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For my teachers, who showed me the way 

Peter Goldreich
 
Carver Mead
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And for my students, one of whom said 

I used to be curious, naively curious. Now I am fearlessly curious. I 
feel ready to attack any problem that comes at me, and at least get a 
feel for why things happen … roughly. 
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Preface
 

Science and engineering, our modern ways of understanding and altering 
the world, are said to be about accuracy and precision. Yet we best master 
the complexity of our world by cultivating insight rather than precision. 
We need insight because our minds are but a small part of the world. An 
insight unifies fragments of knowledge into a compact picture that fits in 
our minds. But precision can overflow our mental registers, washing away 
the understanding brought by insight. This book shows you how to build 
insight and understanding first, so that you do not drown in complexity. 

Less Therefore, our approach will not be rigorous—for rigor easily becomes rigor 
rigor	 mortis or paralysis by analysis. Forgoing rigor, we’ll study the natural and 

human-created worlds—the worlds of science and engineering. So you’ll 
need some—but not extensive!—knowledge of physics concepts such as 
force, power, energy, charge, and field. We’ll use as little mathematics as 
possible—algebra and geometry mostly, trigonometry sometimes, and cal-
culus rarely—so that the mathematics promotes rather than hinders insight, 
understanding, and flexible problem solving. The goal is to help you mas-
ter complexity; then no problem can intimidate you. 
Like all important parts of our lives, whether spouses or careers, I came to 
this approach mostly unplanned. As a graduate student, I gave my first sci-
entific talk on the chemical reactions in the retinal rod. I could make sense 
of the chemical chaos only by approximating. In that same year, my friend 
Carlos Brody wondered about the distribution of twin primes—prime pairs 
separated by 2, such as 3 and 5 or 11 and 13. Nobody knows the distribu-
tion for sure. As a lazy physicist, I approximately answered Carlos’s ques-
tion with a probabilistic model of being prime [32]. Approximations, I saw 
again, foster understanding. 
As a physics graduate student, I needed to prepare for the graduate qualify-
ing exams. I also became a teaching assistant for the “Order-of-Magnitude 
Physics” course. In three months, preparing for the qualifying exams and 
learning the course material to stay a day ahead of the students, I learned 
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more physics than I had in the years of my undergraduate degree. Physics 
teaching and learning had much room for improvement—and approxima-
tion and insight could fill the gap. 
In gratitude to my teachers, I dedicate this book to Carver Mead for irre-
placeable guidance and faith; and to Peter Goldreich and Sterl Phinney, 
who developed the “Order-of-Magnitude Physics” course at Caltech. From 
them I learned the courage to simplify and gain insight—the courage that 
I look forward to teaching you. 
For many years, at the University of Cambridge and at MIT, I taught a 
course on the “Art of Approximation” organized by topics in physics and 
engineering. This organization limited the material’s generality: Unless 
you become a specialist in general relativity, you may not study gravitation 
again. Yet estimating how much gravity deflects starlight (Section 5.3.1) 
teaches reasoning tools that you can use far beyond that example. Tools are 
more general and useful than topics. 
Therefore, I redesigned the course around the reasoning tools. This orga-
nization, which I have used at MIT and Olin College of Engineering, is re-
flected in this book—which teaches you one tool per chapter, each selected 
to help you build insight and master complexity. 
There are the two broad ways to master complexity: organize the complex-
ity or discard it. Organizing complexity, the subject of Part I, is taught 
through two tools: divide-and-conquer reasoning (Chapter 1) and making 
abstractions (Chapter 2). 
Discarding complexity (Parts II and III) illustrates that “the art of being 
wise is the art of knowing what to overlook” (William James [24, p. 369]). 
In Part II, complexity is discarded without losing information. This part 
teaches three reasoning tools: symmetry and conservation (Chapter 3), pro-
portional reasoning (Chapter 4), and dimensional analysis (Chapter 5). In 
Part III, complexity is discarded while losing information. This part teaches 
our final tools: lumping (Chapter 6), probabilistic reasoning (Chapter 7), 
easy cases (Chapter 8), and spring models (Chapter 9). 
Using these tools, we will explore the natural and human-made worlds. We 
will estimate the flight range of birds and planes, the strength of chemical 
bonds, and the angle that the Sun deflects starlight; understand the physics 
of pianos, xylophones, and speakers; and explain why skies are blue and 
sunsets are red. Our tools weave these and many other examples into a 
tapestry of meaning spanning science and engineering. 
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Like my earlier Street-Fighting Mathematics [33], this book is licensed under a 
Creative Commons Attribution–Noncommercial–Share Alike license. MIT 
Press and I hope that you will improve and share the work noncommer-
cially, and we would gladly receive corrections and suggestions. 

Sharing 
this work 

Inter- The most effective teacher is a skilled tutor [2]. A tutor asks many questions, 
spersed because questioning, wondering, and discussing promote learning. Ques-
ques- tions of two types are interspersed through the book. Questions marked with 
tions a in the margin, which a tutor would pose during a tutorial, ask you to de-

velop the next steps of an argument. They are answered in the subsequent 
text, where you can check your thinking. Numbered problems, marked with 
a shaded background, which a tutor would give you to take home, ask you 
to practice the tool, to extend an example, to use several tools, and even to 
resolve an occasional paradox. Merely watching workout videos produces 
little fitness! So, try many questions of both types. 

Improve Through your effort, mastery will come—and with a broad benefit. As the 
our physicist Edwin Jaynes said of teaching [25]: 

world [T]he goal should be, not to implant in the students’ mind every fact that the 
teacher knows now; but rather to implant a way of thinking that enables the 
student, in the future, to learn in one year what the teacher learned in two years. 
Only in that way can we continue to advance from one generation to the next. 

May the tools in this book help you advance our world beyond the state in 
which my generation has left it. 
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Values for backs of envelopes
 

𝜋 pi 3 

𝐺 Newton’s constant 7 × 10−11 kg−1 m3 s−2 

𝑐 speed of light 3 × 108 ms−1 

ℏ𝑐 ℏ shortcut 200 eV nm 
𝑚e𝑐2 electron rest energy 0.5 MeV 

𝑘B Boltzmann’s constant 10−4 eV K−1 

𝑁A Avogadro’s number 6 × 1023 mol−1 

𝑅 universal gas constant 𝑘B𝑁A 8 J mol−1 K−1 

𝑒 electron charge 1.6 × 10−19 C 
𝑒2/4𝜋𝜖0 electrostatic combination 2.3 × 10−28 kg m3 s−2 

(𝑒2/4𝜋𝜖0)/ℏ𝑐 fine-structure constant 𝛼 0.7 × 10−2 

𝜎 Stefan–Boltzmann constant 6 × 10−8 Wm−2 K−4 

𝑀Sun solar mass 2 × 1030 kg 
𝑚Earth Earth’s mass 6 × 1024 kg 
𝑅Earth Earth’s radius 6 × 106 m 
AU Earth–Sun distance 1.5 × 1011 m 
𝜃Moon or Sun angular diameter of Moon or Sun 10−2 rad 
day length of a day 105 s 
year length of a year 𝜋 ×107 s 
𝑡0 age of the universe 1.4 × 1010 yr
𝐹 solar constant 1.3 kW m−2 

𝑝0 atmospheric pressure at sea level 105 Pa 
𝜌air air density 1 kg m−3 

𝜌rock rock density 2.5 g cm−3 

𝐿water vap heat of vaporization of water 2 MJ kg−1 

𝛾water surface tension of water 7 × 10−2	 Nm−1 

𝑃basal human basal metabolic rate 100	 W 

𝑎0 Bohr radius 0.5 Å 
𝑎 typical interatomic spacing 3 Å 
𝐸bond typical bond energy 4 eV 

ℰfat combustion energy density 9	 kcal g−1 

m2 s−1𝜈air kinematic viscosity of air 1.5 × 10−5 

𝜈water kinematic viscosity of water 10−6 m2 s−1 

𝐾air thermal conductivity of air 2 × 10−2 Wm−1 K−1 

𝐾 … of nonmetallic solids/liquids 2 Wm−1 K−1 

𝐾metal … of metals 2 × 102 Wm−1 K−1 

𝑐p
air specific heat of air 1 J g−1 K−1 

𝑐p … of solids/liquids 25	 J mol−1 K−1 
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Part I
 

Organizing complexity 

We cannot find much insight staring at a mess. We need to organize it. As 
an everyday example, when I look at my kitchen after a dinner party, I feel 
overwhelmed. It’s late, I’m tired, and I dread that I will not get enough 
sleep. If I clean up in that scattered state of mind, I pick up a spoon here 
and a pot there, making little progress. However, when I remember that a 
large problem can be broken into smaller ones, calm and efficiency return. 
I begin at one corner of the kitchen, clear its mess, and move to neighboring 
areas until the project is done. I divide and conquer (Chapter 1). 

Once the dishes are clean, I resist the temptation to dump them into one 
big box. I separate pots from the silverware and, within the silverware, the 
forks from the spoons. These groupings, or abstractions (Chapter 2), make 
the kitchen easy to understand and use. 

In problem solving, we organize complexity by using divide-and-conquer 
reasoning and by making abstractions. In Part I, you’ll learn how. 

without losing information
Part II

losing information
Part III

43 5

to master complexity

6 7 8 9
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discard it
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As imperial rulers knew, you need not conquer all your enemies at once. 
Instead, conquer them one at a time. Break hard problems into manageable 
pieces. This process embodies our first reasoning tool: Divide and conquer! 

1.1 Warming up 
To show how to use divide-and-conquer reasoning, we’ll apply it to increas-
ingly complex problems that illustrate its essential features. So we start 
with an everyday estimate. 

What is, roughly, the volume of a dollar bill? 

Volumes are hard to estimate. However, we should still make a quick guess. 
Even an inaccurate guess will help us practice courage and, when we com-
pare the guess with a more accurate estimate, will help us calibrate our inter-
nal measuring rods. To urge me on, I often imagine a mugger who holds a 
knife at my ribs, demanding, “Your guess or your life!” Then I judge it likely 
that the volume of a dollar bill lies between 0.1 and 10 cubic centimeters. 
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This range is wide, spanning a factor of 100. In contrast, the dollar bill’s 
width probably lies between 10 and 20 centimeters—a range of only a factor 
of 2. The volume range is wider than the width range because we have 
no equivalent of a ruler for volume; thus, volumes are less familiar than 
lengths. Fortunately, the volume of the dollar bill is the product of lengths. 

volume = width × height × thickness. (1.1) 

The harder volume estimate becomes three easier length 
estimates—the benefit of divide-and-conquer reasoning. 15 cm

6 cm $1 bill

The width looks like 6 inches, which is roughly 15 cen-
timeters. The height looks like 2 or 3 inches, which is roughly 6 centimeters. 
But before estimating the thickness, let’s talk about unit systems. 

Is it better to use metric or US customary units (such as inches, feet, and miles)? 

Your estimates will be more accurate if you use the units most familiar to 
you. Raised in the United States, I judge lengths more accurately in inches, 
feet, and miles than in centimeters, meters, or kilometers. However, for 
calculations requiring multiplication or division—most calculations—I con-
vert the customary units to metric (and often convert back to customary 
units at the end). But you may be fortunate enough to think in metric. Then 
you can estimate and calculate in a single unit system. 

The third piece of the divide-and-conquer estimate, the thickness, is diffi-
cult to judge. A dollar bill is thin—paper thin. 

But how thin is “paper thin”? 

This thickness is too small to grasp and judge easily. However, a stack of 
several hundred bills would be graspable. Not having that much cash lying 
around, I’ll use paper. A ream of paper, which has 500 sheets, is roughly 
5 centimeters thick. Thus, one sheet of paper is roughly 0.01 centimeters 
thick. With this estimate for the thickness, the volume is approximately
1 cubic centimeter: 

volume ≈ 15 cm × 6 cm × 0.01 cm ≈ 1 cm3 (1.2)⏟ ⏟ ⏟⏟⏟⏟⏟ . 
width height thickness 

Although a more accurate calculation could adjust for the fiber composi-
tion of a dollar bill compared to ordinary paper and might consider the 
roughness of the paper, these details obscure the main result: A dollar bill 
is 1 cubic centimeter pounded paper thin. 
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5 1.1	 Warming up 

To check this estimate, I folded a dollar bill until my finger strength gave 
out, getting a roughly cubical packet with sides of approximately 1 centime-
ter—making a volume of approximately 1 cubic centimeter! 
In the preceding analysis, you may have noticed the = and ≈ symbols and 
their slightly different use. Throughout this book, our goal is insight over 
accuracy. So we’ll use several kinds of equality symbols to describe the 
accuracy of a relation and what it omits. Here is a table of the equality 
symbols, in descending order of completeness and often increasing order 
of usefulness. 

≡	 equality by definition read as “is defined to be” 
=	 equality “is equal to” 
≈	 equality except perhaps for a purely “is approximately equal to” 

numerical factor near 1 

∼	 equality except perhaps for a purely “is roughly equal to” or 
numerical factor “is comparable to” 

∝	 equality except perhaps for a factor “is proportional to” 
that may have dimensions 

As examples of the kinds of equality, for the circle below, 𝐴 = 𝜋𝑟2, and 
𝐴 ≈ 4𝑟2, and 𝐴 ∼ 𝑟2. For the cylinder, 𝑉 ∼ ℎ𝑟2—which implies 𝑉 ∝ 𝑟2 

and 𝑉 ∝ ℎ. In the 𝑉 ∝ ℎ form, the factor hidden in the ∝ symbol has 
dimensions of length squared. 

r

area A

⎧= 𝜋𝑟2{
𝐴⎨≈ 4𝑟2	 𝑉 ∝ { 𝑟

2 

{	 ℎ⎩∼ 𝑟2 

Problem 1.1 Weight of a box of books 
How heavy is a small moving-box filled with books? 

Problem 1.2 Mass of air in your bedroom 

Estimate the mass of air in your bedroom. 

Problem 1.3 Suitcase of bills 
In the movies, and perhaps in reality, cocaine and elections are bought with a suit-
case of $100 bills. Estimate the dollar value in such a suitcase. 
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Problem 1.4 Gold or bills? 
As a bank robber sitting in the vault planning your getaway, do you fill your suit-
case with gold bars or $100 bills? Assume first that how much you can carry is a 
fixed weight. Then redo your analysis assuming that how much you can carry is 
a fixed volume. 

1.2 Rails versus roads 
We are now warmed up and ready to use divide-and-conquer reasoning for 
more substantial estimates. Our next estimate, concerning traffic, comes to 
mind whenever I drive the congested roads to JFK Airport in New York 
City. The route goes on the Van Wyck Expressway, which was planned by 
Robert Moses. As Moses’s biographer Robert Caro describes [6, pp. 904ff], 
when Moses was in charge of building the expressway, the traffic planners 
recommended that, in order to handle the expected large volume of traffic, 
the road include a train line to the then-new airport. Alternatively, if build-
ing the train track would be too expensive, they recommended that the city, 
when acquiring the land for the road, still take an extra 50 feet of width and 
reserve it as a median strip for a train line one day. Moses also rejected the 
cheaper proposal. Alas, only weeks after its opening, not long after World 
War Two, the rail-free highway had reached peak capacity. 

Let’s use our divide-and-conquer tool to compare, for rush-hour commut-
ing, the carrying capacities of rail and road. The capacity is the rate at which 
passengers are transported; it is passengers per time. First we’ll estimate 
the capacity of one lane of highway. We can use the 2-second-following rule 
taught in many driving courses. You are taught to leave 2 seconds of travel 
time between you and the car in front. When drivers follow this rule, a sin-
gle lane of highway carries one car every 2 seconds. To find the carrying 
capacity, we also need the occupancy of each car. Even at rush hour, at least 
in the United States, each car carries roughly one person. (Taxis often have 
two people including the driver, but only one person is being transported 
to the destination.) Thus, the capacity is one person every 2 seconds. As an 
hourly rate, the capacity is 1800 people per hour: 

1 person 

2  s 
× 

3600  s 
1 hr 

= 
1800 people 

hr 
. (1.3) 

The diagonal strike-through lines help us to spot which units cancel and to 
check that we end up with just the units that we want (people per hour). 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

7 1.3 Tree representations 

This rate, 1800 people per hour, is approximate, because the 2-second fol-
lowing rule is not a law of nature. The average gap might be 4 seconds late 
at night, 1 second during the day, and may vary from day to day or from 
highway to highway. But a 2-second gap is a reasonable compromise esti-
mate. Replacing the complex distribution of following times with one time 
is an application of lumping—the tool discussed in Chapter 6. Organizing 
complexity almost always reduces detail. If we studied all highways at all 
times of day, the data, were we so unfortunate as to obtain them, would 
bury any insight. 

How does the capacity of a single lane of highway compare with the capacity of a 
train line? 

For the other half of the comparison, we’ll estimate the rush-hour capacity 
of a train line in an advanced train system, say the French or German system. 
As when we estimated the volume of a dollar bill (Section 1.1), we divide the 
estimate into manageable pieces: how often a train runs on the track, how 
many cars are in each train, and how many passengers are in each car. Here 
are my armchair estimates for these quantities, kept slightly conservative to 
avoid overestimating the train-line’s capacity. A single train car, when full 
at rush hour, may carry 150 people. A rush-hour train may consist of 20 cars. 

an estimate of 40 000 to 50 000 people per hour. Using our lower rate, one 
train track in each direction could replace two highways even if each high-
way had five lanes in each direction. 

1.3 Tree representations 
Our estimates for the volume of a dollar bill (Section 1.1) and for the rail 
and highway capacities (Section 1.2) used the same method: dividing hard 
problems into smaller ones. However, the structure of the analysis is buried 
within the sentences, paragraphs, and pages. The sequential presentation 
hides the structure. Because the structure is hierarchical—big problems 

And, on a busy train route, a train may run every 10 minutes or six times 
per hour. Therefore, the train line’s capacity is 18 000 people per hour: 

150 people 
car 

× 
20  cars 
train 

× 
6  trains 
hr 

= 
18 000 people 

hr 
. (1.4) 

This capacity is ten times the capacity of a single fast-flowing highway lane. 
And this estimate is probably on the low side; Robert Caro [6, p. 901] gives 
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split, or branch, into smaller problems—its most compact representation is 
a tree. A tree representation shows us the analysis in one glance. 

Here is the tree representation for the capacity 
of a train line. Unlike the biological variety, our 
trees stand on their head. Their roots, the goals, 
sit at the top of the tree. Their leaves, the small 
problems into which we have subdivided the 
goal, sit at the bottom. The orientation matches 
the way that we divide and conquer, filling the 
page downward as we subdivide. 

In making this first tree, we haven’t estimated 
the quantities themselves. We have only identi-
fied the quantities. The question marks remind 
us of our next step: to include estimates for the 
three leaves. These estimates were 150 people 
per car, 20 cars per train, and 6 trains per hour 
(giving the tree in the margin).
 

Then we multiplied the leaf values to propagate 
the estimates upward from the leaves toward 
the root. The result was 18 000 people per hour. 
The completed tree shows us the entire estimate 
in one glance. 

This train-capacity tree had the simplest possi-
ble structure with only two layers (the root layer 
and, as the second layer, the three leaves). The 
next level of complexity is a three-layer tree, which will represent our esti-
mate for the volume of a dollar bill. It started as a two-layer tree with three 
leaves. 

?? people
car

?? cars
train

?? trains
hour

capacity

150 people
car

20 cars
train

6 trains
hour

capacity

150 people
car

20 cars
train

6 trains
hour

capacity
18 000 people/hour

width height thickness

volume

Then it grew, because, unlike the width and height, the thickness was diffi-
cult to estimate just by looking at a dollar bill. Therefore, we divided that 
leaf into two easier leaves. 
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The result is the tree in the margin. The thick-
ness leaf, which is the thickness per sheet, has 
split into (1) the thickness per ream and (2) 
the number of sheets per ream. The boxed 
−1 on the line connecting the thickness to the 
number of sheets per ream is a new and use-
ful notation. The −1 tells us the exponent to 
apply to that leaf value when we propagate it 
upward to the root. 
Here is why I write the −1 as a full-sized num-

volume

?? sheets
ream

thickness
ream

thicknesswidth height

−1

ber rather than a small superscript. Most of 
our estimates require multiplying several factors. The only question for 
each factor is, “With what exponent does this factor enter?” The number
−1 directly answers this “What exponent?” question. (To avoid cluttering 
the tree, we don’t indicate the most-frequent exponent of 1.) 
This new subtree then represents the following equation for the thickness 
of one sheet: 

−1thickness × ( 
?? sheets thickness = ) . (1.5)ream ream 

The −1 exponent allows, at the cost of a slight complication in the tree no-
tation, the leaf to represent the number of sheets per ream rather than a 
less-familiar fraction, the number of reams per sheet. 
Now we include our estimates for the leaf values. The width is 15 centime-
ters. The height is 6 centimeters. The thickness of a ream of paper is 5 cen-
timeters. And a ream contains 500 sheets of paper. The result is the follow-
ing tree. 

volume

500 sheets
ream

5 cm thickness
ream

thicknesswidth
15 cm

height
6 cm

−1
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Now we propagate the values to the root. 
The two bottommost leaves combine to tell 
us that the thickness of one sheet is 10−2 

centimeters. This thickness completes the 
tree’s second layer. In the second layer, the 
three nodes tell us that the volume of a dol-
lar bill—the root—is 1 cubic centimeter. 
With practice, you can read in this final tree 
all the steps of the analysis. The three nodes 
in the second layer show how the difficult 
volume estimate was subdivided into three 
easier estimates. That the width and height 

volume
1 cm3

500 sheets
ream

5 cm thickness
ream

thickness
10−2 cm

width
15 cm

height
6 cm

−1

remained leaves indicates that these two es-
timates felt reliable enough. In contrast, the two branches sprouting from 
the thickness indicate that the thickness was still hard to estimate, so we 
divided that estimate into two more-familiar quantities. 
The tree encapsulates many paragraphs of analysis in a compact form, one 
that our minds can absorb in a single glance. Organizing complexity helps 
us build insight. 

Problem 1.5 Tree for the suitcase of bills 
Make a tree diagram for your estimate in Problem 1.3. Do it in three steps: (1) Draw 
the tree without any leaf estimates, (2) estimate the leaf values, and (3) propagate 
the leaf values upward to the root. 

1.4 Demand-side estimates 
Our analysis of the carrying capacity of highways and railways (Section 1.2) 
is an example of a frequent application of estimation in the social world—es-
timating the size of a market. The highway–railway comparison proceeded 
by estimating the transportation supply. In other problems, a more feasi-
ble analysis is based on the complementary idea of estimating the demand. 
Here is an example. 

How much oil does the United States import (in barrels per year)? 

The volume rate is enormous and therefore hard to picture. Divide-and-con-
quer reasoning will tame the complexity. Just keep subdividing until the 
quantities are no longer daunting. 
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Here, subdivide the demand—the consumption. We consume oil in so
 
many ways; estimating the consumption in each pathway would take a long
 
time without producing much insight. Instead, let’s estimate the largest
 
consumption—likely to be cars—then adjust for other uses and for overall 
consumption versus imports. 

imports = car usage × 
all usage 
car usage 

× 
imports 
all usage 

. (1.6) 

car usage
all usage
car usage

imports
all usage

importsHere is the corresponding tree. The first fac-
tor, the most difficult of the three to estimate, 
will require us to sprout branches and make 
a subtree. The second and third factors might 
be possible to estimate without subdividing. 
Now we must decide how to continue. 

Should we keep subdividing until we’ve built the 
entire tree and only then estimate the leaves, or should we try to estimate these 
leaves and then subdivide what we cannot estimate? 

It depends on one’s own psychology. I feel anxious in the uncharted wa-
ters of a new estimate. Sprouting new branches before making any leaf esti-
mates increases my anxiety. The tree might never stop sprouting branches 
and leaves, and I’ll never estimate them all. Thus, I prefer to harvest my 
progress right away by estimating the leaves before sprouting new branches. 
You should experiment to learn your psychology. You are your best prob-
lem-solving tool, and it is helpful to know your tools. 

