box represents the median , or 50th percentile value of the distribution. If we sort the dataset, 50% 

of the values will be below this line, and 50% will be above it. 
The bottom edge of the box represents the 25th percentile (the value larger than 25% of your dataset), and the top 

edge represents the 75th percentile (the value larger than 75% of your dataset). The difference between the 75th and 

25th percentile is called the inner quartile range (IQR) . 
The whiskers represent the ʺextremesʺ of our dataset: the largest value weʹre willing to consider in our dataset before 

calling it an outlier. In our case, we set whis=1 , requesting that we show whiskers the most extreme value at a 

distance of at most 1x the IQR from the bottom and top edges of the box plot. 

If normal distributions are your thing, this image might help you interpret the box‐and‐whiskers plot. 

Like in the histogram, we see that the townsʹ height distributions donʹt look all that different from one‐another. Generally, if 
the boxes of each distribution overlap, and you havenʹt taken something on the order of a buttload (metric units) of 
measurements, you should doubt the differenes in distribution averages. It looks like a single height measurement for town 

1 is pretty far away from the others, and you should investigate such measurements as potential outliers. 

Exercise Build a box‐and‐whiskers plot of the McCain and Obama campaign contributions. Again, outliers make this a 

difficult task. With whis=1 , and by setting the y range of the plots like so 

sub.set_ylim((‐250, 1250)) 

we got the following plot 

4

https://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg


                                               
                                       
                                           
                                       
             

                                           
                           

                                       
                                 

                                             
                       

     

                                       
                                     

                         

                                     
                                     
                                     
   

                                 
                                     
                                   

                           

Obama is on the left, and McCain on the right. Real data sure is more confusing than fake data! Obamaʹs box plot is a lot 
tighter than McCains, who has a larger spread of donation sizes. Both of Obamaʹs whiskers are visible on this chart, whereas 
only the top whisker of McCainʹs plot is visible. Another feature we havenʹt seen before is the stream of blue dots after each 

of the whiskers on each of Obama and McCainʹs plots. These represent potential outliers , or values that are extreme and 

do not represent the majority of the dataset. 

It was easy to say that the histograms and box plots for the town heights overlapped heavily. So while the effect size for 
town heights was pretty large, the distributions donʹt actually look all that different from one‐another. 

The campaign plots are a bit harder to discern. The histogram told us virtually nothing. The box plot showed us that 
Obamaʹs donations seemed more concentrated on the smaller end, whereas McCains seemed to span a larger range. There 
was overlap between the boxes in the plot, but we donʹt really have a sense for just how much overlap or similarity there is 
between these distributions. In the next section, weʹll quantify the difference using statistics! 

Run a Statistical Test 

We have two population height averages. We know that they are different, but charts show that overall the two towns look 

similar. We have two campaign contribution averages that are also different, but with a murkier story after looking at our 
box‐and‐whisker plots. How will we definitively say whether the differences we observe are meaningful? 

In statistics, what we are asking is whether differences we observed are reliable indicators of some trend, or just happened 

by lucky chance. For example, we might simply have measured particularly short members of town 1 and tall members of 
town 2. Statistical significance is a measure of the probability that, for whatever reason, we stumbled upon the results we 
did by chance. 

There are several tests for statistical significance, each applying to a different question. Our question is: ʺIs the difference 

between the average height of people in town 1 and town 2 statistically significant?ʺ We ask a similar question about the 

difference in average campaign contributions. The test that answers this question is the T‐Test. There are several flavors of 
T‐Test and we will discuss these soon, but for now weʹll focus on Welchʹs T‐Test. 
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import welchttest 

print "Welch's T‐Test p‐value:", welchttest.ttest(town1_heights, town2_heights) 

The Welchʹs T‐Test emitted a p‐value of .349 . A p‐value is the probability that the effect size of .479 feet between town 1 and 

town 2 happened by chance. In this case, thereʹs 34.9% chance that weʹve arrived at our effect size by chance. 

Whatʹs a good cutoff for p‐values to know whether we should trust the effect size weʹre seeing? Two popular values are .05 

or .01: if there is less than a 5% or 1% chance that we arrived at our answer by chance, weʹre willing to say that we have a 

statistically significant result. 

So in our case, our result is not significant. Had we taken more measurements, or if the differences in heights were farther 
apart, we might have reached significance. But, given our current results, letʹs not jump to conclusions. After all, it was just 
food coloring in the water! 

Exercise Run Welchʹs T‐test on the campaign data. Is the effect size between McCain and Obama significant? By our 
measurements, the p‐value reported is within rounding error of 0. Thatʹs significant by anyoneʹs measure: thereʹs a 

near‐nonexistant chance weʹre seeing this difference between the candidates by some random fluke in the universe. Time to 

write an article! 

Can You Have a Very Significant Result? 

