regression.py

We hear about correlations every day. Various health outcomes are correlated with socioeconomic status. Iodine

supplementation in infants is correlated with higher IQ. Models are everywhere as well. An object falling for t seconds

moves .5gt"2 meters. You can calculate correlation and build approximate models using several techniques, but the simplest
and most popular technique by far is linear regression . Let's see how it works!

County Health Rankings

For our examples, we'll use the County Health Rankings. Specifically, we'll be looking at two datasets in this example: Years
of Potential Life Lost and Additional Measures.

Years of potential life lost (YPLL) is an early mortality measure. It measures, across 100,000 people, the total number of

years below the age of 75 that a 100,000-person group loses. For example, if a person dies at age 73, they contribute 2 years
to this sum. If they die at age 77, they contribute 0 years to the sum. The YPLL for each 100,000 people, averaged across
counties in the United States is between 8000 and 9000 depending on the year. The file yp1l.csv contains per-county YPLLs
for the United States in 2011.

The additional measures (found in additional_measures_cleaned.csv ) contains all sorts of fun measures per county, ranging

from the percentage of people in the county with Diabetes to the population of the county.

We're going to see which of the additional measures correlate strongly with our mortality measure, and build predictive

models for county mortality rates given these additional measures.
Loading the Rankings

The two .csv files we've given you (ypll.csv and additional_measures_cleaned.csv) went through quote a bit of scrubbing
already. You can read our notes on the process if you're interested.

We need to perform some data cleaning and filtering when loading the data. There is a column called "Unreliable" that will
be marked if we shouldn't trust the YPLL data. We want to ignore those. Also, some of the rows won't contain data for
some of the additional measures. For example, Yakutat, Alaska doesn't have a value for % child illiteracy. We want to skip
those rows. Finally, there is a row per state that summarizes the state's statistics. It has an empty value for the "county”
column and we want to ignore those rows since we are doing a county-by-county analysis. Here's a function, read_csv, that
will read the desired columns from one of the csv files.

import csv

def read_csv(file_name, cols, check_reliable):
reader = csv.DictReader(open(file_name, 'ruU'))
rows = {} # map "statename__countyname" to the column names in cols
for row in reader:

if check_reliable and row['Unreliable'] == "x": # discard unreliable data
continue

if row['County'] == "": # ignore the first entry for each state
continue

rname = "%s_ %s" % (row['State'], row['County'])
try: # if a row[col] is empty, float(row[col]) throws an exception
rows[rname] = [float(row[col]) for col in cols]
except:
pass
return rows

The function takes as input the csv filename, an array of column names to extract, and whether or not it should check and
discard unreliable data. It returns a dictionary mapping each state/county to the values of the columns specified in cols. It

handles all of the dirty data: data marked unreliable, state-only data, and missing columns.

When we call read_csv multiple times with different csv files, a row that is dropped in one csv file may be kept in another.
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We need to do what database folks call a join between the dict objects returned from read_csv so that only the counties

present in both dictionaries will be considered.

We wrote a function called get_arrs that retrieves data from the YPLL and Additional Measures datasets. It takes the
arguments dependent_cols, which is a list of column names to extract from ypll.csv, and independent_cols, which is a list of

column names to extract from additional_measures_cleaned.csv . This function performs the join for you.

import numpy

def get_arrs(dependent_cols, independent_cols):
ypll = read_csv("../datasets/county_health_rankings/ypll.csv", dependent_cols, True)
measures = read_csv("../datasets/county_health_rankings/additional_measures_cleaned.csv", independent_cols, False)

ypll_arr = []
measures_arr = []
for key, value in ypll.iteritems():
if key in measures: # join ypll and measures if county 1is in both
ypll_arr.append(value[0])
measures_arr.append(measures[key])
return (numpy.array(ypll_arr), numpy.array(measures_arr))

We return numpy arrays (matrices) with rows corresponding to counties and columns corresponding to the columns we
read from the spreadsheet. We can finally call the get_arrs function to load the desired columns from each file.

dependent_cols = ["YPLL Rate"]

independent_cols = ["Population", "< 18", "65 and over", "African American",
"Female", "Rural", "%Diabetes" , "HIV rate",
"Physical Inactivity" , "mental health provider rate",
"median household income", "% high housing costs",
"% Free lunch", "% child Illiteracy", "% Drive Alone"]

ypll_arr, measures_arr = get_arrs(dependent_cols, independent_cols)
print ypll_arr.shape

print measures_arr[:,6].shape

exit()
Phew. That sucked. Let's look at the data!