Because of my psychology, I’ll first estimate a leaf quantity: 
all usage 

. (1.7)car usage 

But don’t do this estimate directly. It is more intuitive—that is, easier for 
our gut—to estimate first the ratio of car usage to other (noncar) usage. The 
ability to make such comparisons between disjoint sets, at least for physi-
cal objects, is hard wired in our brains and independent of the ability to 
count. Not least, it is not limited to humans. The female lions studied by 
Karen McComb and her colleagues [35] would judge the relative size of 
their troop and a group of lions intruding on their territory. The females 
would approach the intruders only when they outnumbered the intruders 
by a large-enough ratio, roughly a factor of 2. 
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Other uses for oil include noncar modes of transport (trucks, trains, and 
planes), heating and cooling, and hydrocarbon-rich products such as fer-
tilizer, plastics, and pesticides. In judging the relative importance of other 
uses compared to car usage, two arguments compete: (1) Other uses are so 
many and so significant, so they are much more important than car usage; 
and (2) cars are so ubiquitous and such an inefficient mode of transport, so 
car usage is much larger than other uses. To my gut, both arguments feel 
comparably plausible. My gut is telling me that the two categories have 
comparable usages: 

other usage 
≈ 1. (1.8)car usage 

Based on this estimate, all usage (the sum of car and other usage) is roughly 
double the car usage: 

all usage 
≈ 2. (1.9)car usage 

This estimate is the first leaf. It implicitly assumes that the gasoline fraction 
in a barrel of oil is high enough to feed the cars. Fortunately, if this assump-
tion were wrong, we would get warning. For if the fraction were too low, 
we would build our transportation infrastructure around other means of 
transport—such as trains powered by electricity generated by burning the 
nongasoline fraction in oil barrels. In this probably less-polluted world, we 
would estimate how much oil was used by trains. 
Returning to our actual world, let’s estimate the second leaf: 

imports 
(1.10)all usage . 

This adjustment factor accounts for the fact that only a portion of the oil 
consumed is imported. 

What does your gut tell you for this fraction? 

Again, don’t estimate this fraction directly. Instead, to make a comparison 
between disjoint sets, first compare (net) imports with domestic production. 
In estimating this ratio, two arguments compete. On the one hand, the 
US media report extensively on oil production in other countries, which 
suggests that oil imports are large. On the other hand, there is also extensive 
coverage of US production and frequent comparison with countries such as 
Japan that have almost no domestic oil. My resulting gut feeling is that the 
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categories are comparable and therefore that imports are roughly one-half 
of all usage: 

imports imports 
≈ 1 so ≈ 

1
2 . (1.11)domestic production all usage 

This leaf, as well as the other adjustment factor, are dimensionless numbers. 
Such numbers, the main topic of Chapter 5, have special value. Our percep-
tual system is skilled at estimating dimensionless ratios. Therefore, a leaf 
node that is a dimensionless ratio probably does not need to be subdivided. 

The tree now has three leaves. Having plausi-
ble estimates for two of them should give us 
courage to subdivide the remaining leaf, the 
total car usage, into easier estimates. That leaf 
will sprout its own branches and become an 
internal node. 

How should we subdivide the car usage? 

car usage
all usage
car usage

2

imports
all usage

0.5

imports

A reasonable subdivision is into the number of cars 𝑁cars and 
the per-car usage. Both quantities are easier to estimate than 
the root. The number of cars is related to the US population—a 
familiar number if you live in the United States. The per-car 
usage is easier to estimate than is the total usage of all US 
cars. Our gut can more accurately judge human-scale quan-
tities, such as the per-car usage, than it can judge vast numbers like the 
total usage of all US cars. 

Ncars usage/car

car usage

For the same reason, let’s not estimate the number of cars 
directly. Instead, subdivide this leaf into two leaves: 

1. the number of people, and 

2. the number of cars per person. 

The first leaf is familiar, at least to residents of the United 
States: 𝑁people ≈ 3×108. 

Npeople

3×108
cars/person

1

Ncars

3×108

The second leaf, cars per person, is a human-sized quantity.
 
In the United States, car ownership is widespread. Many adults own more
 
than one car, and a cynic would say that even babies seem to own cars.
 
Therefore, a rough and simple estimate might be one car per person—far
 
easier to picture than the total number of cars! Then 𝑁cars ≈ 3×108.
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The per-car usage can be subdivided into three 
easier factors (leaves). Here are my estimates. 
1.	 How many miles per car year? Used cars with 
10 000 miles per year are considered low use 
but are not rare. Thus, for a typical year of 
driving, let’s take a slightly longer distance: 
say, 20 000 miles or 30 000 kilometers. 

?? miles
car year

?? miles
gallon

?? gallons
barrel

usage/car

−1−1

2.	 How many miles per gallon? A typical car fuel efficiency is 30 miles per 
US gallon. In metric units, it is about 100 kilometers per 8 liters. 

3.	 How many gallons per barrel? You might have seen barrels of asphalt 
along the side of the highway during road construction. Following our 
free-association tradition of equating the thickness of a sheet of paper 
and of a dollar bill, perhaps barrels of oil are like barrels of asphalt. 
Their volume can be computed by divide-and-conquer
 
reasoning. Just approximate the cylinder as a rectangu-
lar prism, estimate its three dimensions, and multiply:
 
volume ∼ 1 m × 0.5 m × 0.5 m = 0.25 m3. (1.12)⏟ ⏟ ⏟ 

height width depth 

A cubic meter is 1000 liters or, using the conversion of

4 US gallons per liter, roughly 250 gallons. Therefore,
 
0.25 cubic meters is roughly 60 gallons. (The official vol- 0.5 m

ume of a barrel of oil is not too different at 42 gallons.) 
Multiplying these estimates, and not forgetting the effect of the two −1 ex-
ponents, we get approximately 
barrels per car year): 

2 × 104 miles 
car year 

× 
1 

barrels per car per year (also written as 10 

gallon 1 

30 

barrel
miles 

× 
60 gallons 

≈ 
10 barrels 

. (1.13) 
car year 

In doing this calculation, first evaluate the units. The gallons and miles 
cancel, leaving barrels per year. Then evaluate the numbers. The 30 × 60 in 

This estimate is a subtree in the tree representing total car usage. The car 
usage then becomes 3 billion barrels per year: 

3 × 108 cars × 
10 barrels 
car year year 

the denominator is roughly 2000. The 2 × 104 from the numerator divided 
by the 2000 from the denominator produces the 10. 

3 × 109 barrels= .	 (1.14) 
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car usage
3×109 barrels

year

all usage
car usage

2

imports
all usage

0.5

imports
3×109 barrels

year

250 gallons
m3

width
0.5 m

imports
3×109 barrels

year

30 miles
gallon

20 000 miles
car year

60 gallons
barrel

car usage
3×109 barrels

year

all usage
car usage

2

imports
all usage

0.5

height
1 m

Npeople

3×108
1 car

person

usage/car
10 barrels
car year

Ncars

3×108

depth
0.5 m

−1 −1

15 1.4 Demand-side estimates 

This estimate is itself a subtree in the tree 
representing oil imports. Because the two 
adjustment factors contribute a factor of
2 × 0.5, which is just 1, the oil imports are 
also 3 billion barrels per year. 

Here is the full tree, which includes the 
subtree for the total car usage of oil: 

Problem 1.6 Using metric units 
As practice with metric units (if you grew up in a nonmetric land) or to make the 
results more familiar (if you grew up in a metric land), redo the calculation using 
the metric values for the volume of a barrel, the distance a car is driven per year, 
and the fuel consumption of a typical car. 

How close is our estimate to official values? 
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For the US oil imports, the US Department of Energy reports 9.163 million 
barrels per day (for 2010). When I first saw this value, my heart sank twice. 
The first shock was the 9 in the 9 million. I assumed that it was the number 
of billions, and wondered how the estimate of 3 billion barrels could be 
a factor of 3 too small. The second shock was the “million”—how could 
the estimate be more than a factor of 100 too large? Then the “per day” 
reassured me. As a yearly rate, 9.163 million barrels per day is 3.34 billion 
barrels per year—only 10 percent higher than our estimate. Divide and 
conquer triumphs! 

Problem 1.7 Fuel efficiency of a 747 
Based on the cost of a long-distance plane ticket, estimate the following quantities: 
(a) the fuel efficiency of a 747, in passenger miles per gallon or passenger kilome-
ters per liter; and (b) the volume of its fuel tank. Check your estimates against the 
technical data for a 747. 

1.5 Multiple estimates for the same quantity 
After making an estimate, it is natural to wonder about how much confi-
dence to place in it. Perhaps we made an embarrassingly large mistake. The 
best way to know is to estimate the same quantity using another method. 
As an everyday example, let’s observe how we add a list of numbers. 

12
 
15
 
+18
 

(1.15) 

We often add the numbers first from top to bottom. For 12 + 15 + 18, we 
calculate, “12 plus 15 is 27; 27 plus 18 is 45.” To check the result, we add the 
numbers in the reverse order, from bottom to top: “18 plus 15 is 33; 33 plus 
12 is 45.” The two totals agree, so each is probably correct: The calculations 
are unlikely to contain an error of exactly the same amount. This kind of 
redundancy catches errors. 

In contrast, mindless redundancy offers little protection. If we check the 
calculation by adding the numbers from top to bottom again, we usually 
repeat any mistakes. Similarly, rereading written drafts usually means over-
looking the same spelling, grammar, or logic faults. Instead, stuff the draft 
in a drawer for a week, then look at it; or ask a colleague or friend—in both 
cases, use fresh eyes. 
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Reliability, in short, comes from intelligent redundancy. 

This principle helps you make reliable estimates. First, use several meth-
ods to estimate the same quantity. Second, make the methods as differ-
ent from one another as possible—for example, by using unrelated back-
ground knowledge. This approach to reliability is another example of di-
vide-and-conquer reasoning: The hard problem of making a reliable esti-
mate becomes several simpler subproblems, one per estimation method. 

You saw an example in Section 1.1, where we estimated the volume of a dol-
lar bill. The first method used divide-and-conquer reasoning based on the 
width, height, and thickness of the bill. The check was a comparison with a 
folded-up dollar bill. Both methods agreed on a volume of approximately
1 cubic centimeter—giving us confidence in the estimate. 

For another example of using multiple methods, return to the estimate of 
the volume of an oil barrel (Section 1.4). We used a roadside asphalt barrel 
as a proxy for an oil barrel and estimated the volume of the roadside bar-
rel. The result, 60 gallons, seemed plausible, but maybe oil barrels have a 
completely different size. One way to catch that kind of error is to use a 
different method for estimating the volume. For example, we might start 
with the cost of a barrel of oil—about $100 in 2013—and the cost of a gallon 
of gasoline—about $2.50 before taxes, or 1/40th of the cost of a barrel. If 
the markup on gasoline is not significant, then a barrel is roughly 40 gal-
lons. Even with a markup, we can still say that a barrel is at least 40 gallons. 
Because our two estimates, 60 gallons and > 40 gallons, roughly agree, our 
confidence in both increases. If they had contradicted each other, one or 
both would be wrong, and we would look for the mistaken assumption, for 
the incorrect arithmetic, or for a third method. 

1.6 Talking to your gut 

As you have seen in the preceding examples, divide-and-con-
quer estimates require reasonable estimates for the leaf quan-
tities. To decide what is reasonable, you have to talk to your 
gut—what you will learn in this section. Talking to your gut 
feels strange at first, especially because science and engineer-
ing are considered cerebral subjects. Let’s therefore discuss 

area population
density

US population

how to hold the conversation. The example will be an esti-
mate of the US population based on its area and population density. The 
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divide-and-conquer tree has two leaves. (In Section 6.3.1, you’ll see a qual-
itatively different method, where the two leaves will be the number of US 
states and the population of a typical state.) 
The area is the width times the height, so the area leaf 
itself splits into two leaves. Estimating the width and 
height requires only a short dialogue with the gut, at 
least if you live in the United States. Its width is a 6-hour 
plane flight at 500 miles per hour, so about 3000 miles; 
and the height is, as a rough estimate, two-thirds of the 
width, or 2000 miles. Therefore, the area is 6 million 
square miles: 

3000 miles × 2000 miles = 6×106 miles2. (1.16) 

In metric units, it is about 16 million square kilometers. 
heightwidth

area population
density

US population

Estimating the population density requires talking to your gut. If you are 
like me you have little conscious knowledge of the population density. Your 
gut might know, but you cannot ask it directly. The gut is connected to the 
right brain, which doesn’t have language. Although the right brain knows 
a lot about the world, it cannot answer with a value, only with a feeling. 
To draw on its knowledge, ask it indirectly. Pick a particular population 
density—say, 100 people per square mile—and ask the gut for its opinion: 
“O, my intuitive, insightful, introverted right brain: What do you think of
100 people per square mile for the population density?” A response, a gut 
feeling, will come back. Keep lowering the candidate value until the gut 
feeling becomes, “No, that value feels way too low.” 
Here is the dialogue between my left brain (LB) and right brain (RB). 
LB: What do you think of 100 people per square mile? 

RB: That feels okay based on my experience growing up in the United States. 

LB: I can probably support that feeling quantitatively. A square mile with 100 
people means each person occupies a square whose side is 1/10th of a mile or 
160 meters. Expressed in this form, does the population density feel okay? 

RB: Yes, the large open spaces in the western states probably compensate for the 
denser regions near the coasts. 

LB: Now I will lower the estimate by factors of 3 or 10 until you object strongly 
that the estimate feels too low. [A factor of 3 is roughly one-half of a factor of 10, 
because 3 × 3 ≈ 10. A factor of 3 is the next-smallest factor by which to move 
when a factor of 10 is too large a jump.] In that vein, what about an average 
population density of 10 people per square mile? 
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RB: I feel uneasy. The estimate feels a bit low. 

LB: I understand where you are coming from. That value may moderately over-
estimate the population density of farmland, but it probably greatly underesti-
mates the population density in the cities. Because you are uneasy, let’s move 
more slowly until you object strongly. How about 3 people per square mile? 

RB: If the true value were lower than that, I’d feel fairly surprised. 

LB: So, for the low end, I’ll stop at 3 people per square mile. Now let’s navigate 
to the upper end. You said that 100 people per square mile felt plausible. How 
do you feel about 300 people per square mile? 

RB: I feel quite uneasy. That estimate feels quite high. 

LB: I hear you. Your response reminds me that New Jersey and the Netherlands, 
both very densely populated, are at 1000 people per square mile, although I 
couldn’t swear to this value. I cannot imagine packing the whole United States 
to a density comparable to New Jersey’s. Therefore, let’s stop here: Our upper 
endpoint is 300 people per square mile. 

How do you make your best guess based on these two endpoints? 

ware. (For more about how we perceive quantity, see The Number Sense 
[9].) The geometric mean is the correct mean when combining quantities 
produced by our mental hardware. 

antly surprising accuracy. 

A plausible guess is to use their arithmetic mean, which is roughly 150 peo-
ple per square mile. However, the right method is the geometric mean: 
best guess = lower endpoint × upper endpoint . (1.17) 

The geometric mean is the midpoint of the lower and upper bounds—but 
on a ratio or logarithmic scale, which is the scale built into our mental hard-

Here, the geometric mean is 30 people per square mile: a factor of 10 re-
moved from either endpoint. Using that population density, 

US population ∼ 6 × 106 miles2 × 
30 

miles2 ≈ 2 × 108. (1.18) 

The actual population is roughly 3×108. The estimate based almost entirely 
on gut reasoning is within a factor of 1.5 of the actual population—a pleas-

Problem 1.8 More gut estimates 
By asking your gut to help you estimate the lower and upper endpoints, estimate 
(a) the height of a nearby tall tree that you can see, (b) the mass of a car, and (c) the 
number of water drops in a bathtub. 
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1.7 Physical estimates 
Your gut understands not only the social world but also the physical world. 
If you trust its feelings, you can tap this vast reservoir of knowledge. For 
practice, we’ll estimate the salinity of seawater (Section 1.7.1), human power 
output (Section 1.7.2), and the heat of vaporization of water (Section 1.7.3). 

1.7.1 Salinity of seawater 
To estimate the salinity of seawater, which will later help you estimate the 
conductivity of seawater (Problem 8.10), do not ask your gut directly: “How 
do you feel about, say, 200 millimolar?” Although that kind of question 
worked for estimating population density (Section 1.6), here, unless you 
are a chemist, the answer will be: “I have no clue. What is a millimolar 
anyway? I have almost no experience of that unit.” Instead, offer your gut 
concrete data—for example, from a home experiment: adding salt to a cup 
of water until the mixture tastes as salty as the ocean. 

This experiment can be a thought or a real experiment—another example 
of using multiple methods (Section 1.5). As a thought experiment, I ask 
my gut about various amounts of salt in a cup of water. When I propose 
adding 2 teaspoons, it responds, “Disgustingly salty!” At the lower end, 
when I propose adding 0.5 teaspoons, it responds, “Not very salty.” I’ll use 
0.5 and 2 teaspoons as the lower and upper endpoints of the range. Their 
midpoint, the estimate from the thought experiment, is 1 teaspoon per cup. 

I tested this prediction at the kitchen sink. With 1 teaspoon (5 milliliters) of 
salt, the cup of water indeed had the sharp, metallic taste of seawater that 
I have gulped after being knocked over by large waves. A cup of water is 
roughly one-fourth of a liter or 250 cubic centimeters. By mass, the resulting 
salt concentration is the following product: 

1 tsp salt 

1 cup water 
× 

1 cup water 

250 g water 
× 

5 cm3 salt 

1 tsp salt 
× 

2 g salt 

1 cm3 salt .⏟⏟⏟⏟⏟⏟⏟ 
𝜌salt 

(1.19) 

The density of 2 grams per cubic centimeter comes from my gut feeling that 
salt is a light rock, so it should be somewhat denser than water at 1 gram 
per cubic centimeter, but not too much denser. (For an alternative method, 
more accurate but more elaborate, try Problem 1.10.) Then doing the arith-
metic gives a 4 percent salt-to-water ratio (by mass). 
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The actual salinity of the Earth’s oceans is about 3.5 percent—very close to 
the estimate of 4 percent. The estimate is close despite the large number 
of assumptions and approximations—the errors have mostly canceled. Its 
accuracy should give you courage to perform home experiments whenever 
you need data for divide-and-conquer estimates. 

Problem 1.9 Density of water 
Estimate the density of water by asking your gut to estimate the mass of water in 
a cup measure (roughly one-quarter of a liter). 

Problem 1.10 Density of salt 
Estimate the density of salt using the volume and mass of a typical salt container 
that you find in a grocery store. This value should be more accurate than my gut 
estimate in Section 1.7.1 (which was 2 grams per cubic centimeter). 

1.7.2 Human power output 
Our second example of talking to your gut is an estimate of hu-
man power output—a power that is useful in many estimates 
(for example, Problem 1.17). Energies and powers are good can-
didates for divide-and-conquer estimates, because they are con-
nected by the subdivision shown in the following equation and 
represented in the tree in the margin: 

energy time

power

−1

energy 
power = . (1.20)time 

In particular, let’s estimate the power that a trained athlete can generate for 
an extended time (not just during a few-seconds-long, high-power burst). 
As a proxy for that power, I’ll use my own burst power output with two 
adjustment factors: 

my burst power
my steady power
my burst power

athlete’s steady power
my steady power

athlete’s steady power

Maintaining a power is harder than producing a quick burst. Therefore,
 
the first adjustment factor, my steady power divided by my burst power,
 
is somewhat smaller than 1—maybe 1/2 or 1/3. In contrast, an athlete’s
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power output will be higher than mine, perhaps by a factor of 2 or 3: Even 
though I am sometimes known as the street-fighting mathematician [33], I 
am no athlete. Then the two adjustment factors roughly cancel, so my burst 
power should be comparable to an athlete’s steady power. 

To estimate my burst power, I performed a home experiment 
of running up a flight of stairs as quickly as possible. Deter-
mining the power output requires estimating an energy and 
a time: 

energy 
power = . (1.21)time 

The energy, which is the change in my gravitational potential 
energy, itself subdivides into three factors: 

energy = mass × gravity × ⏟height. (1.22)⏟ ⏟⏟⏟⏟⏟ 
𝑚 𝑔 ℎ 

power

energy time

hgm

−1

In the academic building at my university, a building with high 
ceilings and staircases, I bounded up a staircase three stairs at a 
time. The staircase was about 12 feet or 3.5 meters high. There-
fore, my mechanical energy output was roughly 2000 joules: 

3.5 m

𝐸 ∼ 65 kg × 10 ms−2 × 3.5 m ∼ 2000 J. (1.23) 

(The units are fine: 1 J = 1 kg m2 s−2.) 

The remaining leaf is the time: how long the climb took me. I made it in
6 seconds. In contrast, several students made it in 3.9 seconds—the power 
of youth! My mechanical power output was about 2000 joules per 6 sec-
onds, or about 300 watts. (To check whether the estimate is reasonable, try 
Problem 1.12, where you estimate the typical human basal metabolism.) 

This burst power output should be close to the sustained power output of 
a trained athlete. And it is. As an example, in the Alpe d’Huez climb in the 
1989 Tour de France, the winner—Greg LeMond, a world-class athlete—put 
out 394 watts (over a 42.5-minute period). The cyclist Lance Armstrong, 
during the time-trial stage during the Tour de France in 2004, generated 
even more: 495 watts (roughly 7 watts per kilogram). However, he pub-
licly admitted to blood doping to enhance performance. Indeed, because 
of widespread doping, many cycling power outputs of the 1990s and 2000s 
are suspect; 400 watts stands as a legitimate world-class sustained power 
output. 
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Problem 1.11 Energy in a 9-volt battery 
Estimate the energy in a 9-volt battery. Is it enough to launch the battery into orbit? 

Problem 1.12 Basal metabolism 

Based on our daily caloric consumption, estimate the human basal metabolism. 

Problem 1.13 Energy measured in person flights of stairs 
How many flights of stairs can you climb using the energy in a stick (100 grams) 
of butter? 

1.7.3 Heat of vaporization of water 
Our final physical estimate concerns the most important liquid on Earth. 

What is the heat of vaporization of water? 

Because water covers so much of the Earth and is such an important part 
of the atmosphere (clouds!), its heat of vaporization strongly affects our 
climate—whether through rainfall (Section 3.4.3) or air temperatures. 

Heat of vaporization is defined as a ratio:
 
energy to evaporate a substance
 

, (1.24)amount of the substance
 
where the amount of substance can be measured
 
in moles, by volume, or (most commonly) by mass.
 
The definition provides the structure of the tree
 
and of the estimate based on divide-and-conquer
 
reasoning.
 

energy to evaporate
a substance

mass of the
substance

heat of
vaporization

−1

For the mass of the substance, choose an amount of water that is easy to 
imagine—ideally, an amount familiar from everyday life. Then your gut 
can help you make estimates. Because I often boil a few cups of water at a 
time, and each cup is few hundred milliliters, I’ll imagine 1 liter or 1 kilo-
gram of water. 
The other leaf, the required energy, requires more thought. There is a com-
mon confusion about this energy that is worth discussing. 

Is it the energy required to bring the water to a boil? 

No: The energy has nothing to do with the energy required to bring the 
water to a boil! That energy is related to water’s specific heat 𝑐p. The heat of 
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vaporization depends on the energy needed to evaporate—boil away—the 
water, once it is boiling. (You compare these energies in Problem 5.61.) 

Energy subdivides into power times time (as when we es-
timated human power output in Section 1.7.2). Here, the 
power could be the power output of one burner; the time 
is the time to boil away the liter of water. To estimate these 
leaves, let’s hold a gut conference. 

For the time, my dialogue is as follows. 
LB: How does 1 minute sound as a lower bound? 

RB: Way too short—you’ve left boiling water on the stove 
unattended for longer without its boiling away!
 

LB: How about 3 minutes?
 
evaporation

time
burner
power

energy mass

heat of
vaporization

−1

RB: That’s on the low side. Maybe that’s the lower bound.
 

LB: Okay. For the upper bound, how about 100 minutes?
 

RB: That time feels way too long. Haven’t we boiled away pots of water in far 
less time? 

LB: What about 30 minutes? 

RB: That’s long, but I wouldn’t be shocked, only fairly surprised, if it took that 
long. It feels like the upper bound. 

My range is therefore 3…30 minutes. Its midpoint—the geometric mean of
 
the endpoints—is about 10 minutes or 600 seconds.
 

For variety, let’s directly estimate the burner power, without estimating
 
lower and upper bounds.
 
LB: How does 100 watts feel?
 

RB: Way too low: That’s a lightbulb! If a lightbulb could boil away water so
 
quickly, our energy troubles would be solved.
 

LB (feeling chastened): How about 1000 watts (1 kilowatt)?
 

RB: That’s a bit low. A small appliance, such as a clothes iron, is already 1 kilo-
watt.
 