No. There is no such thing as ʺveryʺ or ʺalmostʺ significant. Remember: the effect size is the interesting observation, and itʹs 
up to you what makes for an impressive effect size depending on the situation. You can have small effects, large effects, and 

everything in between. Significance testing tells us whether to believe that the observations we made happened by anything 

more than random chance. While people disagree about whether a p‐value of .05 or .01 is required, they all agree that 
significance is a binary value. 

Strictly speaking, youʹve learned about T‐Tests at this point. If you are pressed for time, read Putting it all Together below 

and move on to the next section. For the overachievers in our midst, thereʹs lots of important information to follow, and you 

can instead keep reading until the end. 

Types of T‐Test 

The T‐Test has two major flavors: paired and unpaired. 

Sometimes your datasets are paired (also called dependent ). For example, you may be measuring the performance of the 

same set of students on an exam before and after teaching them the course content. To use a paired T‐Test, you have to be 

able to measure an item twice, usually before and after some treatment. This is the ideal condition: by having before and 

after measurements of a treatment, you control for other potential differences in the items you mentioned, like performance 

between students. 

Other times, you are measuring the difference between two sets of measured data, but the individual measurements in each 

dataset are unpaired (sometimes called independent ). This was the case in our tests: different people contributed to each 

campaign, and different people live in town 1 and 2. With unpaired datasets, we lose the ability to control for differences 
between individuals, so weʹll likely need more data to achieve statistical significance. 

Unpaired datasets come in all flavors. Depending on whether the sizes of the sets are equal or unequal, and depending on 

whether the variances of both sets are equal, you will run different versionf of an unpaired T‐Test. In our case, we made no 

assumptions about the sizes of our datasets, and no assumptions on their variances, either. So we went with an unpaired, 
unequal size, unequal variance test. Thatʹs Welchʹs T‐Test. 

As with all life decisions, if you want more details, check out the Wikipedia article on T‐Tests. There are implementations of 
paired T‐Tests and unpaired ones in scipy. The unequal variance case is not available in scipy, which is why we included 

welchsttest.py. Enjoy it! 
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T‐Test Assumptions we Broke:( 

Weʹve managed to sound like smartypantses that do all the right things until this moment, but now we have to admit we 
broke a few rules. The math behind T‐Tests makes assumptions about the datasets that makes it easier to achieve statistical 
significance if those assumptions are true. The big assumption is that the data we used came from a normal distribution. 

The first thing we should have done is check whether or not our data is actually normal. Luckily, the fine scipy folks have 

implemented the Shapiro‐Wilk test test for normality. This test calculates a p‐value, that, if low enough (usually < 0.05), tells 
us there is a low chance the distribution is normal. 

import scipy.stats 

print "Town 1 Shapiro‐Wilks p‐value", scipy.stats.shapiro(town1_heights)[1] 

With a p‐value of .380, we donʹt have enough evidence that our town heights are not normally distributed, so itʹs probably 

fine to run Welchʹs T‐Test 

Exercise Test the campaign contribution datasets for normality. We found them to not be normal (p = .003 for Obama and 

.014 for McCain), which means we likely broke the normality assumption of Welchʹs T‐Test. The statistics police are going to 

be paying us a visit. 

This turns out to be OK for two reasons: T‐Tests are resilient to breaking of the normality assumption, and, if youʹre really 

serious about your statistics, there are nonparametric equivalents that donʹt make normality assumptions. They are more 
conservative since they canʹt make assumptions about the data, and thus likely require a larger sample size to reach 

significance. If youʹre alright with that, feel free to run the Mann‐Whitney U nonparametric version of the T‐Test, which has 
a wonderful name. 

import scipy.stats 

print "Mann‐Whitney U p‐value", scipy.stats.mannwhitneyu(town1_heights, town2_heights)[1] 

Remember: we donʹt need to run the Mann‐Whitney U test on our town data, since it didnʹt exhibit non‐normalcy. And 

besides, the p‐value is .254. Thatʹs still not significant. This makes sense: our less conservative Welchʹs test was unable to give 
us significance, so we donʹt expect a more conservative test to magically find significance. 

Exercise since we shouldnʹt be using Welchʹs T‐Test on the campaign contribution data, run the Mann‐Whitney U test on 

the data. Is the difference between the Obama and McCain contributions still significant? 

We got a p‐value of about 0, so you will still find the result to be statistically significant. A+ for you! 

Putting it All Together 

So far, weʹve learned the steps to test a hypothesis: 

Compute summary statistics, like averages or medians, and see if these numbers match your intuition. 

Look at the distribution histograms or summary visualizations like box plots to understand whether your hypothesis 
appears to be backed up by the data 

If itʹs not immediately clear your hypothesis was wrong, test it using the appropriate statistical test to 1) quantify the 

effect size, and 2) ensure the data you observed couldnʹt have happened by chance. 

Thereʹs a lot more to statistics than T‐Tests, which compare two datasetsʹ averages. Next, weʹll cover correlation between 

two datasets using linear regression. 
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