Look at a Scatterplot

Like we did during hypothesis testing, our first step is to look at the data to identify correlations. The best visualization to
identify correlations is a scatterplot, since that shows us the relationship between two potentially related variables like ypll
and % diabetes.

Let's start by looking at scatterplots of ypll versus three potentially correlated variables: % of a community that has diabetes,
% of the community under the age of 18, and median income.

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(6, 8))

subplot = fig.add_subplot(311)
subplot.scatter(measures_arr[:,6], ypll_arr, color="#1f77b4") # :,6 means all rows of "diabetes"
subplot.set_title("ypll vs. % of population with diabetes™)

subplot = fig.add_subplot(312)
subplot.scatter(measures_arr[:,1], ypll_arr, color="#1f77b4") # 1 = age
subplot.set_title("ypll vs. % population less than 18 years of age")

subplot = fig.add_subplot(313)
subplot.scatter(measures_arr[:,10], ypll_arr, color="#1f77b4") # 10 = income
subplot.set_title("ypll vs. median household income™)



plt.savefig('figures/three-scatters.png', format='png")

what's measures_arr[:,6] ? That's a numpy supported syntax to extract a subset of a matrix. The first argument specifies
which rows to extract. It can be a number (like 3), a python slice ( :3 means the rows from 0 to 3, while 3:5 means 3 to 5), or

: , which means all of the rows. The second argument specifies which columns to extract. In this case it is 6, which is the
7'th column (remember, it's 0 indexed).

Your plots should look something like this:
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We picked these three examples because they show visual evidence of three forms of correlation:

e In the first plot, we can see that when the percentage of people in a county with diabetes is higher, so is the mortality
rate (YPLL)---evidence of a positive correlation.

® The second plot looks like a blob. It's hard to see a relationship between mortality and the fraction of people under the
age of 18 in a community.

® The final plot shows evidence of negative correlation. Counties with higher median incomes appear to have lower
mortality rates.

Exercise Look at scatter plots of other variables vs. YPLL. We found the percent of children eligible for school lunch to be
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alarmingly correlated with YPLL!

Your First Regression

It's time we turn the intuition from our scatterplots into math! We'll do this using the ols module, which stands for ordinary
least squares regression. Let's run a regression for YPLL vs. % Diabetes.

import ols

model = ols.ols(ypll_arr, measures_arr[:,6], "YPLL Rate", ["% Diabetes"]) # 6 = diabetes
model.summary ()

the ols script in dataiap/day3/ implement a method called o1s() that takes four arguments:

1. a 1-dimensional numpy array containing the values of the dependent variable (e.g., YPLL)

2. a 2-dimensional numpy array where each row contains the values of an independent variable. In this case the only
independent variable is "% Diabetes", so the matrix has the same shape as ypl1_arr.

3. The label for the first argument

4. A list of labels for each row in the second argument

As you can see, running the regression is simple, but interpreting the output is tougher. Here's the output of model.summary()
for the YPLL vs. % Diabetes regression:

Dependent Variable: YPLL Rate
Method: Least Squares
Date: Fri, 23 Dec 2011

Time: 13:48:11

# obs: 2209
# variables: 2
variable coefficient std. Error t-statistic prob.
const 585.126403 169.746288 3.447064 0.000577
%Diabetes 782.976320 16.290678 48.062846 0.000000
Models stats Residual stats
R-squared 0.511405 Durbin-Watson stat  1.951279
Adjusted R-squared 0.511184 Omnibus stat 271.354997
F-statistic 2310.037134 Prob(Omnibus stat) ©.000000
Prob (F-statistic) 0.000000 JB stat 559.729657
Log likelihood -19502.794993 Prob(JB) 0.000000
AIC criterion 17.659389 Skew 0.752881
BIC criterion 17.664550 Kurtosis 4.952933
Let's interpret this:

e First, let's verify the statistical significance, to make sure nothing happened by chance, and that the regression is
meaningful. In this case, Prob (F-statistic) , which is under Models stats , is something very close to 0, which is less
than .05 or .01. That is: we have statistical significance, and we an safely interpret the rest of the data.