LB (raising the guess more slowly): What about 3 kilowatts?
 

RB: That burner power feels plausible.
 

Let’s check this power estimate by subdividing power into two factors, volt-
age and current: 

power = voltage × current. (1.25) 
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An electric stove requires a line voltage of 220 volts, even in the United 
States where most other appliances require only 110 volts. A standard fuse 
is about 15 amperes, which gives us an idea of a large current. If a burner 
corresponds to a standard fuse, a burner supplies roughly 3 kilowatts: 

220 V × 15 A ≈ 3000 W. (1.26) 

This estimate agrees with the gut estimate, so both methods gain plausibil-
ity—which should give you confidence to use both methods for your own 
estimates. As a check, I looked at the circuit breaker connected to my range, 
and it is rated for 50 amperes. The range has four burners and an oven, so 
15 amperes for one burner (at least, for the large burner) is plausible. 

We now have values for all the leaf nodes. Prop-
agating the values toward the root gives the heat
 
of vaporization (𝐿vap) as roughly 2 megajoules per
 
kilogram:
 

power time
⏞ × ⏞3 kW 600 s𝐿vap ∼ 1 kg (1.27)⏟ 

mass 

≈ 2×106 J kg−1. 

The true value is about 2.2×106 joules per kilogram.
 
This value is one of the highest heats of vaporiza-
tion of any liquid. As water evaporates, it carries
 
away significant amounts of energy, making it an
 
excellent coolant (Problem 1.17).
 

evaporation time
10 min

burner power
3 kW

energy
2×106 J

mass
1 kg

heat of vaporization
2×106 J

kg

−1

1.8 Summary and further problems 
The main lesson that you should take away is courage: No problem is too 
difficult. We just use divide-and-conquer reasoning to dissolve difficult 
problems into smaller pieces. (For extensive practice, see the varied exam-
ples in the Guesstimation books [47 and 48].) This tool is a universal solvent 
for problems social and scientific. 

Problem 1.14 Per-capita land area 
Estimate the land area per person for the world, for your home country, and for 
your home state or province. 
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Problem 1.15 Mass of the Earth 

Estimate the mass of the Earth. Then look it up (p. xvii) to check your estimate. 

Problem 1.16 Billion 

How long would it take to count to a billion (109)? 

Problem 1.17 Sweating 
Estimate how much water you need to drink to replace water lost to evapora-
tion, if you ride a bicycle vigorously for 1 hour. Represent your estimate as a 
divide-and-conquer tree. Hint: Humans are only about 25 percent efficient in gen-
erating mechanical work. 

Problem 1.18 Pencil line 
How long a line can you write with a pencil? 

Problem 1.19 Pine needles 
Estimate the number of needles on a pine tree. 

Problem 1.20 Hairs 
How many hairs are on your head? 
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Divide-and-conquer reasoning, the tool introduced in Chapter 1, is power-
ful, but it is not enough by itself to organize the complexity of the world. 
Try, for example, to manage the millions of files on a computer—even my 
laptop says that it has almost 3 million files. Without any organization, with 
all the files in one monster directory or folder, you could never find informa-
tion that you need. However, simply using divide and conquer by dividing 
the files into groups—the first 100 files by date, the second 100 files by date, 
and so on—does not disperse the chaos. A better solution is to organize the 
millions of files into a hierarchy: as a tree of folders and subfolders. The ele-
ments in this hierarchy get names—for example, “photos of the children” or 
“files for typesetting this book”—and these names guide us to the needed 
information. 
Naming—or, more technically, abstraction—is our other tool for organizing 
complexity. A name or an abstraction gets its power from its reusability. 
Without reusable ideas, the world would become unmanageably compli-
cated. We might ask, “Could you, without tipping it over, move the wooden 
board glued to four thick sticks toward the large white plastic circle?” in-
stead of, “Could you slide the chair toward the table?” The abstractions 
“chair,” “slide,” and “table” compactly represent complex ideas and physi-
cal structures. (And even the complex question itself uses abstractions.) 
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Similarly, without good abstractions we could hardly calculate, and mod-
ern science and technology would be impossible. As an illustration, imag-
ine the pain of the following calculation: 
XXVII × XXXVI, (2.1) 

which is 27 ×36 in Roman numerals. The problem is not that the notation is 
unfamiliar, but rather that it is not based on abstractions useful for calcula-
tion. Not least, it does not lend itself to divide-and-conquer reasoning; for 
example, even though V (5) is a part of XXVII, V×XXXVI has no obvious an-
swer. In contrast, our modern number system, based on the abstractions of 
place value and zero, makes the whole multiplication simple. Notations are 
abstractions, and good abstractions amplify our intelligence. In this chap-
ter, we will practice making abstractions, discuss their high-level purpose, 
and continue to practice. 

2.1 Energy from burning hydrocarbons 

Our understanding of the world is built on layers of abstrac-
tions. Consider the idea of a fluid. At the bottom of the ab-
straction hierarchy are the actors of particle physics: quarks 
and electrons. Quarks combine to build protons and neu-
trons. Protons, neutrons, and electrons combine to build 
atoms. Atoms combine to build molecules. And large collec-
tions of molecules act, under many conditions, like a fluid. 
The idea of a fluid is a new unit of thought. It helps us un-
derstand diverse phenomena, without our having to calcu-
late or even know how quarks and electrons interact to pro-
duce fluid behavior. As one consequence, we can describe 
the behavior of air and water using the same equations (the 
Navier–Stokes equations of fluid mechanics); we need only 

fluid

molecules

electrons
protons,
neutrons

atoms

quarks

to use different values for the density and viscosity. Then 
atmospheric cyclones and water vortices, although they result from widely 
differing sets of quarks and electrons and their interactions, can be under-
stood as the same phenomenon. 
A similarly powerful abstraction is a chemical bond. We’ll use this abstrac-
tion to estimate a quantity essential to our bodies and to modern society: 
the energy released by burning chains made of hydrogen and carbon atoms 
(hydrocarbons). A hydrocarbon can be abstracted as a chain of CH2 units: 
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· · · · · ·

Burning a CH2 unit requires oxygen (O2) and releases carbon dioxide (CO2), 
water, and energy: 

CH2 + 
3
2 
O2 ⟶ CO2 + H2O + energy. (2.2) 

For a hydrocarbon with eight carbons—such as octane, a prime component 
of motor fuel—simply multiply this reaction by 8: 

(CH2)8 + 12 O2 ⟶ 8 CO2 + 8 H2O + lots of energy. (2.3) 

(The two additional hydrogens at the left and right ends of octane are not 
worth worrying about.) 

How much energy is released by burning one CH2 unit? 

To make this estimate, use the table of bond bond energy 
energies. It gives the energy required to break 

( 
kcal ( 

kJ eV (not make) a chemical bond—for example, be- ) ) ( )mol mol bondtween carbon and hydrogen. However, there 
is no unique carbon–hydrogen (C–H) bond. C—H 99 414 4.3 
The carbon–hydrogen bonds in methane are O—H 111 464 4.8 
different from the carbon–hydrogen bonds in C—C 83 347 3.6 
ethane. To make a reusable idea, we neglect C—O 86 360 3.7 
those differences—placing them below our H—H 104 435 4.5 
abstraction barrier—and make an abstraction C—N 73 305 3.2 
called the carbon–hydrogen bond. So the ta- N—H 93 389 4.0 
ble, already in its first column, is built on an O=O 119 498 5.2 
abstraction. C=O 192 803 8.3 
The second gives the bond energy in kilo- C=C 146 611 6.3 
calories per mole of bonds. A kilocalorie is N≡N 226 946 9.8 
roughly 4000 joules, and a mole is Avogadro’s 
number (6×1023) of bonds. The third column gives the energy in the SI units 
used by most of the world, kilojoules per mole. The final column gives the 
energy in electron volts (eV) per bond. An electron volt is 1.6×10−19 joules. 
An electron volt is suited for measuring atomic energies, because most bond 
energies have an easy-to-grasp value of a few electron volts. I wish most of 
the world used this unit! 
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Let’s tabulate the energies in the combustion of one hydrocarbon unit.
 

C

H

H

O

O

bond energy 3+ 2 × ⟶ + O

H

H

(2.4) 
( 
kcal ( 

kJ) )mol mol 

The left side of the reaction has two carbon–hy- 1 × C—C 1 × 83 1 × 347 

drogen bonds, 1.5 oxygen–oxygen double bonds, 2 × C—H 2 × 99 2 × 414 

and one carbon–carbon bond (connecting the car- 1.5 × O=O 1.5 × 119 1.5 × 498 

bon atom in the CH2 unit to the carbon atom in Total 460 1925 
a neighboring unit). The total, 460 kilocalories or 
1925 kilojoules per mole, is the energy required to break the bonds. It is an 
energy input, so it reduces the net combustion energy. 
The right side has two carbon–oxygen double bonds bond energy 
and two oxygen–hydrogen bonds. The total for the 

( 
kcal ( 

kJright side, 606 kilocalories or 2535 kilojoules per mole, ) )mol molis the energy released in forming these bonds. It is the 
energy produced, so it increases the net combustion 2 × C=O 2 × 192 2 × 803 

energy. 2 × O—H 2 × 111 2 × 464 

The net result is, per mole of CH2, an energy release of Total 606 2535 

606 minus 460 kilocalories, or approximately 145 kilo-
calories (610 kilojoules). Equivalently, it is also about 6 electron volts per 
CH2 unit—about 1.5 chemical bonds’ worth of energy. The combustion en-
ergy is also useful as an energy per mass rather than per mole. A mole of 
CH2 units weighs 14 grams. Therefore, 145 kilocalories per mole is roughly 
10 kilocalories or 40 kilojoules per gram. This energy density is worth mem-
orizing because it gives the energy released by burning oil and gasoline or 
by metabolizing fat (even though fat is not a pure hydrocarbon). 

combustion energy
 

( 
kcal ( 

kcal ( 
kJ
) ) )mol g g 

hydrogen (H2) 68 34.0 142 

methane (CH4) 213 13.3 56 

gasoline (C8H18) 1303 11.5 48 

stearic acid (C18H36O2) 2712 9.5 40 

glucose (C6H12O6) 673 3.7 15 
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The preceding table, adapted from Oxford University’s “Virtual Chemistry” 
site, gives actual combustion energies for plant and animal fuel sources 
(with pure hydrogen included for fun). The penultimate entry, stearic acid, 
is a large component of animal fat; animals store energy in a substance with 
an energy density comparable to the energy density in gasoline—roughly
10 kilocalories or 40 kilojoules per gram. Plants, on the other hand, store 
energy in starch, which is a chain of glucose units; glucose has an energy 
density of only roughly 4 kilocalories per gram. This value, the energy den-
sity of food carbohydrates (sugars and starches), is also worth memorizing. 
It is significantly lower than the energy density of fats: Eating fat fills us up 
much faster than eating starch does. 

How can we explain the different plant and animal energy-storage densities? 

Plants do not need to move, so the extra weight required by using lower-den-
sity energy storage is not so important. The benefit of the simpler glucose 
metabolic pathway outweighs the drawback of the extra weight. For ani-
mals, however, the large benefit of lower weight outweighs the metabolic 
complexity of burning fats. 

Problem 2.1 Estimating the energy density of common foods 
In American schools, the traditional lunch is the peanut-butter-and-jelly sandwich. 
Estimate the energy density in peanut butter and in jelly (or jam). 

Problem 2.2 Peanut butter as fuel 
If you could convert all the combustion energy in one tablespoon (15 grams) of 
peanut butter into mechanical work, how many flights of stairs could you climb? 

Problem 2.3 Growth of grass 
How fast does grass grow? Is the rate limited by rainfall or by sunlight? 

2.2 Coin-flip game 
The abstractions of atoms, bonds, and bond energies have been made for us 
by the development of science. But we often have to make new abstractions. 
To develop this skill, we’ll analyze a coin game where two players take turns 
flipping a (fair) coin; whoever first tosses heads wins. 

What is the probability that the first player wins? 

First get a feel for the game by playing it. Here is one round: TH. The first 
player missed the chance to win by tossing tails (T); but the second player 
tossed heads (H) and won. 
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Playing many games might reveal a pattern to us or suggest how to com- 2 TH 
pute the probability. However, playing many games by flipping a real 2 TH 
coin becomes tedious. Instead, a computer can simulate the games, sub- 1 H 
stituting pseudorandom numbers for a real coin. Here are several runs 2 TH 
produced by a computer program. Each line begins with 1 or 2 to indicate 1 TTH 
which player won the game; the rest of the line shows the coin tosses. In 2 TTTH 
these ten iterations, each player won five times. A reasonable conjecture 2 TH 
is that each player has an equal chance to win. However, this conjecture, 1 H 
based on only ten games, cannot be believed too strongly. 1 H 

Let’s try 100 games. Now even counting the wins becomes tedious. My 1 H 
computer counted for me: 68 wins for player 1, and 32 wins for player 2. 
The probability of player 1’s winning now seems closer to 2/3 than to 1/2. 
To find the exact value, let’s diagram the game as a tree re-
flecting the alternative endings of the game. Each layer rep-
resents one flip. The game ends at a leaf, when one player 
has tossed heads. The shaded leaves show the first player’s 
wins—for example, after H, TTH, or TTTTH. The probabili-
ties of these winning ways are 1/2 (for H), 1/8 (for TTH), and 
1/32 (for TTTTH). The sum of all these winning probabilities 
is the probability of the first player’s winning: 

1 
32 

+⋯. 2 + 1
8 + 

1 
(2.5) 

To sum this infinite series without resorting to formulas, make 
an abstraction: Notice that the tree contains, one level down, 
a near copy of itself. (In this problem, the abstraction gets 
reused within the same problem. In computer science, such a 
structure is called recursive.) For if the first player tosses tails, 

H
1/4 T

start

H
1/8 . . .

H
1/2 T

the second player starts the game in the position of the first 
player, with the same probability of winning. 
To benefit from this equivalence, let’s name the reusable idea, namely the 
probability of the first player’s winning, and call it 𝑝. The second player 
wins the game with probability 𝑝/2: The factor of 1/2 is the probability 
that the first player tosses tails; the factor of 𝑝 is the probability that the 
second player wins, given that the first player blew his chance by tossing 
tails on the first toss. 
Because either the first or the second player wins, the two winning proba-
bilities add to 1: 
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𝑝 + 𝑝/2 = 1. (2.6)⏟ ⏟ 
𝑃(first player wins) 𝑃(second player wins) 

The solution is 𝑝 = 2/3, as suggested by the 100-game simulation. The ben-
efit of the abstraction solution, compared to calculating the infinite proba-
bility sum explicitly, is insight. In the abstraction solution, the answer has 
to be what it is. It leaves almost nothing to remember. An amusing illustra-
tion of the same benefit comes from the problem of the fly that zooms back 
and forth between two approaching trains. 

If the fly starts when the trains are 60 miles apart, each train travels at 20 miles per 
hour, and the fly travels at 30 miles per hour, how far does the fly travel, in total, 
before meeting its maker when the trains collide? (Apologies that physics problems 
are often so violent.) 

Right after hearing the problem, John von Neumann, inventor of game the-
ory and the modern computer, gave the correct distance. “That was quick,” 
said a colleague. “Everyone else tries to sum the infinite series.” “What’s 
wrong with that?” said von Neumann. “That’s how I did it.” In Problem 2.7, 
you get to work out the infinite-series and the insightful solutions. 

Problem 2.4 Summing a geometric series using abstraction 

Use abstraction to find the sum of the infinite geometric series 

1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯. (2.7) 

Problem 2.5 Using the geometric-series sum 

Use Problem 2.4 to check that the probability of the first player’s winning is 2/3: 

𝑝 = 
1 
2 
+ 

1 
8 
+ 

1 
32 

+ ⋯ = 
2 
3 
. (2.8) 

Problem 2.6 Nested square roots 
Evaluate these infinite mixes of arithmetic and square roots: 

3 × 3 × 3 × 3 × ⋯ . (2.9) 

2 + 2 + 2 + 2 + ⋯ . (2.10) 

Problem 2.7 Two trains and a fly 
Find the insightful and the infinite-series solution to the problem of the fly and 
the approaching trains (Section 2.2). Check that they give the same answer for the 
distance that the fly travels! 
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Problem 2.8 Resistive ladder 
In the following infinite ladder of 1-ohm resistors, what is the resistance between 
points A and B? This measurement is indicated by the ohmmeter connected be-
tween these points. 

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

. . .

. . .

. . .

A

B

Ω

2.3 Purpose of abstraction 
The coin game (Section 2.2), like the geometric series (Problem 2.4) or the 
resistive ladder (Problem 2.8), contained a copy of itself. Noticing this reuse 
greatly simplified the analysis. Abstraction has a second benefit: giving 
us a high-level view of a problem or situation. Abstractions then show us 
structural similarities between seemingly disparate situations. 
As an example, let’s revisit the geometric mean, introduced in Section 1.6 

𝑎 and 𝑏 is defined as 
geometric mean ≡ 𝑎𝑏 

to make gut estimates. The geometric mean of two nonnegative quantities

. 

This mean is called the geometric mean because it has 

(2.11) 

a pleasing geometric construction. Divide the diameter
 
of a circle into two lengths, 𝑎 and 𝑏, and inscribe a right
 
triangle whose hypotenuse is the diameter. The triangle’s
 
altitude is the geometric mean of 𝑎 and 𝑏.
 

√
ab

a b

This mean reappears in surprising places, including the 
beach. When you stand at the shore and look at the horizon, you are seeing 
a geometric mean. The distance to the horizon is the geometric mean of 
two important lengths in the problem (Problem 2.9). 
For me, its most surprising appearance was in the “Programming and Prob-
lem-Solving Seminar” course taught by Donald Knuth [40] (who also cre-
ated TEX, the typesetting system for this book). The course, taught as a se-
ries of two-week problems, helped first-year PhD students transition from 
undergraduate homework problems to PhD research problems. A home-
work problem requires perhaps 1 hour. A research problem requires, say, 
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1000 hours: roughly a year of work, allowing for other projects. (A few prob-
lems stapled together become a PhD.) In the course, each 2-week module re-
quired about 30 hours—approximately the geometric mean of the two end-
points. The modules were just the right length to help us cross the bridge 
from homework to research. 

Problem 2.9 Horizon distance 
How far is the horizon when you are standing at the shore? Hint: It’s farther for 
an adult than for a child. 

Problem 2.10 Distance to a ship 

Standing at the shore, you see a ship (drawn to scale) with a 10-me-
ter mast sail into the distance and disappear from view. How far 
away was it when it disappeared? 

As further evidence that the geometric mean is a useful abstraction, the idea 
appears even when there is no geometric construction to produce it, such 
as in making gut estimates. We used this method in Section 1.6 to estimate 
the population density and then the population of the United States. Let’s 
practice by estimating the oil imports of the United States in barrels per 
year—without the divide-and-conquer reasoning of Section 1.4. 
The method requires that the gut supply a lower and an upper bound. My 
gut reports back that it would feel fairly surprised if the imports were less 
than 10 million barrels per year. On the upper end, my gut would be fairly 
surprised if the imports were higher than 1 trillion barrels per year—a bar-
rel is a lot of oil, and a trillion is a large number! 
You might wonder how your gut too can come up with such large numbers 
and how you can have any confidence in them. Admittedly, I have practiced 
a lot. But you can practice too. The key is the practice effectively. First, have 
the courage to guess even when you feel anxious about it (I feel this anxiety 
still, so I practice this courage often). Second, compare your guess to values 
in which you can place more confidence—for example, to your own more 
careful estimates or to official values. The comparison helps calibrate your 
gut (your right brain) to these large magnitudes. You will find a growing 
and justified confidence in your judgment of magnitude. 

estimates: 

10 million × 1 trillion 

My best guess for the amount is the geometric mean of the lower and upper 

barrels
year . (2.12) 
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The result is roughly 3 billion barrels per year—close to the our estimate 
using divide and conquer and close to the true value. In contrast, the arith-
metic mean would have produced an estimate of 500 billion barrels per year, 
which is far too high. 

Problem 2.11 Arithmetic-mean–geometric-mean inequality 
Use the geometric construction for the geometric mean to show that the arithmetic 
mean of 𝑎 and 𝑏 (assumed to be nonnegative) is always greater than or equal to 
their geometric mean. When are the means equal? 

Problem 2.12 Weighted geometric mean 

A generalization of the arithmetic mean of 𝑎 and 𝑏 as (𝑎 + 𝑏)/2 is to give 𝑎 and 
𝑏 unequal weights. What is the analogous generalization for a geometric mean? 
(The weighted geometric mean shows up in Problem 6.29 when you estimate the 
contact time of a ball bouncing from a table.) 

2.4 Analogies 
Because abstractions are so useful, it is helpful to have methods for making 
them. One way is to construct an analogy between two systems. Each com-
mon feature leads to an abstraction; each abstraction connects our knowl-
edge in one system to our knowledge in the other system. One piece of 
knowledge does double duty. Like a mental lever, analogy and, more gen-
erally, abstraction are intelligence amplifiers. 

2.4.1 Electrical–mechanical analogies 
An illustration with many abstractions on which we can practice is the anal-
ogy between a spring–mass system and an inductor–capacitor (𝐿𝐶) circuit. 

k
m ↔ 

L

C

Vin Vout

(2.13) 

In the circuit, the voltage source—the 𝑉in on its left side—supplies a cur-
rent that flows through the inductor (a wire wrapped around an iron rod) 
and capacitor (two metal plates separated by air). As current flows through 
the capacitor, it alters the charge on the capacitor. This “charge” is confus-
ingly named, because the net charge on the capacitor remains zero. Instead, 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

2.4 Analogies 37 

“charge” means that the two plates of the capacitor hold opposite charges,
𝑄 and −𝑄, with 𝑄 ≠ 0. The current changes 𝑄. The charges on the two 
plates create an electric field, which produces the output voltage 𝑉out equal 
to 𝑄/𝐶 (where 𝐶 is the capacitance). 
For most of us, the circuit is less familiar than the spring–mass system. 
However, by building an analogy between the systems, we transfer our un-
derstanding of the mechanical to the electrical system. 

tion, should be analogous to current (𝐼), the derivative of charge.
 
Let’s build more analogy bridges. The derivative of velocity, which is the
 
second derivative of position, is acceleration (𝑎). Therefore, the derivative
 
of current (𝑑𝐼/𝑑𝑡) is the analog of acceleration. This analogy will be useful
 
shortly when we find the circuit’s oscillation frequency.
 
These variables describe the state of the systems and how that state changes:
 
They are the kinematics. But without the causes of the motion—the dy-
namics—the systems remain lifeless. In the mechanical system, dynamics
 
results from force, which produces acceleration:
 

𝑎 = 𝑚
𝐹 . (2.14) 

Acceleration is analogous to change in current 𝑑𝐼/𝑑𝑡, which is produced by 
applying a voltage to the inductor. For an inductor, the governing relation 
(analogous to Ohm’s law for a resistor) is 

𝑑𝐼 𝑉= (2.15)𝑑𝑡 𝐿 
, 

where 𝐿 is the inductance, and 𝑉 is the voltage across the inductor. Based 
on the common structure of the two relations, force 𝐹 and voltage 𝑉 must 
be analogous. Indeed, they both measure effort: Force tries to accelerate 
the mass, and voltage tries to change the inductor current. Similarly, mass 
and inductance are analogous: Both measure resistance to the correspond-
ing effort. Large masses are hard to accelerate, and large-𝐿 inductors resist 
changes to their current. (A mass and an inductor, in another similarity, 
both represent kinetic energy: a mass through its motion, and an inductor 
through the kinetic energy of the electrons making its magnetic field.) 

In the mechanical system, the fundamental variable 
is the mass’s displacement 𝑥. In the electrical sys-
tem, it is the charge 𝑄 on the capacitor. These vari-
ables are analogous so their derivatives should also 
be analogous: Velocity (𝑣), the derivative of posi-

spring circuit 

variable 𝑥 𝑄 

1st derivative 𝑣 𝐼 
2nd derivative 𝑎 𝑑𝐼/𝑑𝑡 
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Turning from the mass–inductor analogy, let’s look at the spring–capacitor 
analogy. These components represent the potential energy in the system: 
in the spring through the energy in its compression or expansion, and in 
the capacitor through the electrostatic potential energy due to its charge. 

Force tries to stretch the spring but meets a resistance 𝑘 : The stiffer the 
spring (the larger its 𝑘), the harder it is to stretch. 

𝑥 = 
𝐹
𝑘 . (2.16) 

Analogously, voltage tries to charge the capacitor but meets a resistance
1/𝐶: The larger the value of 1/𝐶, the smaller the resulting charge. 

𝑉𝑄 = (2.17)1/𝐶 
. 

Based on the common structure of the relations for 𝑥 and 𝑄, spring constant 
𝑘 must be analogous to inverse capacitance 1/𝐶. Here are all our analogies. 

mechanical electrical 

kinematics 
fundamental variable 𝑥 𝑄 

first derivative 𝑣 𝐼 
second derivative 𝑎 𝑑𝐼/𝑑𝑡 

dynamics 
effort 𝐹 𝑉 

resistance to effort (kinetic component) 𝑚 𝐿 

resistance to effort (potential component) 𝑘 1/𝐶 

From this table, we can read off our key result. Start with the natural (an-
gular) frequency 𝜔 of a spring–mass system: 𝜔 = 𝑘/𝑚 . Then apply the 
analogies. Mass 𝑚 is analogous to inductance 𝐿. Spring constant 𝑘 is anal-
ogous to inverse capacitance 1/𝐶. Therefore, 𝜔 for the 𝐿𝐶 circuit is 1/ 𝐿𝐶 : 

𝜔 = 
1/𝐶
𝐿 

= 
1 
𝐿𝐶 

. (2.18) 

Because of the analogy bridges, one formula, the natural frequency of a 
spring–mass system, does double duty. More generally, whatever we learn 
about one system helps us understand the other system. Because of the 
analogies, each piece of knowledge does double duty. 
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2.4.2 Energy density in the gravitational field 
With the electrical–mechanical analogy as practice, let’s try a less famil-
iar analogy: between the electric and the gravitational field. In particular, 
we’ll connect the energy densities (energy per volume) in the correspond-
ing fields. An electric field 𝐸 represents an energy density of 𝜖0𝐸2/2, where 
𝜖0 is the permittivity of free space appearing in the electrostatic force be-
tween two charges 𝑞1 and 𝑞2: 

𝑞1𝑞2𝐹 = (2.19)
4𝜋𝜖0𝑟2 

. 

Because electrostatic and gravitational forces are both inverse-square forces 
(the force is proportional to 1/𝑟2), the energy densities should be analogous. 
Not least, there should be a gravitational energy density. But how is it re-
lated to the gravitational field? 

To answer that question, our first step is to find the gravitational analog of 
the electric field. Rather than thinking of the electric field only as something 
electric, focus on the common idea of a field. In that sense, the electric field 
is the object that, when multiplied by the charge, gives the force: 

force = charge × field. (2.20) 

We use words rather than the normal symbols, such as 𝐸 for field or 𝑞 for 
charge, because the symbols might bind our thinking to particular cases 
and prevent us from climbing the abstraction ladder. 

This verbal form prompts us to ask: What is gravitational charge? In elec-
trostatics, charge is the source of the field. In gravitation, the source of the 
field is mass. Therefore, gravitational charge is mass. Because field is force 
per charge, the gravitational field strength is an acceleration: 

force force gravitational field = = = acceleration. (2.21)charge mass 

Indeed, at the surface of the Earth, the field strength is 𝑔 , also called the 
acceleration due to gravity. 

The definition of gravitational field is the first half of the puzzle (we are 
using divide-and-conquer reasoning again). For the second half, we’ll use 
the field to compute the energy density. To do so, let’s revisit the route from 
electric field to electrostatic energy density: 

𝐸 → 
1
2𝜖0𝐸

2. (2.22) 
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With 𝑔 as the gravitational field, the analogous route is 

𝑔 → 
1
2 × something × 𝑔2, (2.23) 

where the “something” represents our ignorance of what to do about 𝜖0. 

What is the gravitational equivalent of 𝜖0? 

To find its equivalent, compare the simplest case in both worlds: the field 
of a point charge. A point electric charge 𝑞 produces a field 

1 𝑞
𝐸 = (2.24)4𝜋𝜖0 𝑟2

. 

A point gravitational charge 𝑚 (a point mass) produces a gravitational field 
(an acceleration) 

𝑔 = 
𝐺𝑚 

(2.25)
𝑟2 

, 

where 𝐺 is Newton’s constant. 

The gravitational field has a similar structure to the electric field. Both 
are inverse-square forces, as expected. Both are proportional to the charge. 
The difference is the constant of proportionality. For the electric field, it is
1/4𝜋𝜖0. For the gravitational field, it is simply 𝐺. Therefore, 𝐺 is analogous 
to 1/4𝜋𝜖0; equivalently, 𝜖0 is analogous to 1/4𝜋𝐺. 

Then the gravitational energy density becomes 

1 1 𝑔2 

2 × = (2.26)4𝜋𝐺 
× 𝑔2 

8𝜋𝐺 
. 

We will use this analogy in Section 9.3.3 when we transfer our hard-won 
knowledge of electromagnetic radiation to understand the even more subtle 
physics of gravitational radiation. 

Problem 2.13 Gravitational energy of the Sun 

What is the energy in the gravitational field of the Sun? (Just consider the field 
outside the Sun.) 

Problem 2.14 Pendulum period including buoyancy 
The period of a pendulum in vacuum is (for small amplitudes) 𝑇 = 2𝜋 𝑙/𝑔 , where 
𝑙 is the bob length and 𝑔 is the gravitational field strength. Now imagine the pen-
dulum swinging in a fluid (say, air). By replacing 𝑔 with a modified value, include 
the effect of buoyancy in the formula for the pendulum period. 
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Problem 2.15 Comparing field energies 
Find the ratio of electrical to gravitational field energies in the fields produced by 
a proton. 

2.4.3 Parallel combination 
Analogies not only reuse work, they help us rewrite expressions in compact, 
insightful forms. An example is the idea of parallel combination. It appears 
in the analysis of the infinite resistive ladder of Problem 2.8. 

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

1Ω

. . .

. . .

. . .

A

B

Ω

the ladder all over again

To find the resistance 𝑅 across the ladder (in other words, what the ohmme-
ter measures between the nodes A and B), you represent the entire ladder 
as a single resistor 𝑅. Then the whole ladder is 1 ohm in series with the 
parallel combination of 1 ohm and 𝑅: 

R = 

1Ω

1Ω R
(2.27) 

The next step in finding 𝑅 usually invokes the parallel-resistance formula: 
that the resistance of 𝑅1 and 𝑅2 in parallel is 

𝑅1𝑅2 . (2.28)𝑅1 + 𝑅2 

For our resistive ladder, the parallel combination of 1 ohm with the ladder 
is 1 ohm × 𝑅/(1 ohm + 𝑅). Placing this combination in series with 1 ohm 
gives a resistance 

1Ω + 
1Ω × 𝑅 

(2.29)1Ω + 𝑅 
. 

This recursive construction reproduces the ladder, only one unit longer. We 
therefore get an equation for 𝑅: 

𝑅 = 1Ω+ 
1Ω × 𝑅 

(2.30)1Ω + 𝑅 
. 
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⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ = (2.34) 

2 Abstraction 

The (positive) solution is 5𝑅 = (1 + 

1-ohm resistors, offers a resistance of 𝜙 ohms. 

)/2 ohms. The numerical part is the 
golden ratio 𝜙 (approximately 1.618). Thus, the ladder, when built with 

Although the solution is correct, it skips over a reusable idea: the parallel 
combination. To facilitate its reuse, let’s name the idea with a notation: 

𝑅1 ∥ 𝑅2. (2.31) 

This notation is self-documenting, as long as you recognize the symbol ∥ 
to mean “parallel,” a recognition promoted by the parallel bars. A good 
notation should help thinking, not hinder it by requiring us to remember 
how the notation works. With this notation, the equation for the ladder 
resistance 𝑅 is 

𝑅 = 1Ω + 1Ω ∥ 𝑅 (2.32) 

(the parallel-combination operator has higher priority than—is computed 
before—the addition). This expression more plainly reflects the structure 
of the system, and our reasoning about it, than does the version 

𝑅 = 1Ω+ 
1Ω × 𝑅 

(2.33)1Ω + 𝑅 
. 

The ∥ notation organizes the complexity. 
Once you name an idea, you find it everywhere. As a child, after my family 
bought a Volvo, I saw Volvos on every street. Similarly, we’ll now look at 
examples of parallel combination far beyond the original appearance of the 
idea in circuits. For example, it gives the spring constant of two connected 
springs (Problem 2.16): 

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝑘1 𝑘2 𝑘1∥ 𝑘2 

Problem 2.16 Springs as capacitors 
Using the analogy between springs and capacitors (discussed in Section 2.4.1), ex-
plain why springs in series combine using the parallel combination of their spring 
constants. 

Another surprising example is the following spring–mass system with two 
masses: 

m M
k
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The natural frequency 𝜔, expressed without our ∥ abstraction, is 

𝜔 = 
𝑘(𝑚 + 𝑀). (2.35)𝑚𝑀 

This form looks complicated until we use the ∥ abstraction: 
𝑘𝜔 = (2.36)𝑚 ∥ 𝑀 

. 

Now the frequency makes more sense. The two masses act like their parallel 
combination 𝑚 ∥ 𝑀: 

m ‖M
k

The replacement mass 𝑚 ∥ 𝑀 is so useful that it has a special name: the re-
duced mass. Our abstraction organizes complexity by turning a three-com-
ponent system (a spring and two masses) into a simpler two-component 
system. 

In the spirit of notation that promotes insight, use lowercase (“small”) 𝑚 for 
the mass that is probably smaller, and uppercase (“big”) 𝑀 for the mass that 
is probably larger. Then write 𝑚 ∥ 𝑀 rather than 𝑀 ∥ 𝑚. These two forms 
produce the same result, but the 𝑚 ∥ 𝑀 order minimizes surprise: The 
parallel combination of 𝑚 and 𝑀 is smaller than either mass (Problem 2.17), 
so it is closer to 𝑚, the smaller mass, than to 𝑀. Writing 𝑚 ∥ 𝑀, rather than 
𝑀 ∥ 𝑚, places the most salient information first. 

The answer lies in the analogy between mass and resistance. Resistance 
appears in Ohm’s law: 

voltage = resistance × current. (2.37) 

Voltage is an effort. Current, which results from the effort, is a flow. There-
fore, the more general form—one step higher on the abstraction ladder—is 

effort = resistance × flow. (2.38) 

In this form, Newton’s second law, 

Problem 2.17 Using the resistance analogy 
By using the analogy with parallel resistances, explain why 𝑚 ∥ 𝑀 is smaller than 
𝑚 and 𝑀. 

Why do the two masses combine like resistors in parallel? 
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force = mass × acceleration, (2.39) 

identifies force as the effort, mass as the resistance, and acceleration as the 
flow. 

Because the spring can wiggle either mass, just as current can flow through 
either of two parallel resistors, the spring feels a resistance equal to the par-
allel combination of the resistances—namely, 𝑚 ∥ 𝑀. 

Problem 2.18 Three springs connected 

What is the effective spring constant of three springs connected in a line, with 
spring constants 2, 3, and 6 newtons per meter, respectively? 

2.4.4 Impedance as a higher-level abstraction 
Resistance, in the electrical sense, has appeared several times, and it under-
lies a higher-level abstraction: impedance. Impedance extends the idea of 
electrical resistance to capacitors and inductors. Capacitors and inductors, 
along with resistors, are the three linear circuit elements: In these elements, 
the connection between current and voltage is described by a linear equa-
tion: For resistors, it is a linear algebraic relation (Ohm’s law); for capacitors 
or inductors, it is a linear differential equation. 

Why should we extend the idea of resistance? 

Resistors are easy to handle. When a circuit contains only resistors, we can 
immediately and completely describe how it behaves. In particular, we can 
write the voltage at any point in the circuit as a linear combination of the 
voltages at the source nodes. If only we could do the same when the circuit 
contains capacitors and inductors. 

We can! Start with Ohm’s law,
 
voltage
 

current = (2.40)resistance ,
 

and look at it in the higher-level and expanded form
 

1flow = × effort. (2.41)resistance 
For a capacitor, flow will still be current. But we’ll need to find the capac-
itive analog of effort. This analogy will turn out slightly different from 
the electrical–mechanical analogy between capacitance and spring constant 
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(Section 2.4.1), because now we are making an analogy between capacitors 
and resistors (and, eventually, inductors). For a capacitor, 

charge = capacitance × voltage. (2.42) 

To turn charge into current, we differentiate both sides to get 
𝑑(voltage)

current = capacitance × . (2.43)𝑑𝑡 
To make the analogy quantitative, let’s apply to the capacitor the sim-
plest voltage whose form is not altered by differentiation: 

𝑉 = 𝑉0 𝑒𝑗𝜔𝑡, (2.44) 

V
I
C

where 𝑉 is the input voltage, 
−1is the imaginary unit 
is the amplitude, 0𝑉 𝜔 is the angular fre-

quency, and 𝑗 . The voltage 𝑉 is a complex num-
ber; but the implicit understanding is that the actual voltage is the real part 
of this complex number. By finding how the current 𝐼 (the flow) depends 
on 𝑉 (the effort), we will extend the idea of resistance to a capacitor. 

With this exponential form, how can we represent the more familiar oscillating 
voltages 𝑉1 cos 𝜔𝑡 or 𝑉1 sin 𝜔𝑡, where 𝑉1 is a real voltage? 

Start with Euler’s relation: 

𝑒𝑗𝜔𝑡 = cos𝜔𝑡 + 𝑗 sin𝜔𝑡. (2.45) 

To make 𝑉1 cos 𝜔𝑡, set 𝑉0 = 𝑉1 in 𝑉 = 𝑉0 𝑒𝑗𝜔𝑡. Then 

𝑉 = 𝑉1(cos 𝜔𝑡 + 𝑗 sin 𝜔𝑡). (2.46) 

and the real part of 𝑉 is just 𝑉1 cos 𝜔𝑡. 

Making 𝑉1 sin 𝜔𝑡 is more tricky. Choosing 𝑉0 = 𝑗𝑉1 almost works: 

𝑉 = 𝑗𝑉1(cos 𝜔𝑡 + 𝑗 sin 𝜔𝑡) = 𝑉1(𝑗 cos 𝜔𝑡 − sin 𝜔𝑡). (2.47) 

The real part is −𝑉1 sin 𝜔𝑡, which is correct except for the minus sign. Thus, 
the correct amplitude is 𝑉0 = −𝑗𝑉1. In summary, our exponential form can 
compactly represent the more familiar sine and cosine signals. 

With this exponential form, differentiation is simpler than with sines or 
cosines. Differentiating 𝑉 with respect to time just brings down a factor of 
𝑗𝜔, but otherwise leaves the 𝑉0 𝑒𝑗𝜔𝑡 alone: 

𝑑𝑉 
𝑑𝑡 = 𝑗𝜔 × 𝑉0 𝑒𝑗𝜔𝑡 = 𝑗𝜔𝑉. (2.48)⏟ 

𝑉 
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With this changing voltage, the capacitor equation, 
𝑑(voltage)

current = capacitance × , (2.49)𝑑𝑡 
becomes 
current = capacitance × 𝑗𝜔 × voltage. (2.50) 

Let’s compare this form to its analog for a resistor (Ohm’s law): 
1current = × voltage. (2.51)resistance 

Matching up the pieces, we find that a capacitor offers a resistance 
1𝑍𝐶 = (2.52)𝑗𝜔𝐶 

. 

This more general resistance, which depends on the frequency, is called im-
pedance and denoted 𝑍. (In the analogy of Section 2.4.1 between capacitors 
and springs, we found that capacitor offered a resistance to being charged of
1/𝐶. Impedance, the result of an analogy between capacitors and resistors, 
contains 1/𝐶 as well, but also contains the frequency in the 1/𝑗𝜔 factor.) 
Using impedance, we can describe what happens to any sinusoidal signal 
in a circuit containing capacitors. Our thinking is aided by the compact 
notation—the capacitive impedance 𝑍𝐶 (or even 𝑅𝐶). The notation hides 
the details of the capacitor differential equation and allows us to transfer 
our intuition about resistance and flow to a broader class of circuits. 
The simplest circuit with resistors and capacitors is the 
so-called low-pass 𝑅𝐶 circuit. Not only is it the sim-
plest interesting circuit, it will also be, thanks to fur-
ther analogies, a model for heat flow. Let’s apply the 

R

C

Vin Vout

ground
impedance analogy to this circuit.
 
To help us make and use abstractions, let’s imagine defocusing our 
eyes. Under blurry vision, the capacitor looks like a resistor that just 
happens to have a funny resistance 𝑅𝐶 = 1/𝑗𝜔𝐶. Now the entire cir-
cuit looks just like a pure-resistance circuit. Indeed, it is the simplest 
such circuit, a voltage divider. Its behavior is described by one num-
ber: the gain, which is the ratio of output to input voltage 𝑉out/𝑉in. 
In the 𝑅𝐶 circuit, thought of as a voltage divider, 

R

RC

Vout

Vin

ground

capacitive resistance 𝑅𝐶gain = = . (2.53)total resistance from 𝑉in to ground 𝑅 + 𝑅𝐶 
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Because 𝑅𝐶 = 1/𝑗𝜔𝐶, the gain becomes 
1
 

𝑗𝜔𝐶
 gain = . (2.54)1𝑅 + 𝑗𝜔𝐶 

After clearing the fractions by multiplying by 𝑗𝜔𝐶 in the numerator and 
denominator, the gain simplifies to 

1gain = (2.55)1 + 𝑗𝜔𝑅𝐶 
. 

Why is the circuit called a low-pass circuit? 

At high frequencies (𝜔 → ∞), the 𝑗𝜔𝑅𝐶 term in the denominator makes 
the gain zero. At low frequencies (𝜔 → 0), the 𝑗𝜔𝑅𝐶 term disappears and 
the gain is 1. High-frequency signals are attenuated by the circuit; low-fre-
quency signals pass through mostly unchanged. This abstract, high-level 
description of the circuit helps us understand the circuit without our get-
ting buried in equations. Soon we will transfer our understanding of this 
circuit to thermal systems. 
The gain contains the circuit parameters as the product 𝑅𝐶. In the denom-
inator of the gain, 𝑗𝜔𝑅𝐶 is added to 1; therefore, 𝑗𝜔𝑅𝐶, like 1, must have 
no dimensions. Because 𝑗 is dimensionless (is a pure number), 𝜔𝑅𝐶 must 
be itself dimensionless. Therefore, the product 𝑅𝐶 has dimensions of time. 
This product is the circuit’s time constant—usually denoted 𝜏 . 
The time constant has two physical interpretations. To construct them, we 
imagine charging the capacitor using a constant input voltage 𝑉0; eventu-
ally (after an infinite time), the capacitor charges up to the input voltage 
(𝑉out = 𝑉0) and holds a charge 𝑄 = 𝐶𝑉0. Then, at 𝑡 = 0, we make the input 
voltage zero by connecting the input to ground. 

R

CV0

Vout

ground

R

C

Vout

ground

𝑡 < 0 𝑡 ≥ 0 

The capacitor discharges through the resistor, and its voltage decays expo-
nentially: 
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V0

ground (V = 0)

V0/e

t = 0

t = τ

τ

Vout

After one time constant 𝜏 , the capacitor voltage falls by a factor of 𝑒 toward 
its final value—here, from 𝑉0 to 𝑉0/𝑒. The 1/𝑒 time is our first interpretation 
of the time constant. Furthermore, if the capacitor voltage had decayed at 
its initial rate (just after 𝑡 = 0), it would have reached zero voltage after one 
time constant 𝜏 —the second interpretation of the time constant. 
The time-constant abstraction hides—abstracts away—the details that pro-
duced it: here, electrical resistance and capacitance. Nonelectrical systems 
can also have a time constant but produce it by a different mechanism. 
Our high-level understanding of time constants, because it is not limited 
to electrical systems, will help us transfer our understanding of the electri-
cal low-pass filter to nonelectrical systems. In particular, we are now ready 
to understand heat flow in thermal systems. 

Problem 2.19 Impedance of an inductor 
An inductor has the voltage–current relation 

𝑉 = 𝐿 
𝑑𝐼 

(2.56)𝑑𝑡 , 

where 𝐿 is the inductance. Find an inductor’s frequency-dependent impedance 
𝑍𝐿. After finding this impedance, you can analyze any linear circuit as if it were 
composed only of resistors. 

2.4.5 Thermal systems 
The 𝑅𝐶 circuit is a model for thermal systems—which are not obviously 
connected to circuits. In a thermal system, temperature difference, the ana-
log of voltage difference, produces a current of energy. Energy current, in 
less fancy words, is heat flow. Furthermore, the current is proportional to 
the temperature difference—just as electric current is proportional to volt-
age difference. In both systems, flow is proportional to effort. Therefore, 
heat flow can be understood by using circuit analogies. 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

2.4 Analogies 49 

As an example, I often prepare a cup of tea but forget to 
drink it while it is hot. Like a discharging capacitor, the 
tea slowly cools toward room temperature and becomes 
undrinkable. Heat flows out through the mug. Its walls 
provide a thermal resistance; by analogy to an 𝑅𝐶 cir-
cuit, let’s denote the thermal resistance 𝑅t. The heat is 

walls

Rt

Ct
mug and
tea

Ttea

Troom

stored in the water and mug, which form a heat reservoir. This reservoir, 
of heat rather than of charge, provides the thermal capacitance, which we 
denote 𝐶t. (Thus, the mug participates in the thermal resistance and capac-
itance.) Resistance and capacitance are transferable ideas. 

The product 𝑅t𝐶t is, by analogy to the 𝑅𝐶 circuit, the thermal time con-
stant 𝜏 . To estimate 𝜏 with a home experiment (the method we used in 
Section 1.7), heat up a mug of tea; as it cools, sketch the temperature gap 
between the tea and room temperature. In my extensive experience of tea 
neglect, an enjoyably hot cup of tea becomes lukewarm in half an hour. To 
quantify these temperatures, enjoyably warm may be 130 ∘F (≈ 55 ∘C), room 
temperature is 70 ∘F (≈ 20 ∘C), and lukewarm may be 85 ∘F (≈ 30 ∘C). 

130 ◦F (hot tea)

70 ◦F (room temperature)

85 ◦F (lukewarm)

0.5 hr

t = 0

Based on the preceding data, what is the approximate thermal time constant of the 
mug of tea? 

In one thermal time constant, the temperature gap falls by a factor of 𝑒 (just 
as the voltage gap falls by a factor of 𝑒 in one electrical time constant). For 
my mug of tea, the temperature gap between the tea and the room started 
at 60 ∘F: 

enjoyably warm − room temperature = 60 ∘F. (2.57)⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
130 ∘F 70 ∘F 

In the half hour while the tea cooled in the microwave, the temperature gap 
fell to 15 ∘F: 
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lukewarm − room temperature = 15 ∘F. (2.58)⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
85 ∘F 70 ∘F 

Therefore, the temperature gap decreased by a factor of 4 in half an hour. 
Falling by the canonical factor of 𝑒 (roughly 2.72) would require less time: 
perhaps 0.3 hours (roughly 20 minutes) instead of 0.5 hours. A more pre-
cise calculation would be to divide 0.5 hours by ln 4, which gives 0.36 hours. 
However, there is little point doing this part of the calculation so precisely 
when the input data are far less precise. Therefore, let’s estimate the ther-
mal time constant 𝜏 as roughly 0.3 hours. 

Using this estimate, we can understand what happens to the tea mug when, 
as it often does, it spends a lonely few days in the microwave, subject to the 
daily variations in room temperature. This analysis will become our model 
for the daily temperature variations in a house. 

How does a teacup with 𝜏 ≈ 0.3 hours respond to daily temperature variations? 

First, set up the circuit analogy. The output signal is 
still the tea’s temperature. The input signal is the (si-
nusoidally) varying room temperature. However, 
the ground signal, which is our reference tempera-
ture, cannot also be the room temperature. Instead, 
we need a constant reference temperature. The sim-
plest choice is the average room temperature 𝑇avg. (After we have trans-
ferred this analysis to the temperature variation in houses, we’ll see that 
the conclusion is the same even with a different reference temperature.) 

walls

Rt

mug and
tea

Ct

Troom Ttea

Tavg

The gain connects the amplitudes of the output and input signals: 
amplitude of the output signal 1gain = = (2.59)amplitude of the input signal 1 + 𝑗𝜔𝜏 

. 