® The coefficients (called betas ) help us understand what line best fits the data, in case we want to build a predictive
model. In this case const is 585.13, and %Diabetes has a coefficient of 782.98. Thus, the line (y = mx + b) that best
predicts YPLL from %Diabetes is: YPLL = (782.98 * %Diabetes) + 585.13.

e To understand how well the line/model we've built from the data helps predict the data, we look at R-squared . This
value ranges from 0 (none of the change in YPLL is predicted by the above equation) to 1 (100% of the change in
YPLL is predicted by the above equation). In our case, 51% of the changes YPLL can be predicted by a linear equation
on %Diabetes. That's a reasonably strong correlation.



Putting this all together, we've just discovered that, without knowing the YPLL of a community, we can take data on the
percentage of people affected by diabetes, and roughly reconstruct 51% of the YPLL's characteristics.

If you want to use the information in your regression to do more than print a large table, you can access the data
individually

print "p-value", model.Fpv
print "coefficients", model.b
print "R-squared and adjusted R-squared:", model.R2, model.R2adj

To better visualize the model we've built, we can also plot the line we've calculated through the scatterplot we built before

fig = plt.figure(figsize=(6, 4))
subplot = fig.add_subplot(111)
subplot.scatter(measures_arr[:,6], ypll_arr, color="#1f77b4") # 6 = diabetes

subplot.set_title("ypll vs. % of population with diabetes™)

def best_fit(m, b, x): # calculates y = mx + b
return m*x + b

line_ys = [best_fit(model.b[1], model.b[®], Xx) for x in measures_arr[:,6]]
subplot.plot(measures_arr[:, 6], line_ys, color="#ff7f0e")

plt.savefig('figures/scatter-line.png', format='png")

That should result in a plot that looks something like
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We can see that our line slopes upward (the beta coefficient in front of the %Diabetes term is positive) indicating a positive
correlation.

Exercise Run the correlations for percentage of population under 18 years of age and median household income.

We got statistically significant results for all of these tests. Median household income is negatively correlated (the slope beta
is -.13), and explains a good portion of YPLL (R-squared is .48). Remember that we saw a blob in the scatterplot for
percentage of population under 18. The regression backs this up: the R-squared of .005 suggests little predictive power of
YPLL.


http:model.R2

Exercise Plot the lines calculated from the regression for each of these independent variables. Do they fit the models?

Exercise Run the correlation for % of children eligible for school lunches. Is it significant? Positively or negatively
correlated? How does this R-squared value compare to the ones we just calculated?

Explaining R-squared

R-squared roughly tells us how well the linear model (the line) we get from a linear regression explains the independent
variable.

R-squared values have several interpretations, but one of them is as the square of a value called the Pearson Correlation

Coefficient. That last link has a useful picture of the correlation coefficient that shows you the value of R for different kinds
of data.

Squaring R makes it always positive and changes its asymptotic properties, but the same trends (being near 0 or near 1) still
apply.

Running Multiple Variables

So far, we've been able to explain about 50% of the variance in YPLL using our additional measures data. Can we do better?
What if we combine information from multiple measures? That's called a multiple regression, and we already have all the
tools we need to do it! Let's combine household income, %Diabetes, and percentage of the population under 18 into one
regression.

dependent_cols = ["YPLL Rate"]

independent_cols = ["< 18", "%Diabetes" , "median household income"]
ypll_arr, measures_arr = get_arrs(dependent_cols, independent_cols)
model = ols.ols(ypll_arr, measures_arr, "YPLL Rate", independent_cols)
print "p-value", model.Fpv

print "coefficients", model.b

print "R-squared and adjusted R-squared:", model.R2, model.R2adj

We got the following output:

p-value 1.11022302463e-16
coefficients [ 4.11471809e+03  1.30775027e+02  5.16355557e+02 - 8.76770577e-02]
R-squared and adjusted R-squared: 0.583249144589 0.582809842914

So we're still significant, and can read the rest of the output. A read of the beta coefficients suggests the best linear
combination of all of these variables is YPLL = 4115 + 131(% under 18) + 516(% Diabetes) - 877*(median household income)

Because there are multiple independent variables in this regression, we should look at the adjusted R-squared value, which
is .583. This value penalizes you for needlessly adding variables to the regression that don't give you more information about
YPLL. Anyway, check out that R-squared---nice! That's larger than the R-squared value for any one of the regressions we
ran on their own! We can explain more of YPLL with these variables.

Exercise Try combining other variables. What's the largest adjusted R-squared you can achieve? We can reach .715 by an
excessive use of variables. Can you replicate that?