The input signal (room temperature) varies with a frequency 𝑓 of 1 cycle 
per day. Then the dimensionless parameter 𝜔𝜏 in the gain is roughly 0.1. 
Here is that calculation: 

𝑓
 
⏞⏞⏞⏞⏞
 
1 
cycle 1 day 

2𝜋 × × 0.3 hr × ≈ 0.1. (2.60)day 24 hr⏟⏟⏟⏟⏟⏟⏟ ⏟ ⏟ 
𝜔 𝜏 1 

The system is driven by a low-frequency signal: 𝜔 is not large enough to
 
make 𝜔𝜏 comparable to 1. As the gain expression reminds us, the mug of
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tea is a low-pass filter for temperature variations. It transmits this low-fre-
quency input temperature signal almost unchanged to the output—to the 
tea temperature. Therefore, the inside (tea) temperature almost exactly fol-
lows the outside (room) temperature. 

The opposite extreme is a house. Compared to 
the mug, a house has a much higher mass and 
therefore thermal capacitance. The resulting time 
constant 𝜏 = 𝑅t𝐶t is probably much longer for a 
house than for the mug. As an example, when 
I taught in sunny Cape Town, where houses are 
often unheated even in winter, the mildly insulated house where I stayed 
had a thermal time constant of approximately 0.5 days. 

walls

house

Toutside Tinside

Tavg

For this house the dimensionless parameter 𝜔𝜏 is much larger than it was 
for the tea mug. Here is the corresponding calculation. 

𝑓
 
⏞⏞⏞⏞⏞
 
1 
cycle 

2𝜋 × × 0.5 days ≈ 3. (2.61)day ⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ 
𝜔 𝜏 

What consequence does 𝜔𝜏 ≈ 3 have for the indoor temperature? 

In the Cape Town winter, the outside temperature varied daily between
45 ∘F and 75 ∘F; let’s also assume that it varied approximately sinusoidally. 
This 30 ∘F peak-to-peak variation, after passing through the house low-pass 
filter, shrinks by a factor of approximately 3. Here is how to find that factor 
by estimating the magnitude of the gain. 

amplitude of 𝑇inside 1∣gain∣ = ∣ ∣ = ∣ ∣ . (2.62)amplitude of 𝑇outside 1 + 𝑗𝜔𝜏 

1 + 3𝑗 12 + 32 

1 1∣gain∣ ≈ ∣ ∣ = ≈ 1
3. (2.63) 

(It is slightly confusing that the outside temperature is the input signal, and 
the inside temperature is the output signal!) Now plug in 𝜔𝜏 ≈ 3 to get 

In general, when 𝜔𝜏 ≫ 1, the magnitude of the gain is approximately 1/𝜔𝜏 . 

Therefore, the outside peak-to-peak variation of 30 ∘F becomes a smaller 
inside peak-to-peak variation of 10 ∘F. Here is a block diagram showing 
this effect of the house low-pass filter. 
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30 ◦F
house as a

low-pass filter 10 ◦F (2.64) 

Our comfort depends not only on the temperature variation (I like a fairly 
steady temperature), but also on the average temperature. 

What is the average temperature indoors? 

It turns out that the average temperature indoors is equal to the average 
temperature outdoors! To see why, let’s think carefully about the reference 
temperature (our thermal analog of ground). Before, in the analysis of the 
forgotten tea mug, our reference temperature was the average indoor tem-
perature. Because we are now trying to determine this value, let’s instead 
use a known convenient reference temperature—for example, the cool 10 ∘C, 
which makes for round numbers in Celsius or Fahrenheit (50 ∘F). 
The input signal (the outside temperature) varied in winter between 45 ∘F 
and 75 ∘F. Therefore, it has two pieces: (1) our usual varying signal with 
the 30 ∘F peak-to-peak variation, and (2) a steady signal of 10 ∘F. 

75 ◦F

60 ◦F

45 ◦F⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

= 

15 ◦F

−15 ◦F

0 ◦F

⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

+ 

60 ◦F

50 ◦F
(reference temp.)

10 ◦F

⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

(2.65) 

full signal varying piece steady piece 

The steady signal is the difference between the average outside temperature 
of 60 ∘F and the reference signal of 50 ∘F. 
Let’s handle each piece in turn—we are using divide-and-conquer reason-
ing again. We just analyzed the varying piece: It passes through the house 
low-pass filter and, with 𝜔𝜏 ≈ 3, it shrinks significantly in amplitude. In 
contrast, the nonvarying part, which is the average outside temperature, 
has zero frequency by definition. Therefore, its dimensionless parameter
𝜔𝜏 is exactly 0. This signal passes through the house low-pass filter with a 
gain of 1. As a result, the average output signal (the inside temperature) is 
also 60 ∘F: the same steady 10 ∘F signal measured relative to the reference 
temperature of 50 ∘F. 
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The 10 ∘F peak-to-peak inside-temperature amplitude is a variation around 
60 ∘F. Therefore, the inside temperature varies between 55 ∘F and 65 ∘F 
(13 ∘C to 18 ∘C). Indoors, when I am not often running or otherwise gener-
ating much heat, I feel comfortable at 68 ∘F (20 ∘C). So, as this circuit model 
of heat flow predicts, I wore a sweater day and night in the Cape Town 
house. (For more on using 𝑅𝐶 circuit analogies for building design, see the 
“Design masterclass” article by Doug King [30].) 

Problem 2.20 When is the house coldest? 
Based on the general form for the gain, 1/(1 + 𝑗𝜔𝜏), when in the day will the Cape 
Town house be the coldest, assuming that the outside is coldest at midnight? 

2.5 Summary and further problems 
Geometric means, impedances, low-pass filters—these ideas are all abstrac-
tions. An abstraction connects seemingly random details into a higher-level 
structure that allows us to transfer knowledge and insights. By building ab-
stractions, we amplify our intelligence. 

Indeed, each of our reasoning tools is an abstraction or reusable idea. In 
Chapter 1, for example, we learned how to split hard problems into tractable 
ones, and we named this process divide-and-conquer reasoning. Don’t 
stop with this one process. Whenever you reuse an idea, identify the trans-
ferable process, and name it: Make an abstraction. With a name, you will 
recognize and reuse it. 

Problem 2.21 From circles to spheres 
In this problem, you first find the area of a circle from its circumference and then 
use analogous reasoning to find the volume of a sphere. 

a. Divide a circle of radius 𝑟 into pie wedges. Then snip and unroll the circle: 

→ 

b b · · · b

r
(2.66) 

Use the unrolled picture and the knowledge that the circle’s circumference is
2𝜋𝑟 to show that its area is 𝜋𝑟2. 

b. Now extend the argument to a sphere of radius 𝑟: Find its volume given that 
its surface area is 4𝜋𝑟2. (This method was invented by the ancient Greeks.) 
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Problem 2.22 Gain of an LRC circuit 
L C

R

Vin Vout

ground

Use the impedance of an inductor (Problem 2.19) to 
find the gain of the classic 𝐿𝑅𝐶 circuit. In this con-
figuration, in which the output voltage measured 
across the resistor, is the circuit a low-pass filter, a 
high-pass filter, or a band-pass filter? 

Problem 2.23 Continued fraction 

Evaluate the continued fraction 

1 + 
1 

1 + 1 
1+… 

. (2.67) 

Compare this problem with Problem 2.8. 

Problem 2.24 Exponent tower 
Evaluate 

2 2 2 ⋅
⋅⋅ 

. (2.68) 

Here, 𝑎𝑏𝑐 means 𝑎(𝑏𝑐). 

Problem 2.25 Coaxial cable termination 

In physics and electronics laboratories around the world, the favorite way to con-
nect equipment and transmit signals is with coaxial cable. The standard coaxial 
cable, RG-58/U, has a capacitance per length of 100 picofarads per meter and an 
inductance per length of 0.29 microhenries per meter. It can be modeled as a long 
inductor–capacitor ladder: 

L

C

L

C

L

C

L

C. . .

What resistance 𝑅 placed at the end (in parallel with the last capacitor) makes the 
cable look like an infinitely long 𝐿𝐶 cable? 

Problem 2.26 UNIX and Linux 
Using Mike Gancarz’s The UNIX Philosophy [17] and Linux and the Unix Philoso-
phy [18], find examples of abstraction in the design and philosophy of the UNIX 
and Linux operating systems. 
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Discarding complexity 
without losing information 

You’ve divided your hard problems into manageable pieces. You’ve found 
transferable, reusable ideas. When these tools are not enough and prob-
lems are still too complex, you need to discard complexity—the theme of 
our next three tools. They help us discard complexity without losing in-
formation. If a system contains a symmetry (Chapter 3)—or what is closely 
related, it is subject to a conservation law—using the symmetry greatly sim-
plifies the analysis. Alternatively, we often do not care about a part of an 
analysis, because it is the same for all the objects in the analysis. To ig-
nore those parts, we use proportional reasoning (Chapter 4). Finally, we 
can ensure that our equations do not add apples to oranges. This simple 
idea—dimensional analysis (Chapter 5)—greatly shrinks the space of pos-
sible solutions and helps us master complexity. 

without losing information
Part II

losing information
Part III

proportional
reasoning

4

symmetry and
conservation

3

dimensional
analysis

5

to master complexity

6 7 8 9

organize it
Part I discard it

21
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The rain is pouring down and shelter is a few hundred yards away. Do you 
get less wet by running? On the one hand, running means less time for 
raindrops to hit you. On the other hand, running means that the raindrops 
come toward you more directly and therefore more rapidly. The resolution 
is not obvious—until you apply the new tool of this chapter: symmetry and 
conservation. (In Section 3.1.1, we’ll resolve this run-in-the-rain question.) 

3.1 Invariants 
We use symmetry and conservation whenever we find a quantity that, de-
spite the surrounding complexity, does not change. This conserved quan-
tity is called an invariant. Finding invariants simplifies many problems. 
Our first invariant appeared unannounced in Section 1.2 when we estimated 
the carrying capacity of a lane of highway. The carrying capacity—the rate 
at which cars flow down the lane—depends on the separation between the 
cars and on their speed. We could have tried to estimate each quantity and 
then the carrying capacity. However, the separation between cars and the 
cars’ speeds vary greatly, so these estimates are hard to make reliably. 
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Instead, we invoked the 2-second following rule. As long as drivers obey it, 
the separation between cars equals 2 seconds of driving. Therefore, one car 
flows by every 2 seconds—which is the lane’s carrying capacity (in cars per 
time). By finding an invariant, we simplified a complex, changing process. 
When there is change, look for what does not change! (This wisdom is from 
Arthur Engel’s Problem-Solving Strategies [12].) 

3.1.1 To run or walk in the rain? 
We’ll practice with this tool by deciding whether to run or walk in the rain. 
It’s pouring, your umbrella is sitting at home, and home lies a few hundred 
meters away. 

To minimize how wet you become, should you run or walk? 

Let’s answer this question with three simplifica-
tions. First, assume that there is no wind, so the 
rain is falling vertically. Second, assume that the 
rain is steady. Third, assume that you are a thin 
sheet: You have zero thickness along the direc-
tion toward your house (this approximation was 

raindrops

you

homev

more valid in my youth). Equivalently, your head is protected by a water-
proof cap, so you do not care whether raindrops hit your head. You try to 
minimize just the amount of water hitting your front. 
Your only degree of freedom—the only parameter that you get to choose—is 
your speed. A high speed leaves you in the rain for less time. However, it 
also makes the rain come at you more directly (more horizontally). But 
what remains constant, independent of your speed, is the volume of air 
that you sweep out. Because the rain is steady, that volume contains a fixed 
number of raindrops, independent of your speed. Only these raindrops hit 
your front. Therefore, you get equally wet, no matter your speed. 
This surprising conclusion is another application of the principle that when 
there is change, look for what does not change. Here, we could change our 
speed by choosing to walk or run. Yet no matter what our speed, we sweep 
out the same volume of air—our invariant. 
Because the conclusion of this invariance analysis, that it makes no differ-
ence whether you walk or run, is surprising, you might still harbor a nag-
ging doubt. Surely running in the rain, which we do almost as a reflex, 
provide some advantage over a leisurely stroll. 
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Is it irrational to run to avoid getting wet? 

If you are infinitely thin, and are just a rectangle moving in the rain, then 
the preceding analysis applies: Whether you run or walk, your front will 
absorb the same number of raindrops. But most of us have a thickness, and 
the number of drops landing on our head depends on our speed. If your 
head is exposed and you care how many drops land on your head, then you 
should run. But if your head is covered, feel free to save your energy and 
enjoy the stroll. Running won’t keep you any dryer. 

3.1.2 Tiling a mouse-eaten chessboard 
Often a good way to practice a new tool is on a mathematical problem. Then 
we do not add the complexity of the physical world to the problem of learn-
ing a new tool. Here, therefore, is a mathematical problem: a solitaire game. 

A mouse comes and eats two diagonally opposite corners out 
of a standard, 8 × 8 chessboard. We have a box of rectangular, 
2 × 1 dominoes. 

Can these dominoes tile the mouse-eaten chessboard? In other words, 
can we lay down the dominoes to cover every square exactly once 
(with no empty squares and no overlapping dominoes)? 

Placing a domino on the board is one move in this solitaire 
game. For each move, you choose where to place the domino—so you have 
many choices at each move. The number of possible move sequences grows 
rapidly. Instead of examining all these sequences, we’ll look for an invari-
ant: a quantity unchanged by any move of the game. 

Because each domino covers one white square and one black square, the 
following quantity 𝐼 is invariant (remains fixed): 

𝐼 = uncovered black squares − uncovered white squares. (3.1) 

On a regular chess board, with 32 white squares and 32 black squares, the 
initial position has 𝐼 = 0. The nibbled board has two fewer black squares, 
so 𝐼 starts at 30− 32 = −2. In the winning position, all squares are covered, 
so 𝐼 = 0. Because 𝐼 is invariant, we cannot win: The dominoes cannot tile 
the nibbled board. 

Each move in this game changes the chessboard. By finding what does not 
change, an invariant, we simplified the analysis. 
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Invariants are powerful partly because they are abstractions. The details of 
the empty squares—their exact locations—lie below the abstraction barrier. 
Above the barrier, we see only the excess of black over white squares. The 
abstraction contains all the information we need in order to know that we 
can never tile the chessboard. 

Problem 3.1 Cube solitaire 
A cube has numbers at each vertex; all vertices start at 0 except
 
for the lower left corner, which starts at 1. The moves are all of
 
the same form: Pick any edge and increment its two vertices
 
by one. The goal of this solitaire game is to make all vertices
 
multiples of 3.
 

For example, picking the bottom edge of the front face and 
then the bottom edge of the back face, makes the following 
sequence of cube configurations: 

⟶ ⟶ (3.2) 

Although no configuration above wins the game, can you win with a different 
move sequence? If you can win, give a winning sequence. If you cannot win, prove 
that you cannot. 

Hint: Create analogous but simpler versions of this game. 

Problem 3.2 Triplet solitaire 
Here is another solitaire game. Start with the triplet (3, 4, 5). At each move, choose 
any two of the three numbers. Call the choices 𝑎 and 𝑏. Then make the following 
replacements: 

𝑎 ⟶ 0.8𝑎 − 0.6𝑏; 
(3.3)

𝑏 ⟶ 0.6𝑎 + 0.8𝑏. 

Can you reach (4, 4, 4)? If you can, give a move sequence; otherwise, prove that it 
is impossible. 

Problem 3.3 Triplet-solitaire moves as rotations in space 
At each step in triplet solitaire (Problem 3.2), there are three possible moves, de-
pending on which pair of numbers from among 𝑎, 𝑏, and 𝑐 you choose to replace. 
Describe each of the three moves as a rotation in space. That is, for each move, give 
the rotation axis and the angle of rotation. 
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Problem 3.4 Conical pendulum 

θ

Finding the period of a pendulum, even at small amplitudes, 
requires calculus because of the pendulum’s varying speed. 
When there is change, look for what does not change. Accord-
ingly, Christiaan Huygens (1629–1695), called “the most inge-
nious watchmaker of all time” [20, p. 79] by the great physi-
cist Arnold Sommerfeld, analyzed the motion of a pendulum 
moving in a horizontal circle (a conical pendulum). Project-
ing its two-dimensional motion onto a vertical screen produces 
one-dimensional pendulum motion; thus, the period of the 
two-dimensional motion is the same as the period of one-dimensional pendulum 
motion! Use that idea to find the period of a pendulum (without calculus!). 

3.1.3 Logarithmic scales 
In the solitaire game in Section 3.1.2, a move covered low end of hearing 20 Hz 
two chessboard squares with a domino. In the game piano middle C 262 Hz 
of understanding the world, a frequent move is chang- highest piano C 4186 Hz 
ing the system of units. As in solitaire, ask, “When high end of hearing 20 kHz 
such a move is made, what is invariant?” As an exam-
ple to crystallize our thinking, here are frequencies related to human hear-
ing. Let’s graph them using kilohertz (kHz) as the unit. The frequencies 
then arrange themselves as follows: 

0 10 20
kHz

low end

middle C

high C high end

Now let’s change units from kilohertz to hertz (Hz)—and keep the 0, 10, and 
20 labels at their current positions on the page. This change magnifies every 
spacing by a factor of 1000: The new 20 hertz is where 20 kilohertz was 
(about 4 inches or 10 centimeters to the right of the origin), and 20 kilohertz, 
the high end of human hearing, sits 100 meters to our right—far beyond the 
borders of the page. This new scale is not very useful. 

However, we missed the chance to use an invariant: the ratio between fre-
quencies. For example, the ratio between the upper end of human hearing 
(20 kilohertz) and middle C (262 hertz) is roughly 80. If we use a repre-
sentation based on ratio rather than absolute difference, then the spacing 
between frequencies would not change even when we changed the unit. 
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We have such a representation: logarithms! On a logarithmic scale, a dis-
tance corresponds to a ratio rather than a difference. To see the contrast, 
let’s place the numbers from 1 to 10 on a logarithmic scale. 

1 2 3 4 5 6 7 8 9 10

The physical gap between 1 and 2 represents not their difference but rather 
their ratio, namely 2. According to my ruler, the gap is approximately 3.16 
centimeters. Similarly, the physical gap between 2 and 3—approximately 
1.85 centimeters—represents the smaller ratio 1.5. In contrast to their rela-
tive positions on a linear scale, 2 and 3 on a logarithmic scale are closer than 
1 and 2 are. On a logarithmic scale, 1 and 2 have the same separation as 2 
and 4: Both gaps represent a ratio of 2 and therefore have the same physical 
size (3.16 centimeters). 

Problem 3.5 Practice with ratio thinking 
On a logarithmic scale, how does the physical gap between 2 and 8 compare to the 
gap between 1 and 2? Decide based on your understanding of ratios; then check 
your reasoning by measuring both gaps. 

Problem 3.6 More practice with ratio thinking 
Is the gap between 1 and 10 less than twice, equal to twice, or more than twice the 
gap between 1 and 3? Decide based on your understanding of ratios; then check 
your reasoning by measuring both gaps. 

Problem 3.7 Moving along a logarithmic scale 
On the logarithmic scale in the text, the gap between 2 and 3 is approximately 1.85 
centimeters. Where do you land if you start at 6 and move 1.85 centimeters right-
ward? Decide based on your understanding of ratios; then check your reasoning 
by using a ruler to find the new location. 

Problem 3.8 Extending the scale to the right 
On the logarithmic scale in the text, the gap between 1 and 10 is approximately 
10.5 centimeters. If the scale were extended to include numbers up to 1000, how 
large would the gap between 10 and 1000 be? 

Problem 3.9 Extending the scale to the left 
If the logarithmic scale were extended to include numbers down to 0.01, how far 
to the left of 1 would you have to place 0.04? 

On a logarithmic scale, the frequencies related to hearing arrange them-
selves as follows: 
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10−2 10−1 100 101 102 103 104 105
Hz

low end middle C high C
high end

Changing the units to kilohertz just shifts all the frequencies, but leaves 
their relative positions invariant: 

10−2 10−1 100 101 102 103 104 105
kHz

low end middle C high C
high end

Problem 3.10 Acoustic energy fluxes 
In acoustics, sound intensity is measured by energy flux, which is measured in deci-
bels (dB)—a logarithmic representation of watts per square meter. On the decibel 
scale, 0 decibels corresponds to the reference level of 10−12 watts per square meter. 
Every 10 decibels (or 1 bel) represents an increase in energy flux of a factor of 10 
(thus, 20 decibels represents a factor-of-100 increase in energy flux). 

a.	 How many watts per square meter is 60 decibels (the sound level of normal 
conversation)? 

b.	 Place the following energy fluxes on a decibel scale: 10−9 watts per square me-
ter (an empty church), 10−2 watts per square meter (front row at an orchestra 
concert), and 1 watt per square meter (painfully loud). 

Logarithmic scales offer two benefits. First, as we saw explicitly, logarithmic 
scales incorporate invariance. The second benefit was only implicit in the 
previous discussion: Logarithmic scales, unlike linear scales, allow us to 
represent a huge range. For example, if we include power-line hum (50 or 
60 hertz) on the linear frequency scale on p. 61, we can hardly distinguish 
its position from 0 kilohertz. The logarithmic scale has no problem. 

10−2 10−1 100 101 102 103 104 105
Hz

low end middle C high C
high end

power-line hum

In our fallen world, benefits usually conflict. One usually has to sacrifice 
one benefit for another (speed for accuracy or justice for mercy). With log-
arithmic scales, however, we can eat our cake and have it. 
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Problem 3.11 Labeling a logarithmic scale 
Let’s make a scale to represent sizes in the universe, from protons (10−15 meters) 
to galaxies (1030 meters), with people and bacteria in between. With such a large 
range, we should use a logarithmic scale for size 𝐿. Which one of these two ways 
of labeling the scale is correct, and which way is nonsense? 

a. −10 0 10 20 30
log10 L

b. 
10−10 100 1010 1020 1030

L (m)

Logarithmic scales can make otherwise obscure symbolic calculations intu-
itive. An example is the geometric mean, which we used in Section 1.6 to 
make gut estimates: 
estimate = lower bound × upper bound . (3.4) 

R

h dGeometric means also occur in the physical world. 
As you found in Problem 2.9, the distance 𝑑 to the 

(3.5) 

horizon, as seen from a height ℎ above the Earth’s 
surface, is 

𝑑 ≈ ℎ𝐷 , 

where 𝐷 = 2𝑅Earth is the diameter of the Earth. 
Imagine a lifeguard sitting with his or her eyes at 
a height ℎ = 4 meters above sea level. Then the distance to the horizon is 

)1/2𝑑 ≈ ( 4 m × 12 000 km . (3.6)⏟ ⏟⏟⏟⏟⏟ 
ℎ 𝐷 

an area (and often contains, as it did here, a huge number). Then we take 
the square root to get back a distance. However, the area has nothing to do 
with the structure of the problem. It is merely a bookkeeping device. 
Bookkeeping devices are useful; they are how you tell a computer what to 
calculate. However, to understand the calculation, we, as humans, should 
use a logarithmic scale to represent the distances. This scale captures the 
structure of the problem. 

To do the calculation, we convert 12 000 kilometers to 1.2 × 107 meters, cal-
culate 4 × 1.2 × 107, and compute the square root: 

𝑑 ≈ 4 × 1.2 × 107 m ≈ 7000 m = 7 km. (3.7) 

In this symbolic form with a square root, the calculation obscures the fun-
damental structure of the geometric mean. We first calculate ℎ𝐷, which is 
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100 102 104 106 108
m

Dh
√

hD
left gap right gap

How can we describe the position of the geometric mean ℎ𝐷 ? 

gap endpoints ratio 

left ℎ… ℎ𝐷 
ℎ𝐷 
ℎ 

= 
𝐷 
ℎ 

right ℎ𝐷 …𝐷 
𝐷 

ℎ𝐷 
= 

𝐷 
ℎ 

The first clue is that the geometric mean, because it 
is a mean, lies somewhere between ℎ and 𝐷. This 
property is not obvious from the calculation using 
the square root. To find where the geometric mean 
lies, mind the gaps. On a logarithmic scale, a gap 
represents the ratio of its endpoints. As shown 
in the table, the left and right gaps represent the 
same ratio, namely 𝐷/ℎ ! Therefore, on the logarithmic scale, the geomet-
ric mean lies exactly halfway between ℎ and 𝐷. 

Based on this ratio representation, we can rephrase the geometric-mean 
calculation in a form that we can do mentally. 

What distance is as large compared to 4 meters as 12 000 kilometers is compared to 
it? 

For lack of imagination, my first guess is 1 kilometer. It’s 12 000 times 
smaller than the diameter 𝐷 (which is 12 000 kilometers), but only 250 times 
larger than the height ℎ (4 meters). My guess of 1 kilometer is therefore 
somewhat too small. 

How is a guess of 10 kilometers? 

It’s 2500 times larger than ℎ, but only 1200 times smaller than 𝐷. I overshot 
slightly. How about 7 kilometers? It’s roughly 1750 times larger than 4 me-
ters, and roughly 1700 times smaller than 12 000 kilometers. Those gaps 
are close to each other, so 7 kilometers is the approximate geometric mean. 

100 102 104 106 108
m

Dh
√

hD ≈ 7 km
factor of 1732 factor of 1732

Similarly, when we make gut estimates, we should place our lower and up-
per estimates on a logarithmic scale. Our best gut estimate is then their 
midpoint. What a simple picture! 
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Should all quantities be placed on a logarithmic scale? 

No. An illustrative contrast is between size and position. Both quantities 
have the same units. But size ranges from 0 to ∞, whereas position ranges 
from −∞ to ∞. Position therefore cannot be placed on a logarithmic scale 
(where would you put −1 meter?). In contrast, size (a magnitude) belongs 
on a logarithmic scale. In general, location parameters, such as position, 
should not be placed on a logarithmic scale but magnitudes should. 

3.2 From invariant to symmetry operation 
In the preceding examples, we knew the moves of the game and sought 
the invariant. In the mouse-eaten chessboard (Section 3.1.2), the moves are 
putting down a 2×1 domino on two adjacent empty squares. The invariant 
was the difference between empty black and white squares. Often, however, 
the benefit of invariants lies in the other direction: You know the invariant 
and seek the moves that preserve it. These moves are called the symmetry 
operations or simply the symmetries. 
We’ll first examine this idea in a familiar situation: converting units (Sec-
tion 3.2.1). Then we’ll practice it on a sum solved by the three-year-old Carl 
Friedrich Gauss (Section 3.2.2) and then by finding maxima and minima 
(Section 3.2.3). 

3.2.1 Converting units 
We often convert a quantity from one unit system to another—for example, 
mass from English to metric units or prices from dollars to pounds or euros. 
A useful physical conversion is writing energy density—energy divided by 
amount of stuff—in useful units. Let’s start with the reasonable energy 
unit for a chemical bond, namely the electron volt or eV (Section 2.1). Then 
a useful unit for energy density is 

1 eV 
(3.8)molecule . 

This energy density is our invariant. As we convert from one unit system 
to another, our moves have to preserve the energy density. 

What are the legal moves—the moves that preserve the energy density? 

The legal moves are all ways of multiplying by 1—for example, by 
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6 × 1023 molecules 1 mol or . (3.9)1 mol 6 × 1023 molecules 
Either quotient is a form of 1, because 1 mole is defined to be Avogadro’s 
number of molecules, and Avogadro’s number is 6×1023. I carefully wrote 
“1 mol” with the number rather than simply as “mol.” The more explicit 
form reminds us that “6 × 1023 molecules per mole” is shorthand for a quo-
tient of two identical quantities: 6 × 1023 molecules and 1 mole. 

lines help us check that we got the desired units.) The giant exponent makes 
this form almost meaningless. To improve it, let’s multiply by another form 
of 1, based on the definition of an electron volt. Two forms of 1 are 

1.6 × 10−19 J 1 eV or . (3.11)1 eV 1.6 × 10−19 J 

Multiplying the energy density by the first form of 1 gives 

1 eV 

molecule 
× 

6 × 1023 molecules 
1 mol 

= 
6 × 1023 eV 

mol 
. (3.10) 

(If we had multiplied by the second form of 1, the units of molecules would 
have become molecules squared instead of canceling. The strike-through 

Multiplying by the first form of 1 gives 

1 eV 

molecule 
× 

6 × 1023 molecules 
1 mol 

× 
1.6 × 10−19 J 

1 eV 
≈ 

102 kJ 
mol 

. (3.12) 

(A more exact value is 96 kilojoules per mole.) In the United States, energies 
related to food are stated in Calories, also known as kilocalories (roughly
4.2 kilojoules). In calorie units, the useful energy-density unit is 

96 kJ 
1 mol 

× 
1 kcal 
4.2 kJ 

≈ 
23 kcal 
mol 

. (3.13) 

Which form is more meaningful: 23 kcal mol or 
23 kcal 
mol ? 

The forms are mathematically equivalent: You can multiply by 23 before or 
after dividing by a mole. However, they are not psychologically equivalent. 
The first form builds the abstraction of kilocalories per mole, and then says, 
“Here are 23 of them.” In contrast, the second form gives us the energy for 
1 mole, a human-sized amount. The second form is more meaningful. 

Similarly, the speed of light 𝑐 is commonly quoted as (approximately) 
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3 × 108 m . (3.14)s 
The psychologically fruitful alternative is 

𝑐 = 
3×108 m . (3.15)1 s 

This form suggests that 300 million meters, at least for light, is the same as 
1 second. With this idea, you can convert wavelength to frequency (Prob-
lem 3.14); with a slight extension, you can convert frequency to energy 
(Problem 3.15) and energy to temperature (Problem 3.16). 

Problem 3.12 Absurd units 
By multiplying by suitable forms of 1, convert 1 furlong per fortnight into meters 
per second. 

Problem 3.13 Rainfall units 
Rainfall, in nonmetric parts of the world, is sometimes measured in acre feet. By 
multiplying by suitable forms of 1, convert 1 acre foot to cubic meters. (One square 
mile is 640 acres.) 

Problem 3.14 Converting wavelength to frequency 
Convert green-light wavelength, 0.5 micrometers (0.5 μm), to a frequency in cycles 
per second (hertz or Hz). 

Problem 3.15 Converting frequency to energy 
Analogously to how you used the speed of light in Problem 3.14, use Planck’s 
constant ℎ to convert the frequency of green light to an energy in joules (J) and in 
electron volts (eV). This energy is the energy of a green-light photon. 

Problem 3.16 Converting energy to temperature 
Use Boltzmann’s constant 𝑘B to convert the energy of a green-light photon (Prob-
lem 3.15) to a temperature (in kelvin). This temperature, except for a factor of 3, is 
the surface temperature of the Sun! 

Conversion factors need not be numerical. Insight often comes from sym-
bolic factors. Here is an example from fluid flow. As we will derive in 
Section 5.3.2, the drag coefficient 𝑐d is defined as the dimensionless ratio 

𝐹drag 𝑐d ≡ 1 
(3.16) 

2𝜌𝑣
2𝐴 

, 

where 𝜌 is the fluid density, 𝑣 is the speed of the object moving in the fluid, 
and 𝐴 is the object’s cross-sectional area. To give this definition and ratio a 
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physical interpretation, multiply it by 𝑑/𝑑, where 𝑑 is the distance that the 
object travels: 

𝐹drag 𝑑𝑐d ≡ 1 
(3.17) 

2𝜌𝑣
2𝐴𝑑 

. 

The numerator, 𝐹drag 𝑑, is the work done or the energy consumed by drag. 
In the denominator, the product 𝐴𝑑 is the volume of fluid displaced by the 
object, so 𝜌𝐴𝑑 is the corresponding mass of fluid. Therefore, the denomina-
tor is also 

1 
2 × mass of fluid displaced × 𝑣2. (3.18) 

The object’s speed 𝑣 is also approximately the speed given to the displaced 
fluid (which the object shoved it out of its way). Therefore, the denominator 
is roughly 

1 
2 × mass of fluid displaced × (speed of displaced fluid)2. (3.19) 

This expression is the kinetic energy given to the displaced fluid. The drag 
coefficient is therefore roughly the ratio 

𝑐d ∼ 
energy consumed by drag 

(3.20)energy given to the fluid 
. 

My tenth-grade chemistry teacher, Mr. McCready, told us that unit conver-
sion was the one idea that we should remember from the entire course. 
Almost every problem in the chemistry textbook could be solved by unit 
conversion, which says something about the quality of the book but also 
about the power of the method. 

3.2.2 Gauss’s childhood sum 

A classic example of going from the invariant to the symmetry is the follow-
ing story of the young Carl Friedrich Gauss. Although maybe just a legend, 
the story is so instructive that it ought to be true. Once upon a time, when 
Gauss was 3 years old, his schoolteacher, wanting to occupy the students, 
assigned them to compute the sum 

𝑆 = 1 + 2 + 3 +⋯ + 100, (3.21) 

and sat back to enjoy the break. In a few minutes, Gauss returned with an 
answer of 5050. 
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Was Gauss right? If so, how did he compute the sum so quickly? 

Gauss saw that the sum—the invariant—is unchanged when the terms are 
added backward, from highest to lowest: 

1 + 2 + 3 +⋯+ 100 = 100 + 99 + 98 +⋯+ 1. (3.22) 

Then he added the two versions of the sum, the original and the reflected: 

1 + 2 + 3 +⋯+ 100 = 𝑆 

+ 100 + 99 + 98 +⋯+ 1 = 𝑆 (3.23) 

101 + 101 + 101 +⋯+ 101 = 2𝑆. 

In this form, 2𝑆 is easy to compute: It contains 100 copies of 101. Therefore, 
2𝑆 = 100 × 101, and 𝑆 = 50 × 101 or 5050—as the young Gauss claimed. He 
made the problem so simple by finding a symmetry: a transformation that 
preserved the invariant. 

Problem 3.17 Number sum 

Use Gauss’s method to find the sum of the integers between 200 and 300 (inclu-
sive). 

Problem 3.18 Symmetry for algebra 
Use symmetry to find the missing coefficients in the expansion of (𝑎 − 𝑏)3: 

(𝑎 − 𝑏)3 = 𝑎3 − 3𝑎2𝑏+? 𝑎𝑏2+? 𝑏3. (3.24) 

Problem 3.19 Integrals 
Evaluate these definite integrals. Hint: Use symmetry. 

10 ∞ ∞𝑥3 ln 𝑥 (a) ∫ 𝑥3𝑒−𝑥2 𝑑𝑥, (b) ∫ 
1 + 7𝑥2 + 18𝑥8 

𝑑𝑥, and (c) ∫ 
1 + 𝑥2 

𝑑𝑥. 
−10 −∞ 0 

3.2.3 Finding maxima or minima 
To practice finding the symmetry operation, we’ll find the maximum of the 
function 6𝑥 − 𝑥2 without using calculus. Calculus is the elephant gun. It 
can solve many problems, but only after blasting them into the same form 
(smithereens). Avoiding calculus forces us to use more particular, but more 
subtle methods—such as symmetry. As Gauss did in summing 1+2+⋯+ 
100, let’s find a symmetry operation that preserves the essential feature of 
the problem—namely, the location of the maximum. 
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Symmetry implies moving around an object’s pieces. Fortunately, our func-
tion 6𝑥 − 𝑥2 factors into pieces: 

6𝑥 − 𝑥2 = 𝑥(6 − 𝑥). (3.25) 

This form, along with the idea that multiplication is commutative, suggests 
the symmetry operation. For if the operation just swaps the two factors, 
replacing 𝑥(6 − 𝑥) with (6 − 𝑥)𝑥, it does not change the location of the 
maximum. (A parabola has exactly one maximum or minimum.) 

The symmetry operation that makes the swap is 

𝑥 ⟷ 6 − 𝑥. (3.26) 

It turns 2 into 4 (and vice versa) and 1 into 5 (and vice versa). The only value 
unchanged (left invariant) by the symmetry operation is 𝑥 = 3. Therefore, 
6𝑥 − 𝑥2 has its maximum at 𝑥 = 3. 

Geometrically, the symmetry operation reflects the graph of
6𝑥 −𝑥2 through the line 𝑥 = 3. By construction, this symme-
try operation preserves the location of the maximum. There-
fore, the maximum has to lie on the line 𝑥 = 3. 

We could have found this maximum in several other ways, so 
the use of symmetry might seem superfluous or like overkill. 
However, it warms us up for the following, more compli- x = 3

maximum

6x − x2

cated use. The energy required to fly has two pieces: gener-
ating lift, which requires an energy 𝐴/𝑣2, and fighting drag, which requires 
an energy 𝐵𝑣2. (𝐴 and 𝐵 are constants that we estimate in Sections 3.6.2 and 
4.6.1.) 

𝐸flight = 
𝑣
𝐴
2 
+ 𝐵𝑣2. (3.27) 

To minimize fuel consumption, planes choose their cruising speed to min-
imize 𝐸flight. More precisely, a cruising speed is selected, and the plane is 
designed so that this speed minimizes 𝐸flight. 

In terms of the constants 𝐴 and 𝐵, what speed minimizes 𝐸flight? 

Like the parabola 𝑥(6 − 𝑥), this energy has one extremum. For the parabola, 
the extremum was a maximum; here, it is a minimum. Also similar to the 
parabola, this energy has two pieces connected by a commutative opera-
tion. For the parabola, the operation was multiplication; here, it is addition. 
Continuing the analogy, if we find a symmetry operation that transposes 
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the two pieces, then the speed preserved by the operation will be the mini-
mum-energy speed. 

Finding this symmetry operation is hard to do in one gulp, because it must 
transpose 1/𝑣2 and 𝑣2 and transpose 𝐴 and 𝐵. These two difficulties suggest 
that we apply divide-and-conquer reasoning: Find a symmetry operation 
that transposes 1/𝑣2 and 𝑣2, and then modify so that it also transposes 𝐴 
and 𝐵. 

To transpose 1/𝑣2 and 𝑣2, the symmetry operation is 
the following: 

𝑣 ⟷ 𝑣
1 . (3.28) 

Now let’s restore the second constant, 𝐵, and find the
 
full symmetry operation that transposes 𝐴/𝑣2 and 𝐵𝑣2:
 

Now let’s restore one of the two constants and modify 

𝑣 ⟷ 
𝐴

the symmetry operation so that it transposes 

𝑣 .

𝐵 𝑣 ⟷ 
𝐴
𝑣 .

𝑣 ⟷ 
𝐴/𝐵
𝑣 

.

𝐴/𝑣2 and 
𝑣2: 

Rewriting it as a replacement for 𝑣, the symmetry operation becomes 

(3.29) 

E

v

Edrag

Elift

Eflight

vmin

(3.30) 

(3.31) 

This symmetry operation transposes the drag energy and lift energy, leav-
ing the total energy 𝐸flight unchanged. Solving for the speed preserved by 
the symmetry operation gives us the minimum-energy speed: 

𝑣min = ( 
𝐴 1/4 

. (3.32)𝐵 
)

In Section 4.6.1, once we find 𝐴 and 𝐵 in terms of the characteristics of the 
air (its density) and the plane (such as its wingspan), we can estimate the 
minimum-energy (cruising) speeds of planes and birds. 

Problem 3.20 Solving a quadratic equation using symmetry 
The equation 6𝑥−𝑥2+7 = 0 has a solution at 𝑥 = −1. Without using the quadratic 
formula, find any other solutions. 
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3.3 Physical symmetry 

For a physical application of symmetry, imagine a uniform metal 
sheet, perhaps aluminum foil, cut into the shape of a regular pen-
tagon. Imagine that to the edges are attached heat sources and 
sinks—big blocks of metal at a fixed temperature—in order to 
hold the edges at the temperatures marked on the figure. After 
we wait long enough, the temperature distribution in the pentagon stops 
changing (comes to equilibrium). 

80◦

10◦

10◦

10◦

10◦

T = ?

Once the pentagon temperature equilibrates, what is the temperature at its center? 

A brute-force, analytic solution is difficult. Heat flow is described by the 
heat equation, a linear second-order partial-differential equation: 

𝜅∇2𝑇 = 
∂𝑇 

(3.33)∂𝑡 , 

where 𝑇 is the temperature as a function of position and time, and 𝜅 (kappa) 
is the thermal diffusivity (which we will study in more detail in Chapter 7). 
But don’t worry: You do not have to understand the equation, only that it 
is difficult to solve! 
Once the temperature settles down, the time derivative becomes 
zero, and the equation simplifies to 𝜅∇2𝑇 = 0. However, even this 
simpler equation has solutions only for simple shapes, and the 
solutions are complicated. For example, the temperature distrib-
ution on the simpler square sheet is hardly intuitive (the figure 
shows contour lines spaced every 10∘). For a pentagon, the temperature 
distribution is worse. However, because the pentagon is regular, symmetry 
might make the solution flow. 

10◦

10◦

80◦

10◦

What is a useful symmetry operation? 

Nature, in the person of the heat equation, does not care about the direc-
tion of our coordinate system. Thus, rotating the pentagon about its center 
does not change the temperature at the center. Therefore, the following five 
orientations of the pentagon share the same central temperature: 

80◦

10◦

10◦
10◦

10◦ 10◦

80◦

10◦
10◦

10◦ 10◦

10◦

80◦
10◦

10◦ 10◦

10◦

10◦
80◦

10◦ 10◦

10◦

10◦
10◦

80◦
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Like Gauss adding the two versions of his sum (Section 3.2.2), stack these 
sheets mentally and add the temperatures that lie on top of each other to 
make the temperature profile of a new super sheet (adding the tempera-
tures is valid because the heat equation is linear). 

= (3.34) 

Each super edge contains one 80∘ edge and four 10∘ edges, for a temperature 
of 120∘. The super sheet is a regular pentagon where all edges are at 120∘. 
Therefore, the temperature throughout the sheet is 120∘—including at the 
center. Because the symmetry operation has helped us construct a much 
easier problem, we did not have to solve the heat equation. 

One more step tells us the temperature in the center of the original sheet. 
The symmetry operation rotates the pentagon about its center; when the 
plates are stacked, the centers align. Each center then contributes one-fifth 
of the 120∘ in the center, so the original central temperature is 24∘. 

To highlight the transferable ideas (abstractions), compare the symmetry 
solutions to Gauss’s sum and to this temperature problem. First, both prob-
lems seem complicated. Gauss’s sum has many terms, all different; the 
pentagon problem seems to require solving a difficult differential equation. 
Second, both problems contain a symmetry operation. In Gauss’s sum, 
the symmetry operation reversed the order of the terms; for the pentagon, 
the symmetry operation rotates it by 72∘. Finally, the symmetry operation 
leaves an important quantity unchanged. For Gauss’s problem, this quan-
tity is the sum; for the pentagon, it is the central temperature. 

When there is change, look for what does not change. Look for invariants and the 
corresponding symmetries: the operations that preserve the invariants. 

Problem 3.21 Symmetry solution for a square sheet 

10◦

10◦

80◦

10◦

Here is the contour plot again of the temperature on a square 
sheet. The contour lines are separated by 10∘. Use that infor-
mation to label the temperature of each contour line. Based 
on the symmetry reasoning, what should the temperature at 
the center of the square be? Is this predicted temperature con-
sistent with what is shown in the contour plot? 
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Problem 3.22 Simulating the heat equation 

80◦

10◦

10◦

10◦

10◦

T = ?

Using symmetry, we showed that the temperature at the cen-
ter of the pentagon is the average of the temperatures of the 
sides. Check the solution by simulating the heat equation 
with a pentagonal boundary. 

Problem 3.23 Shortest bisecting path 

What is the shortest path that bisects an equilateral triangle into two equal areas? 
Here are three examples of bisecting paths: 

To set your problem-solving gears in motion, first rank these three bisecting paths 
according to their lengths. 

3.4 Box models and conservation 
Invariance underlies a powerful everyday abstraction: box models. We al-
ready made a box model in Section 3.1.1, to decide whether to run or walk 
in the rain. Now let’s examine this method further. The simplest kind of 
box contains a fixed amount of stuff—perhaps the volume of fluid or the 
number of students at an ideal university (where every student graduates 
in a fixed time). Then what goes into the box must come out. This conclu-
sion seems simple, even simplistic, but it has wide application. 

3.4.1 Supply and demand 
For another example of a box model, return to our 
estimate of US oil usage (Section 1.4). The flow 
into the box—the push or the supply—is the im-
ported and domestically produced oil. The flow 
out of the box—the pull or the demand—is the oil usage. The estimate, 
literally taken, asks for the supply (how much oil is imported and domesti-
cally produced). This estimate is difficult. Fortunately, as long as oil does 
not accumulate in the box (for example, as long as oil is not salted away 
in underground storage bunkers), then the amount of oil in the box is an 
invariant, so the supply equals the demand. To estimate the supply, we ac-
cordingly estimated the demand. This conservation reasoning is the basis 
of the following estimate of a market size. 

oil

box
supply demand
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How many taxis are there in Boston, Massachusetts? 

For many car-free years, I lived in an old neighborhood of Boston. I often 
rode in taxis and wondered about the size of the taxi market—in particular, 
how many taxis there were. This number seemed hard to estimate, because 
taxis are scattered throughout the city and hard to count. 
The box contains the available taxi driving (mea-
sured, for example, as time). It is supplied by 
taxi drivers. The demand is due to taxi users. As 
long as the supply and demand match, we can 
estimate the supply by estimating the demand. 

available
taxi driving

supply

(drivers)

demand

(users)

For estimating the demand, the starting point is that Boston has roughly 
500 000 residents. As a gut estimate, each resident uses maybe one taxi per 
month, for a 15-minute ride: Boston taxis are expensive; unless one doesn’t 
own a car, it’s hard to imagine using them more often than once a month 
or for longer than 15 minutes. Then the demand is about 105 hours of taxi 
driving per month: 

5 × 105 residents × 
15 min 

resident month 
× 

1 hr 
60 min 

≈ 
105 hr 
month 

. (3.35) 

How many taxi drivers will that many monthly hours support? 

Taxi drivers work long shifts, maybe 60 hours per week. I’d guess that they 
carry passengers one-half of that time: 30 hours per week or roughly 100 
hours per month. At that pace, 105 hours of monthly demand could be 
supplied by 1000 taxi drivers or, assuming each taxi is driven by one driver, 
by 1000 taxis. 

What about tourists? 

Tourists are very short-term Boston residents, mostly without cars. Tourists, 
although fewer than residents, use taxis more often and for longer than 
residents do. To include the tourist contribution to taxi demand, I’ll simply 
double the previous estimate to get 2000 taxis. 
This estimate can be checked reliably, because Boston is one of the United 
States cities where taxis may pick up passengers only with a special permit, 
the medallion. The number of medallions is strictly controlled, so medal-
lions cost a fortune. For about 60 years, their number was restricted to 1525, 
until a 10-year court battle got the limit raised by 260, to about 1800. 
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The estimate of 2000 may seem more accurate than it deserves. However, 
chance favors the prepared mind. We prepared by using good tools: a box 
model and divide-and-conquer reasoning. In making your own estimates, 
have confidence in the tools, and expect your estimates to be at least half 
decent. You will thereby find the courage to start: Optimism oils the rails 
of estimation. 

Problem 3.24 Differential equation for an RC circuit 

R

C

box

Vin Vout

Explain how a box model leads to the differential 
equation for the low-pass 𝑅𝐶 circuit of Section 2.4.4: 

𝑅𝐶 
𝑑𝑉out 
𝑑𝑡 + 𝑉out = 𝑉in. (3.36) 

(Almost every differential equation arises from a box 
or conservation argument.) 

Problem 3.25 Boston taxicabs tree 
Draw a divide-and-conquer tree for estimating the number of Boston taxicabs. 
First draw it without estimates. Then include your estimates, and propagate the 
values toward the root. 

Problem 3.26 Needles on a Christmas tree 
Estimate the number of needles on a Christmas tree. 

3.4.2 Flux
 
Flows, such as the demand for oil or the supply of taxi cabs, 
are rates—an amount per time. Physical flows are also rates, 
but they live in a geometry. This embedding allows us to de-
fine a related quantity: flux. 

amount of stuff flux of stuff ≡ 
rate = . (3.37)area area × time 

area
flow rate

=
amount

time

For example, particle flux is the rate at which particles (say, 
molecules) pass through a surface perpendicular to the flow, divided by 
the area of the surface. Dividing by the surface area, an operation with no 
counterpart in nonphysical flows (for example, in the demand for taxicabs), 
makes flux more invariant and useful than rate. For if you double the sur-
face area, you double the rate. This proportionality is not newsworthy, and 
usually doesn’t add insight, only clutter. When there is change, look for 
what does not change: Even when the area changes, flux does not. 
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Problem 3.27 Rate versus amount 
Explain why rate (amount per time) is more useful than amount. 

Problem 3.28 What is current density? 
What kind of flux (flux of what?) is current density (current per area)? 