Eliminate Free Lunches, Save the Planet

At some point in performing a regression and testing for a correlation, you will be tempted to come up with solutions to
problems the regression has not identified. For example, we noticed that the percentage of children eligible for free lunch is
pretty strongly correlated with the morbidity rate in a community. How can we use this knowledge to lower the morbidity
rate?
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ALERT, ALERT, ALERT!!! The question at the end of the last paragraph jumped from a question of correlation to a

question of causation.

It would be far-fetched to think that increasing or decreasing the number of children eligible for school lunches would
increase or decrease the morbidity rate in any significant way. What the correlation likely means is that there is a third
variable, such as available healthcare, nutrition options, or overall prosperity of a community that is correlated with both
school lunch eligibility and the morbidity rate. That's a variable policymakers might have control over, and if we somehow
improved outcomes on that third variable, we'd see both school lunch eligibility and the morbidity rate go down.

Remember: correlation means two variables move together, not that one moves the other.

We've hit the point that if you're stressed for time, you can jump ahead to the closing remarks. Realize, however, that there's
still mind-blowing stuff ahead, and if you have time you should read it!

Nonlinearity

Is finding a bunch of independent variables and performing linear regression against some dependent variable the best we
can do to model our data? Nope! Linear regression gives us the best line to fit through the data, but there are cases where

the interaction between two variables is nonlinear. In these cases, the scatterplots we built before matter quite a bit!

Take gravity for example. Say we measured the distance an object fell in a certain amount of time, and had a bit of noise to
our measurement. Below, we'll simulate that activity by generating the time-distance relationship that we learned in high
school (displacement = .5gt"2). Imagine we record the displacement of a ball as we drop it, storing the time and

displacement measurements in timings and displacements .

timings = range(1l, 100)
displacements = [4.9*t*t for t in timings]

A scatterplot of the data looks like a parabola, which won't fit lines very well! We can transform this data by squaring the
time values.

sq_timings = [t*t for t in timings]

fig = plt.figure()

subplot = fig.add_subplot(211)

subplot.scatter(timings, displacements, color="#1f77b4")
subplot.set_title("original measurements (parabola)")

subplot = fig.add_subplot(212)

subplot.scatter(sq_timings, displacements, color="#1f77b4")
subplot.set_title("squared time measurements (line)")
plt.savefig('figures/parabola-linearized.png', format='png")

Here are scatterplots of the original and transformed datasets. You can see that squaring the time values turned the plot
into a more linear one.
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Exercise Perform a linear regression on the original and transformed data. Are they all significant? What's the R-squared
value of each? Which model would you prefer? Does the coefficient of the transformed value mean anything to you?

For those keeping score at home, we got R-squared of .939 and 1.00 for the unadjusted and adjusted timings, which means
we were able to perfectly match the data after transformation. Note that in the case of the squared timings, the equation we
end up with is displacement = 4.9 * time”2 (the coefficient was 4.9), which is the exact formula we had for gravity.
Awesome!

Exercise Can you improve the R-squared values by transformation in the county health rankings? Try taking the log of the
population, a common technique for making data that is bunched up spread out more. To understand what the log
transform did, take a look at a scatterplot.

Log-transforming population got us from R-squared = .026 to R-squared = .097.

Linear regression, scatterplots, and variable transformation can get you a long way. But sometimes, you just can't figure out
the right transformation to perform even though there's a visible relationship in the data. In those cases, more complex
technques like nonlinear least squares can fit all sorts of nonlinear functions to the data.

Where to go from here

Today you've swallowed quite a bit. You learned about significance testing to support or reject high-likelihood meaningful
hypotheses. You learned about the T-Test to help you compare two communities on whom you've measured data. You then
learned about regression and correlation, for identifying variables that change together. From here, there are several
directions to grow.

® A more general form of the T-Test is an ANOVA, where you can identify differences among more than two groups,
and control for known differences between items in each dataset.
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® The T-Test is one of many tests of statistical significance.

® The concept of statistical significance testing comes from a frequentist view of the world. Another view is the Bayesian

approach, if mathematical controversy is your thing.

® Logistic regression, and more generally classification, can take a bunch of independent variables and map them onto

binary values. For example, you could take all of the additional measures for an individual and predict whether they
will die before the age of 75.

® Machine learning and data mining are fields that assume statistical significance (you collect boatloads of data) and

develop algorithms to classify, cluster, and otherwise find patterns in the underlying datasets.
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