The definition of flux leads to a simple and important connection between 
flux and flow speed. Imagine a tube of stuff (for example, molecules) with 
cross-sectional area 𝐴. The stuff flows through the tube at a speed 𝑣. 

In a time 𝑡, how much stuff leaves the tube? 

In the time 𝑡, the stuff in the shaded chunk, 
spanning a length 𝑣𝑡, leaves the tube. This 
chunk has volume 𝐴𝑣𝑡. The amount of stuff 
in that volume is 

stuff 

A

vt

v

× 𝐴𝑣𝑡. (3.38) volume⏟⏟⏟⏟⏟ ⏟ 
density of stuff volume 

The amount of stuff per volume, the density of stuff, occurs so often that 
it usually gets a special symbol. When the stuff is particles, the density is 
labeled 𝑛 for number density (in contrast to 𝑁 for the number itself). When 
the stuff is charge or mass, the density is labeled 𝜌. 

From the amount of stuff, we can find the flux: 
𝐴𝑣𝑡 

⏞⏞⏞⏞⏞ amount of stuff density of stuff × volume
flux of stuff = = . (3.39)area × time area × time⏟⏟⏟⏟⏟⏟⏟ 

𝐴𝑡 

The product 𝐴𝑡 cancels, leaving the general relation 

flux of stuff = density of stuff × flow speed. (3.40) 

As a particular example, when the stuff is charge (Problem 3.28), the flux of 
stuff becomes charge per time per area, which is current per area or current 
density. With that label for the flux, the general relation becomes 

current density = charge density × flow speed , (3.41)⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 
𝐽 𝜌 𝑣drift 

where 𝑣drift is the flow speed of the charge—which you will estimate in 
Problem 6.16 for electrons in a wire. 

http:������.(3.38
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The general relation will be crucial in estimating the power required to fly 
(Section 3.6) and in understanding heat conduction (Section 7.4.2). 

3.4.3 Average solar flux 
An important flux is energy flux: the rate at which energy passes through 
a surface, divided by the area of the surface. Here, rate means energy per 
time, or power. Therefore, energy flux is power per area. An energy flux 
essential to life is the solar flux: the solar power per area falling on Earth. 
This flux drives most of our weather. At the top of the atmosphere, looking 
directly toward the sun, the flux is roughly 𝐹 = 1300 watts per square meter. 
However, this flux is not evenly distributed over the surface of the earth. 
The simplest reason is night and day. On the night side of the Earth, the 
solar flux is zero. More subtly, different latitudes have different solar fluxes: 
The equatorial regions are warmer than the poles because they receive more 
solar flux than the poles do. 
What is the solar flux averaged over the whole Earth? 

We can find the average flux using a box model (a 
conservation argument). Here is sunlight coming 
to the Earth (with parallel rays, because the Sun is 

Earth
sunlight

so far away). Hold a disk with radius 𝑅Earth perpen-
dicular to the sunlight so that it blocks all sunlight that the Earth otherwise 
would get. The disk absorbs a power that we can find from the energy flux: 
power = energy flux × area = 𝐹𝜋𝑅2 (3.42)Earth, 

where 𝐹 is the solar flux. Now spread this power over the whole Earth, 
which has surface area 4𝜋𝑅2 

Earth: 

power 𝐹𝜋𝑅2 𝐹Earth average flux = = = (3.43)4 .surface area 4𝜋𝑅2 
Earth 

Because one-half of the Earth is in night, averaging over the night and day-
light parts of the earth accounts for a factor of 2. Therefore, averaging over 
latitudes must account for another factor of 2 (Problem 3.29). 

Problem 3.29 Averaging solar flux over all latitudes 
Integrate the solar flux over the whole sunny side of the Earth, accounting for the 
varying angles between the incident sunlight and the surface. Check that the result 
agrees with the result of the box model. 
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The result is roughly 325 watts per square meter. This average flux slightly 
overestimates what the Earth receives at ground level, because not all of the
1300 watts per square meter hitting the top of the atmosphere reaches the 
surface. Roughly 30 percent gets reflected near the top of the atmosphere 
(by clouds). The surviving amount is about 1000 watts per square meter. 
Averaged over the surface of the Earth, it becomes 250 watts per square me-
ter (which then goes into the surface and the atmosphere), or approximately
𝐹/5, where 𝐹 is the flux at the top of the atmosphere. 

3.4.4 Rainfall 
These 250 watts per square meter determine characteristics of our weather 
that are essential to life: the average surface temperature and the average 
rainfall. You get to estimate the surface temperature in Problem 5.43, once 
you learn the reasoning tool of dimensional analysis. Here, we will estimate 
the average rainfall. 

If the box representing the atmosphere holds a
 
fixed amount of water—and over a long timescale,
 
the amount is constant (it is our invariant)—then
 
what goes into the box must come out of the box.
 
The inflow is evaporation; the outflow is rain. Therefore, to estimate the
 
rainfall, estimate the evaporation—which is produced by the solar flux.
 

water in
atmosphere

evaporation rainfall

How much rain falls on Earth? 

Rainfall is measured as a height of water per time—typically, inches or mil-
limeters per year. To estimate global average rainfall, convert the supply of 
solar energy to the supply of rainwater. In other words, convert power per 
area to height per time. The structure of the conversion is 

power height
× 
? = (3.44)area ? time , 

where ?/? represents the conversion factor that we need to determine. To 
find what this conversion factor represents, we multiply both sides by area 
per power. The result is 

? area × height volume = = . (3.45)? power × time energy 

What physical quantity could this volume per energy be? 
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We are trying to determine the amount of rain, so the volume in the numer-
ator must be the volume of rain. Evaporating the water requires energy, so 
the energy in the denominator must be the energy required to evaporate 
that much water. The conversion factor is then the reciprocal of the heat of 
vaporization of water 𝐿vap, but expressed as an energy per volume. In Sec-

energy 
multipljusolume,per 

mass⏟⏟⏟⏟⏟ 
𝐿vap 

×

aybyt 
asapv𝐿timatedesew

mass
volume⏟⏟⏟⏟⏟ 

𝜌water 

= 

tion 1.7.3, an energy per mass. To make it an energy 
v mass per volume—namely, by 𝜌water: 

energy 
.	 (3.46) 

volume⏟⏟⏟⏟⏟ 
𝜌water𝐿vap 

Our conversion factor, volume per energy, is the reciprocal, 1/𝜌water𝐿vap. 
Our estimate for the average rainfall then becomes 

solar flux going to evaporate water 
.	 (3.47)𝜌water𝐿vap 

For the numerator, we cannot just use 𝐹, the full solar flux at the top of the 
atmosphere. Rather, the numerator incorporates several dimensionless ra-
tios that account for the hoops through which sunlight must jump in order 
to reach the surface and evaporate water: 

0.25	 averaging the intercepted flux over the whole surface of the Earth 
(Section 3.4.3) 

0.7	 the fraction not reflected at the top of the atmosphere 
0.7	 of the sunlight not reflected, the fraction reaching the surface (the 

other 30 percent is absorbed in the atmosphere) 
× 0.7	 of the sunlight reaching the surface, the fraction reaching the oceans 

(the other 30 percent mostly warms land) 

= 0.09 fraction of full flux 𝐹 that evaporates water (including averaging the 
full flux over the whole surface) 

The product of these four factors is roughly 9 percent. With 𝐿vap = 2.2 × 
106 joules per kilogram (which we estimated in Section 1.7.3), our rainfall 
estimate becomes roughly 

𝐹 fraction
⏞⏞⏞⏞⏞⏞⏞ × ⏞1300 Wm−2 0.09 ≈ 

5.3 × 10−8 m .	 (3.48)
103 kg m−3 × 2.2×106 J kg−3
⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

s 
𝜌water 𝐿vap 
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The length in the numerator is tiny and hard to perceive. Therefore, the 

5.3 × 10−8 m 

common time unit for rainfall is a year rather than a second. To convert the 

3 × 107 

rainfall estimate to meters per year, multiply by 
s 

1 yr 
≈ 

1.6 m 

yr 

1: 

× (3.49) 
s 

(about 64 inches per year). Not bad: Including all forms of falling water, 
such as snow, the world average is 0.99 meters per year—slightly higher 
over the oceans and slightly lower over land (where it is 0.72 meters per 
year). The moderate discrepancy between our estimate and the actual aver-
age arises because some sunlight warms water without evaporating it. To 
reflect this effect, our table on page 81 needs one more fraction (≈ 2/3). 

Problem 3.30 Solar luminosity 
Estimate the solar luminosity—the power output of the Sun (say, in watts)—based 
on the solar flux at the top of the Earth’s atmosphere. 

Problem 3.31 Total solar power falling on Earth 

Estimate the total solar power falling on the Earth’s surface. How does it compare 
to the world energy consumption? 

Problem 3.32 Explaining the difference between ocean and land rainfall 
Why is the average rainfall over land lower than over the ocean? 

3.4.5 Residence times 
Because of evaporation, the atmosphere contains a lot of water: roughly
1.3 × 1016 kilograms—as vapor, liquid, and solid. This mass tells us the res-
idence time: how long a water molecule remains in the atmosphere before 
it falls back to the Earth as precipitation (the overall name for rain, snow, or 
hail). The estimate will illustrate a new way to use box models. 
Here is the box representing the water in the atmosphere (assumed to need 
only one box). The box is filled by evaporation and emptied by rainfall. 

mwater
in atmosphere

evaporation rainfall

Imagine that the box is a water hose holding a mass 𝑚water. How long does 
a water molecule take to get from one end of the hose to other? This time 
is the average time taken by a water molecule from evaporation until its 
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return to the Earth as precipitation. In the box model, the time is the time 
to completely fill the box. This time constant, denoted 𝜏 , is 

mass of water in the atmosphere 
𝜏 = (3.50)rate of inflow or outflow, as a mass per time . 

The numerator is 𝑚water. For the denominator, we convert rainfall, which 
is a speed (for example, in meters per year), to a mass flow rate (mass per 
time). Let’s name the rainfall speed 𝑣rainfall. The corresponding mass flux 
is, using our results from Section 3.4.2, 𝜌water𝑣rainfall: 
mass flux = density × flow speed (3.51) ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ = 𝜌water𝑣rainfall. 

𝜌water 𝑣rainfall 

Flux is flow per area, so we multiply mass flux by the Earth’s surface area
𝐴Earth to get the mass flow: 
mass flow = 𝜌water𝑣rainfall 𝐴Earth. (3.52) 

At this rate, the fill time is 
𝑚water 𝜏 = . (3.53)𝜌water𝑣rainfall 𝐴Earth 

There are two ways to evaluate this time: the direct but less insightful 
method, and the less direct but more insightful method. Let’s first do the 
direct method, so that we at least have an estimate for 𝜏 : 

1.3 × 1016 kg 
𝜏 ∼ (3.54)

103 kg m−3 × 1 m yr−1 × 4𝜋 × (6×106 m)2 
≈ 2.5×10−2 yr, 

which is roughly 10 days. Therefore, after evaporating, water remains in 
the atmosphere for roughly 10 days.
 
For the less direct but more insightful method, notice which quantities are
 
not reasonably sized—that is, not graspable by our minds—namely, 𝑚water
 
and 𝐴Earth. But the combination 𝑚water/𝜌water𝐴Earth is reasonably sized:
 

𝑚water 1.3 × 1016 kg 
∼ (3.55)𝜌water 𝐴Earth 103 kg m−3 × 4𝜋 × (6×106 m)2 

≈ 2.5×10−2 m. 

This length, 2.5 centimeters, has a physical interpretation. If all water, snow, 
and vapor fell out of the atmosphere to the surface of the Earth, it would 
form an additional global ocean 2.5 centimeters deep. 
Rainfall takes away 100 centimeters per year. Therefore, draining this ocean, 
with a 2.5-centimeter depth, requires 2.5×10−2 years or about 10 days. This 
time is, once again, the residence time of water in the atmosphere. 

http:speed(3.51
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3.5 Drag using conservation of energy 
A box model will next help us estimate drag forces. Drag, one of the most 
difficult subjects in physics, is also one of the most important forces in every-
day life. If it weren’t for drag, bicycling, flying, and driving would be a 
breeze. Because of drag, locomotion requires energy. Rigorously calculat-
ing a drag force requires solving the Navier–Stokes equations: 

(𝐯⋅∇)𝐯 + 
∂𝐯 

𝜌∇𝑝 + 𝜈∇2𝐯. (3.56)∂𝑡 = − 
1 

They are coupled, nonlinear, partial-differential equations. You could read 
many volumes describing the mathematics to solve these equations. Even 
then, solutions are known only in a few circumstances—for example, a 
sphere moving slowly in a viscous fluid or moving at any speed in a non-
viscous fluid. However, a nonviscous fluid—what Feynman [14, Section 
II-40-2], quoting John von Neumann, rightly disparages as “dry water”—is 
particularly irrelevant to real life because viscosity is the cause of drag, so a 
zero-viscosity solution predicts zero drag! Using a box model and conser-
vation of energy is a simple and insightful alternative. 

3.5.1 Box model for drag 
We will first estimate the energy lost to drag as an ob-
ject moves through a fluid, as in Section 3.2.1. From the 
energy, we will find the drag force. To quantify the the 
problem, imagine pushing an object of cross-sectional 
area 𝐴cs at speed 𝑣 for a distance 𝑑. The object sweeps out a tube of fluid. 
(The tube length 𝑑 is arbitrary, but it will cancel out of the force.) 

d

Acs v

How much energy is consumed by drag? 

Energy is consumed because the object gives kinetic energy to the fluid 
(say, water or air); viscosity, as we will model in Section 6.4.4, then turns 
this energy into heat. The kinetic energy depends on the mass of the fluid 
and on the speed it is given. The mass of fluid in the tube is 𝜌𝐴cs𝑑, where 
𝜌 is the fluid density. The speed imparted to the fluid is roughly the speed 
of the object, which is 𝑣. Therefore, the kinetic energy given to the fluid is 
roughly 𝜌𝐴cs𝑣2𝑑: 

𝐸kinetic ∼ 𝜌𝐴cs𝑑 × 𝑣2 = 𝜌𝐴cs𝑣2𝑑. (3.57)⏟ 
mass 
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This calculation ignores the factor of one-half in the definition of kinetic 
energy. However, the other approximations, such as assuming that only 
the swept-out fluid is affected or that all the swept-out fluid gets speed 𝑣, 
are at least as inaccurate. For this rough calculation, there is little point in 
including the factor of one-half. 
This kinetic energy is roughly the energy converted into heat. Therefore, 
the energy lost to drag is roughly 𝜌𝐴cs𝑣2𝑑. The drag force is then given by 

energy lost to drag = drag force × distance . (3.58)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ 
∼𝜌𝐴cs𝑣2𝑑 𝐹drag 𝑑 

Now we can solve for the drag force: 
𝐹drag ∼ 𝜌𝐴cs𝑣2. (3.59) 

As expected, the arbitrary distance 𝑑 has canceled out. 

3.5.2 Testing the analysis with a home experiment 
To test this analysis, try the following home experiment. Photocopy or 
print this page at 200 percent enlargement (a factor of 2 larger in width 
and height), cut out the template, and tape the two straight edges together 
to make a cone: 

3.5 cm
⟶ (3.60) 

We could use many other shapes. However, a cone is easy to construct, and 
also falls without swishing back and forth (as a sheet of paper would) or 
flipping over (as long as you drop it point down). 
We’ll test the analysis by predicting the cone’s terminal speed: that is, 
its steady speed while falling. When the cone is falling at this constant 
speed, its acceleration is zero, so the net force on it is, by Newton’s second 
law, also zero. Thus, the drag force 𝐹drag equals the cone’s weight 𝑚𝑔 
(where 𝑚 is the cone’s mass and 𝑔 is the gravitational acceleration): 

𝜌air𝑣2𝐴cs ∼ 𝑚𝑔. (3.61) 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

86 3 Symmetry and conservation 

The terminal speed thus reveals the drag force. (Even though the drag force 
equals the weight, the left side is only an approximation to the drag force, 

(3.62) 

(3.63) 
𝜎paper 

Here, 𝐴paper is the area of the cone template; and the areal density 𝜎paper, 
named in analogy to the regular (volume) density, is the mass per area of 
paper. Although areal density seems like a strange quantity to define, it is 
used worldwide to describe the “weight” of different papers. 

The quotient 𝑚/𝐴cs contains the ratio 𝐴paper/𝐴cs. Rather than estimating 
both areas and finding their ratio, let’s estimate the ratio directly. 

so we connect the left and right sides with a single approximation sign ∼.) 
The terminal speed 𝑣term is then 

𝑣term ∼ 
𝑚𝑔 

𝐴cs𝜌air 
. 

The mass of the cone is 

𝑚 = 𝐴paper × areal density of paper.⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

How does the cross-sectional area 𝐴cs compare to the area of the paper? 

Because the cone’s circumference is three-quarters of the circum-
ference of the full circle, its cross-sectional radius is three-quar-
ters of the radius 𝑟 of the template circle. Therefore, 

2
𝐴cs = 𝜋 ( 

3
4𝑟) . (3.64) 

r

cone circumfere
nce

Because the template is three-quarters of a full circle, 

𝐴paper = 4
3𝜋𝑟2. (3.65) 

The paper area has one factor of three-quarters, whereas the cross-sectional 
area has two factors of three-quarters, so 𝐴paper/𝐴cs = 4/3. Now 𝑣term sim-
plifies as follows: 

𝑚 1/2 1/2


⎛⏞⏞⏞⏞⏞⏞⏞ × 𝑔 ⎞ ⎛ 3
4𝜎paper 𝑔 ⎞
𝐴paper 𝜎paper𝑣term ∼ = . (3.66)

⎜⎜⎜⎜⎜
⎟⎟⎟⎟⎟ 

⎜⎜⎜⎜⎜ 𝐴cs 𝜌air 
⎟⎟⎟⎟⎟ 𝜌air


⎝ ⎠ ⎝ ⎠
 

The only unfamiliar number is the areal density 𝜎paper, the mass per area 
of paper. Fortunately, areal density is used commercially, so most reams of 
printer paper state their areal density: typically, 80 grams per square meter. 
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Is this 𝜎paper consistent with the estimates for a dollar bill in Section 1.1? 

There we estimated that the thickness 𝑡 of a dollar bill, or of paper in general, 
is approximately 0.01 centimeters. The regular (volume) density 𝜌 would 
then be 0.8 grams per cubic centimeter: 

𝜎paper ≈ 
80 gm−2 1 m2 g

𝜌paper = × 
104 cm2 

= 0.8 (3.67)𝑡 10−2 cm cm3 . 

This density, slightly below the density of water, is a good guess for the 
density of paper, which originates as wood (which barely floats on water). 
Therefore, our estimate in Section 1.1 is consistent with the proposed areal 
density of 80 grams per square meter. 
After putting in the constants, the cone’s terminal speed is predicted to be 
roughly 0.9 meters per second: 

1/2𝜎paper 𝑔
⎛ ⏞⏞⏞⏞⏞⏞⏞⏞⏞ × ⏞⏞⏞⏞⏞ ⎞4 8 × 10−2 kg m−2 10 ms−2

𝑣term ∼ 3 × ≈ 0.9 ms−1. (3.68) 
⎜⎜⎜⎜⎜⎜⎜ 1.2 kg m−3

⎟⎟⎟⎟⎟⎟⎟⏟⏟⏟⏟⏟
⎝ 𝜌air ⎠ 

To test the prediction and, with it, the analysis justifying it, I held the cone 
slightly above my head, from about 2 meters high. After I let the cone go, 
it fell for almost exactly 2 seconds before it hit the ground—for a speed of 
roughly 1 meter per second, very close to the prediction. Box models and 
conservation triumph again! 

3.5.3 Cycling 
In introducing the analysis of drag, I said that drag is one of the most impor-
tant physical effects in everyday life. Our analysis of drag will now help us 
understand the physics of a fantastically efficient form of locomotion—cy-
cling (for its efficiency, see Problem 3.34). 

What is the world-record cycling speed? 

The first task is to define the kind of world record. Let’s analyze cycling on 
level ground using a regular bicycle, even though faster speeds are possible 
riding downhill or on special bicycles. In bicycling, energy goes into rolling 
resistance, friction in the chain and gears, and air drag. The importance of 
drag rises rapidly with speed, due to the factor of 𝑣2 in the drag force, so at 
high-enough speeds drag is the dominant consumer of energy. 
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Therefore, let’s simplify the analysis by assuming that drag is the only con-
sumer of energy. At the maximum cycling speed, the power consumed by
 
drag equals the maximum power that the rider can supply. The problem
 
therefore divides into two estimates: the power consumed by drag (𝑃drag)
 
and the power that an athlete can supply (𝑃athlete).
 
Power is force times velocity:
 

energy force × distance power = = = force × velocity. (3.69)time time 
Therefore, 

𝑃drag = 𝐹drag𝑣max ∼ 𝜌𝑣3𝐴cs. (3.70) 

Setting 𝑃drag = 𝑃athlete allows us to solve for the maximum speed: 
1/3

𝑣max ∼ ( 
𝑃athlete ) , (3.71)𝜌air 𝐴cs 

where 𝐴cs is the cyclist’s cross-sectional area. In Section 1.7.2, we estimated 
𝑃athlete as 300 watts. To estimate the cross-sectional area, divide it into a 
width and a height. The width is a body width—say, 0.4 meters. A racing 
cyclist crouches, so the height is roughly 1 meter rather than a full 2 meters. 
Then 𝐴cs is roughly 0.4 square meters. 
Plugging in the numbers gives 

1/3300 W∼ ( . (3.72)𝑣max 1 kg m−3 × 0.4 m2)

That formula, with its mix of watts, meters, and seconds, looks suspicious. Are the 
units correct? 

Let’s translate a watt stepwise into meters, kilograms, and seconds, using 
the definitions of a watt, joule, and newton: 

N ≡ 
kg m 

W ≡ s
J , J ≡ Nm, 

s2
. (3.73) 

The three definitions are represented in the next divide-and-conquer tree, 
one definition at each nonleaf node. Propagating the leaves toward the root 
gives us the following expression for the watt in terms of meters, kilograms, 
and seconds (the fundamental units in the SI system): 

W ≡ 
kg m2 

. (3.74)
s3 
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The units in 𝑣max become 

⎛⎜⎜⎜⎜⎜⎜ 
⎝ 

W 

kg m2 s−3⏞⏞⏞⏞⏞⏞⏞ 

kg m−3 × m2 

⎞⎟⎟⎟⎟⎟⎟ 
⎠ 

1/3 

= ( 
s−3 

m−3 
)

1/3 

. (3.75) 

The kilograms cancel, as do the square meters. The 
cube root then contains only meters cubed over sec-
onds cubed; therefore, the units for 𝑣max are meters per 
second. 

𝑣max ∼ ⎛⎜ ⎟⎞
1/3 

= (1000)1/3 ms−1 = 10 ms−1. (3.76)
⎝1 kg m−3 × 0.4 m2⎠ 

Let’s estimate how many meters per second. Don’t let 
the cube root frighten you into using a calculator. We 
can do the arithmetic mentally, if we massage (adjust) 
the numbers slightly. If only the power were 400 watts 
(or instead the area were 0.3 square meters)! Instead of wishing, make it 
so—and don’t worry about the loss of accuracy: Because we have neglected 
the drag coefficient, our speed will be approximate anyway. Then the cube 

calculation:easyanbecomesroot 

W
kg m2 s−3

J
kg m2 s−2 s−1

kg m

m
N

kg m s−2

s−2

300 400 W 

In more familiar units, the record speed is 22 miles per hour or 36 kilome-
ters per hour. As a comparison, the world 1-hour record—cycling as far as 
possible in 1 hour—is 49.7 kilometers or 30.9 miles, set in 2005 by Ondřej 
Sosenka. Our prediction, based on the conservation analysis of drag, is 
roughly 70 percent of the actual value. 

How can such an estimate be considered useful? 

High accuracy often requires analyzing and tracking many physical effects. 
The calculations and bookkeeping can easily obscure the most important 
effect and its core idea, costing us insight and understanding. Therefore, 
almost everywhere in this book, the goal is an estimate within a factor of 2 
or 3. That level of agreement is usually enough to convince us that our 
model contains the situation’s essential features. 
Here, our predicted speed is only 30 percent lower than the actual value, so 
our model of the energy cost of cycling must be broadly correct. Its main 
error arises from the factor of one-half that we ignored when estimating the 
drag force—as you can check by doing Problem 3.33. 
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3.5.4 Fuel efficiency of automobiles 
Bicycles, in many places, are overshadowed by cars. From the analysis of 
drag, we can estimate the fuel consumption of a car (at highway speeds). 
Most of the world measures fuel consumption in liters of fuel per 100 kilo-
meters of driving. The United States uses the reciprocal quantity, fuel effi-
ciency—distance per volume of fuel—measured in miles per US gallon. To 
develop unit flexibility, we’ll do the calculation using both systems. 
For a bicycle, we compared powers: the power consumed by drag with the 
power supplied by an athlete. For a car, we are interested in the fuel con-
sumption, which is related to the energy contained in the fuel. Therefore, 
we need to compare energies. For cars traveling at highway speeds, most 
of the energy is consumed fighting drag. Therefore, the energy consumed 
by drag equals the energy supplied by the fuel. 
Driving a distance 𝑑, which will be 100 kilometers, consumes an energy 

𝐸drag ∼ 𝜌air𝑣2𝐴cs 𝑑.	 (3.77) 

The fuel provides an energy 
𝐸fuel ∼ energy density × fuel mass (3.78) ⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ = ℰfuel 𝜌fuel𝑉fuel. 

ℰfuel 𝜌fuel 𝑉fuel 

Because 𝐸fuel ∼ 𝐸drag, the volume of fuel required is given by 

𝐸drag 𝜌air 𝑣2𝐴cs𝑉fuel ∼ ∼ 𝑑.	 (3.79)
𝜌fuelℰfuel 𝜌fuel ℰfuel⏟⏟⏟⏟⏟⏟⏟ 

𝐴consumption 

Because the left-hand side, 𝑉fuel, is a volume, the complicated factor in front 
of the travel distance 𝑑 must be an area. Let’s make an abstraction by nam-
ing this area. Because it is proportional to fuel consumption, a self-docu-
menting name is 𝐴consumption. Now let’s estimate the quantities in it. 

1.	 Density ratio 𝜌air/𝜌fuel. The density of gasoline is similar to the density of 
water, so the density ratio is roughly 10−3. 

2.	 Speed 𝑣. A highway speed is roughly 100 kilometers per hour (60 miles 
per hour) or 30 meters per second. (A useful approximation for Ameri-
cans is that 1 meter per second is roughly 2 miles per hour.) 

3.	 Energy density ℰfuel. We estimated this quantity Section 2.1 as roughly 
10 kilocalories per gram or 40 megajoules per kilogram. 

http:mass(3.78
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4.	 Cross-sectional area 𝐴cs. A car’s cross section is about 2 me-
ters across by 1.5 meters high, so 𝐴cs ∼ 3 square meters. 

With these values, 
𝑣2 𝐴cs

2 m

1.5 m
car

(cross section)

⏞⏞⏞⏞⏞ × ⏞103 m2 s−2 3 m2
𝐴consumption ∼ 10−3 × ≈ 8×10−8 m2. (3.80)

4 × 107 J kg−1
⏟⏟⏟⏟⏟⏟⏟ 

ℰfuel 

To find the fuel consumption, which is the volume of fuel per 100 kilometers 
of driving, simply multiply 𝐴consumption by 𝑑 = 100 kilometers or 105 meters, 
and then convert to liters to get 8 liters per 100 kilometers: 

𝑉fuel ≈ 8 × 10−8 m2
⏟⏟⏟⏟⏟⏟⏟ 

𝐴consumption 

× 105 m⏟ 
𝑑 

× 
103 ℓ 
1 m3 

= 8 ℓ. (3.81) 

For the fuel efficiency, we use 𝐴consumption in the form 𝑑 = 𝑉fuel/𝐴consumption 

to find the distance traveled on 1 gallon of fuel, converting the gallon to 
cubic meters: 

𝑑 ∼ 

𝑉fuel 

1 gallon⏞⏞⏞⏞⏞ 

8 × 10−8 m2
⏟⏟⏟⏟⏟⏟⏟ 

𝐴consumption 

× 
4 ℓ 

1 gallon 
× 

10−3 m 3 

1 ℓ 
= 5 × 104 m. (3.82) 

The struck-through exponent of 3 in the m 3 indicates that the cubic me-
ters became linear meters, as a result of cancellation with the m2 in the 
𝐴consumption. The resulting distance is 50 kilometers or 30 miles. The pre-
dicted fuel efficiency is thus roughly 30 miles per gallon. 
This prediction is very close to the official values. For example, for new mid-
size American cars (in 2013), fuel efficiencies of nonelectric vehicles range 
from 16 to 43 miles per gallon, with a mean and median of 30 miles per 
gallon (7.8 liters per 100 kilometers). 
The fuel-efficiency and fuel-consumption predictions are far more accurate 
than we deserve, given the many approximations! For example, we ignored 
all energy losses except for drag. We also used a very rough drag force
𝜌air𝑣2𝐴cs, derived from a reasonable but crude conservation argument. Yet, 
like Pippi Longstocking, we came out right anyway. 

What went right? 
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The analysis neglects two important factors, so such accuracy is possible 
only if these factors cancel. The first factor is the dimensionless constant 
hidden in the single approximation sign of the drag force: 

𝐹drag ∼ 𝜌air𝐴cs𝑣2. (3.83) 

Including the dimensionless prefactor (shown in gray), the drag force is 

𝐹drag 2
1𝑐d 𝜌air𝐴cs𝑣2, (3.84)= 

where 𝑐d is the drag coefficient (introduced in Section 3.2.1). The factor of 
one-half comes from the one-half in the definition of kinetic energy. The 
drag coefficient is the remaining adjustment, and its origin is the subject of 
Section 5.3.2. For now, we need to know only that, for a typical car, 𝑐d ≈ 1/2. 
Therefore, the dimensionless prefactor hidden in the single approximation 
sign is approximately 1/4. 

Based on this more accurate drag force, will cars use more or less than 8 liters of 
fuel per 100 kilometers? 

Including the 𝑐d/2 reduces the drag force and the fuel consumption by a fac-
tor of 4. Therefore, cars would travel 120 miles on 1 gallon of fuel or would 
consume only 2 liters per 100 kilometers. This more careful prediction is 
far too optimistic—and far worse than the original, simpler estimate. 

What other effect did we neglect? 

The engine efficiency—a typical combustion engine, whether gasoline or 
human, is only about 25 percent efficient: An engine extracts only one-quar-
ter of the combustion energy in the fuel; the remaining three-quarters turns 
into heat without doing mechanical work. Including this factor increases 
our estimate of the fuel consumption by a factor of 4. 
The engine efficiency and the more accurate drag force together give the 
following estimate of the fuel consumption, with the new effect in gray: 

1
 
2𝑐d 𝜌air𝑣2𝐴cs
 𝑑. (3.85)𝑉fuel ≈ 0.25 

× 
𝜌fuelℰfuel 

The 0.25 in the denominator, from the engine efficiency, cancels the 12𝑐d in 
the numerator. That is why our carefree estimate, which neglected both fac-
tors, was so accurate. The moral, which I intend only half jokingly: Neglect 
many factors, so that the errors can cancel one another out. 
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Problem 3.33 Adjusting the cycling record 

Our estimate of the world 1-hour record as roughly 35 kilometers (Section 3.5.3) 
ignored the drag coefficient. For a bicyclist, 𝑐d ≈ 1. Will including the drag coeffi-
cient improve or worsen the prediction in comparison with the actual world record 
(roughly 50 kilometers)? Answer that question before making the new prediction! 
What is the revised prediction? 

Problem 3.34 Bicyclist fuel efficiency 
What is the fuel consumption and efficiency of a bicyclist powered by peanut but-
ter? Express your estimate as an efficiency (miles per gallon of peanut butter) and 
a consumption (liters of peanut butter per 100 kilometers). How does a bicycle 
compare with a car? 

3.6 Lift using conservation of momentum 

If drag is a drag, our next force, which is the companion to drag, should lift 
our spirits. Using conservation and box models, we will estimate the power 
required to generate lift. There are two main cases: hovering flight—for 
example, a hummingbird—and forward flight. Compared to forward flight, 
hovering flight has one fewer parameter (there is no forward velocity), so 
let’s begin with its analysis, for a bird of mass 𝑚. 

3.6.1 Hovering: Hummingbirds 

How much power does a hummingbird require to hover? 

Hovering demands power because a hummingbird has weight: 
The Earth, via the gravitational field, supplies the hummingbird 
with downward momentum. The Earth therefore loses downward 
momentum or, equivalently, acquires upward momentum. (Thus, 
the Earth accelerates upward toward the hummingbird, although 
very, very slowly.) This flow of momentum can be tracked with 
a box model. Let’s draw the box around the Earth–hummingbird 

bird

earth

downward
momentum

box

system and imagine the system as the whole universe. The box contains 
a fixed (constant) amount of downward momentum, so the gravitational 
field can transfer downward momentum only within the box. In particular, 
the field transfers downward momentum from the Earth to the humming-
bird. This picture is a fancy way of saying that the Earth exerts a downward 
force on the hummingbird, but the fancy way shows us what the hovering 
hummingbird must do to stay aloft. 
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If the hummingbird keeps this downward momentum, it would accu-
mulate downward speed—and crash to the ground. Fortunately, the 
box has one more constituent: the fluid (air). The hummingbird gives 
the downward momentum to the air: It flaps its wings and sends air 
downward. Lift, like drag, requires a fluid. (The air pushes down on 
the Earth, returning the downward momentum that the Earth lost 
via the gravitational field. Thus, the Earth does not accelerate.) 

How much power is required to send air downward? 

bird

earth

air

box

Power is force times speed. The force is the gravitational force 𝑚𝑔 that the 
hummingbird is unloading onto the air. Estimating the air’s downward 
speed 𝑣𝑧 requires careful thought about the flow of momentum. The air car-
ries the downward momentum supplied to the hummingbird. The 
momentum supply (a momentum rate or momentum per time) is 
the force 𝑚𝑔 : Force is simply momentum per time. Because mo-
mentum flux is momentum per time per area, 

𝑚𝑔 = momentum flux × area. (3.86) 

When we first studied flux, in Section 3.4.2, we derived that 
flux of stuff = density of stuff × flow speed. (3.87) 

Because our stuff is momentum, this relation takes the particular form 

area ∼ L2

vz

downward
mom. density

∼ ρairvz

momentum flux = momentum density × flow speed. (3.88) 

Substituting this momentum flux into 𝑚𝑔 = momentum flux × area, 
𝑚𝑔 = momentum density × flow speed × area. (3.89) 

Momentum density is momentum (𝑚air𝑣𝑧) per volume, so it is 𝜌air𝑣𝑧. The 
flow speed is 𝑣𝑧. Thus, 

𝑚𝑔 = 𝜌air𝑣𝑧 × 𝑣𝑧 × area = 𝜌air𝑣𝑧
2 × area. (3.90) 

To complete this equation, so that it gives us the downward velocity 𝑣𝑧, we 
need to estimate the area. It is the area over which the hummingbird di-
rects air downward. It is roughly 𝐿2, where 𝐿 is the wingspan (wingtip to 
wingtip). Even though the wings do not fill that entire area, the relevant 
area is still 𝐿2, because the wings disturb air in a region whose size is com-
parable to their longest dimension. (For this reason, high-efficiency planes, 
such as gliders, have very long wings.) 
Using 𝐿2 as the estimate for the area, we get 
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𝑚𝑔 ∼ 𝜌air𝑣 2𝑧 𝐿
2, (3.91) 

so the downward velocity is 

𝑣𝑧 ∼ 
𝑚𝑔 

𝜌air𝐿2 
. (3.92) 

With this downward velocity and with the downward force 𝑚𝑔 , the power 
𝑃 (not to be confused with momentum!) is 

𝑃 = 𝐹𝑣𝑧 ∼ 𝑚𝑔 
𝑚𝑔 

𝜌air𝐿2 
. (3.93) 

Let’s estimate this power for an actual hummingbird: the Calliope hum-
mingbird, the smallest bird in North America. Its two relevant characteris-

3.6 Lift using conservation of momentum 

tics are the following: 

wingspan 𝐿 ≈ 11 cm, 
(3.94) 

mass 𝑚 ≈ 2.5 g. 

As the first step in estimating the hovering power, we’ll estimate the down-
ward air speed using our formula for 𝑣𝑧. The result is that, to stay aloft, the 
hummingbird sends air downward at roughly 1.3 meters per second: 

𝑚𝑔 

⏞⏞⏞⏞⏞⏞⏞ 2.5 × 10−2 N ⎞𝑣𝑧 ∼ ⎛⎜ ⎟
1/2 

≈ 1.3 ms−1. (3.95)
1.2 kg m−3 × 1.2×10−2 m2⎝⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ ⎠ 

𝜌air 𝐿2 

The resulting power consumption is roughly 30 milliwatts: 

𝑃 ∼ 2.5×10−2 N × 1.3 ms−1 ≈ 3×10−2 W . (3.96) 
𝑚𝑔 𝑣𝑧 30 mW 

⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ 

(Because animal metabolism, like a car engine, is only about 25 percent effi-
cient, the hummingbird needs to eat food at a rate corresponding to 120 
milliwatts.) 

This power seems small: Even an (incandescent) flashlight bulb, for exam-
ple, requires a few watts. However, as a power per mass, it looks more 
significant: 

𝑃 3×10−2 W ≈ 10 
W 

(3.97)𝑚 
∼ 

2.5×10−3 kg kg . 

In comparison, the world-champion cyclist Lance Armstrong, with one of 
the highest human power outputs, was measured to have a power output of 
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7 watts per kilogram (Section 1.7.2). However, for a chemically unenhanced 
world-class athlete, 5 watts per kilogram is a more typical value. According 
to our estimates, hummingbird muscles should be twice as powerful as this 
world-class human value! Even for a small bird, hovering is hard work. 

Problem 3.35 Fueling hovering 
How much nectar must a hummingbird drink, as a fraction of its body mass, in 
order to hover for its working day (roughly 8 hours)? By mass, nectar is roughly 
50 percent sugar. 

Problem 3.36 Human hovering 
How much power would a person have to put out in order to hover by flapping 
his or her arms? 

3.6.2 Lift in forward flight 
Now that we understand the fundamental mechanism 
of lift—discarding downward momentum by giving it 
to the air—we are ready to study forward flight: the 
flight of a migrating bird or of a plane. Forward flight 
is more complicated than hovering because forward 
flight has two velocities: the plane’s forward velocity
𝑣 and the downward component 𝑣𝑧 of the air’s veloc-
ity after passing around the wing. In forward flight, 𝑣𝑧 depends not only on 
the plane’s weight and wingspan, but also on the plane’s forward velocity. 

body

wing

wing

L v

To stay aloft, the plane, like the hummingbird, must deflect air downward. 

wing
(side view)v

air

vz

The wing does this magic using complicated fluid mechanics, but we need 
not investigate it. All the gymnastics are hidden in the box. We need just 
the downward velocity 𝑣𝑧 required to keep the plane aloft, and the power 
required to give the air that much downward velocity. The power is, as 
with hovering, 𝑚𝑔𝑣𝑧. However, the downward velocity 𝑣𝑧 is not the same 
as in hovering. 

It is determined by a slightly different momentum-flow diagram. It shows 
the air flow before and after it meets the wing. 
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downward
mom. density

∼ ρairvz

Before the air reaches the wing (the left tube), the air has zero downward 
momentum. As in the analysis of hovering flight, the Earth supplies down-
ward momentum to the plane, which passes it onto the air. This downward 
momentum is carried away by the air after the wing (the right tube). 

As with any flux, the rate of transfer of downward momentum is 

flux of downward momentum × area. (3.98) 

As in the analysis of the hummingbird, this rate must be 𝑚𝑔 , so that the 
plane stays aloft. The first factor, the flux of downward momentum, is 

density of downward momentum × flow speed. (3.99) 

Therefore, 

𝑚𝑔 = density of downward momentum × flow speed × area. (3.100) 

As in the analysis of hovering, the density of downward momentum is 𝜌𝑣𝑧. 

In contrast to the analysis of hovering, where the stuff (downward momen-
tum) is carried by the air moving downward, here the stuff is carried by air 
moving to the right. Thus, where the flow speed in hovering was the down-
ward air speed 𝑣𝑧, in forward flight the flow speed is the forward velocity 𝑣. 

As in the analysis of hovering, the relevant area 
is the squared wingspan 𝐿2, because the wings al-
ter the airflow over a distance comparable to their 
longest dimension, which is their wingspan. You 
can see this effect in a NASA photograph of an 
airplane flying through a cloud of smoke. The gi-
ant swirl, known as the wake vortex, has a diam-
eter comparable to the plane’s wingspan. Large 
planes can generate vortices that flip over small 
planes. Thus, when coming in for landing, planes 
must maintain enough separation to give these vortices time to dissipate. 
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With these estimates, the equation for 𝑣𝑧 becomes 

𝑚𝑔 ∼ 𝜌air𝑣𝑧 × 𝑣 × 𝐿2 . (3.101)⏟ ⏟ ⏟ ⏟ 
transfer rate downward-momentum density flow speed area 

Now we can solve for the downward air speed: 
𝑚𝑔

𝑣𝑧 ∼ (3.102)
𝜌air𝑣𝐿2 

. 

Now we can estimate the power required to generate lift in forward flight: 
𝑚𝑔 (𝑚𝑔)2

𝑃 = force × velocity ∼ 𝑚𝑔 × = (3.103)⏟ ⏟⏟⏟⏟⏟ 𝜌air𝑣𝐿2 𝜌air𝑣𝐿2 
. 

𝑚𝑔 𝑣𝑧 

Here is a comparison of hovering and forward flight.
 

hovering forward flight 

deflection area 𝐿2 𝐿2 

downward-momentum density 𝜌air𝑣𝑧 𝜌air𝑣𝑧 

flow speed 𝑣𝑧 𝑣 

downward-momentum flux 𝜌air𝑣 2𝑧 𝜌air𝑣𝑧𝑣 

downward-momentum flow 𝑚𝑔 𝜌air𝑣2
𝑧 𝐿

2 𝜌air𝑣𝑧𝑣𝐿2 

downward velocity 𝑣𝑧 𝑚𝑔/𝜌air𝐿2 𝑚𝑔/𝜌air𝑣𝐿2 

power to generate lift (𝑚𝑔𝑣𝑧) 𝑚𝑔 𝑚𝑔/𝜌air𝐿2 (𝑚𝑔)2/𝜌air𝑣𝐿2 

In contrast to hovering, in forward flight the power contains the forward 
velocity in the denominator—a location that would produce nonsense for 
hovering, where the forward velocity is zero. 

As we did for hovering flight using the Calliope hummingbird, let’s apply 
our knowledge of forward flight to an actual object. The object will be a 
Boeing 747-400 jumbo jet, and we will estimate the power that it requires in 
order to take off. A 747 has a wingspan 𝐿 of approximately 60 meters, and 
a maximum takeoff mass 𝑚 of approximately 4 × 105 kilograms (400 tons). 

We’ll estimate the power in two steps: the weight 𝑚𝑔 and then the down-
ward air speed 𝑣𝑧. The weight is the easy step: It is just 4 × 106 newtons. 
The downward air speed 𝑣𝑧 is 𝑚𝑔/𝜌air𝑣𝐿2. The only unknown quantity is 
the takeoff speed 𝑣. You can estimate it by estimating the plane’s acceler-
ation 𝑎 while taxiing on the runway and by estimating the duration of the 
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acceleration. When I last flew on a 747, I measured the acceleration by sus-
pending my key chain from a string and estimating the angle 𝜃 that it made 
with vertical (perpendicular to the ground). Then tan 𝜃 = 𝑎/𝑔 . For small 𝜃 , 
the relation simplifies to 𝑎/𝑔 ≈ 𝜃 . I found 𝜃 ≈ 0.2, so the acceleration was 
about 0.2𝑔 or 2 meters per second per second. This acceleration lasted for 
about 40 seconds, giving a takeoff speed of 𝑣 ≈ 80 meters per second (180 
miles per hour). 
The resulting downward speed 𝑣𝑧 is roughly 12 meters per second: 

𝑚𝑔 

⏞⏞⏞⏞⏞ 4 × 106 N𝑣𝑧 ∼ ≈ 12 ms−1. (3.104)
1.2 kg m−3 × 80 ms−1 × 3.6×103 m2
⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 

𝜌air 𝑣 𝐿2 

Then the power required to generate lift is roughly 50 megawatts: 
𝑃 ∼ 𝑚𝑔𝑣𝑧 ≈ 4 × 106 N × 12 ms−1 ≈ 5×107 W. (3.105) 

Let’s see whether these estimates are reasonable. According to the plane’s 
technical documentation, the 747-400’s four engines together can provide 
roughly 1 meganewton of thrust. This thrust can accelerate the plane, with 
a mass of 4 × 105 kilograms, at 2.5 meters per second. This value is in good 
agreement with my estimate of 2 meters per second, made by suspending 
a key chain from a string and turning it into a plumb line. 
As another check: At takeoff, when 𝑣 is roughly 80 meters per second, the 
meganewton of thrust corresponds to a power output 𝐹𝑣 of 80 megawatts. 
This output is comparable to our estimate of 50 megawatts for the power 
to lift the plane off the ground. After liftoff, the engines use some of their 
power to lift the plane and some to accelerate the plane, because the plane 
still needs to reach its cruising speed of 250 meters per second. 
Symmetry and conservation make even fluid dynamics tractable. 

3.7 Summary and further problems 
In the midst of change, find what does not change—the invariant or con-
served quantity. Finding these quantities simplifies problems: We focus 
on the few quantities that do not change rather than on the many ways in 
which quantities do change. An instance of this idea with wide application 
is a box model, where what goes in must come out. By choosing suitable 
boxes, we could estimate rainfalls and drag forces, and understand lift. 
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Problem 3.37 Raindrop speed 

Use the drag force 𝐹drag ∼ 𝜌𝐴cs𝑣2 to estimate the terminal speed of a typical rain-
drop with a diameter of 0.5 centimeters. How could you check the prediction? 

Problem 3.38 Average value of sin squared 

Use symmetry to find the average value of sin2𝑡 over the interval 𝑡 = [0, 𝜋]. 

Problem 3.39 Moment of inertia of a spherical shell 

r

axisThe moment of inertia of an object about an axis of rotation is 

∑ 𝑚𝑖𝑑 2𝑖 , (3.106) 

summed over all mass points 𝑖, where 𝑑𝑖 is the distance of the 
point from an axis of rotation. Use symmetry to find the moment 
of inertia of a spherical shell with mass 𝑚 and radius 𝑟 about an 
axis through its center. You shouldn’t need to do any integrals! 

Problem 3.40 Flying bicyclist 
Estimate the wingspan a world-champion bicyclist would require in order to get 
enough lift for takeoff. 

Problem 3.41 Maximum-gain frequency for a second-order system 

L C

R

Vin Vout

ground

In this problem, you use symmetry to maximize 
the gain of an 𝐿𝑅𝐶 circuit or a spring–mass system 
with damping (using the analogy in Section 2.4.1). 
The gain 𝐺, which is the amplitude ratio 𝑉out/𝑉in, 
depends on the signal’s angular frequency 𝜔: 

𝐺(𝜔) = 

𝑗𝜔 
𝜔0 

1 + 
𝑗 
𝑄 

𝜔 
𝜔0 

− 
𝜔2 

𝜔2
0 

(3.107) 

where 𝑗 = −1 , 𝜔0 is the natural frequency of the system, and 𝑄, the quality factor, 
is a dimensionless measure of the damping. Don’t worry about where the gain for-
mula comes from: You can derive it using the impedance method (Problem 2.22), 
but the purpose of this problem is to maximize its magnitude ∣𝐺(𝜔)∣. Do so by 
finding a symmetry operation on 𝜔 that leaves ∣𝐺(𝜔)∣ invariant. 

Problem 3.42 Runway length 

Estimate the runway length required by a 747 in order to take off. 

Problem 3.43 Hovering versus flying 
At what forward flight speed does the hummingbird of Section 3.6.1 require as 
much power to generate lift as it would to hover? How does this speed compare 
to its typical flight speed? 
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Problem 3.44 Resistive grid 

Ω

In an infinite grid of 1-ohm resistors, what is the resis-
tance measured across one resistor? 

To measure resistance, an ohmmeter injects a current
𝐼 at one terminal (for simplicity, imagine that 𝐼 = 1 am-
pere). It removes the same current from the other ter-
minal, and measures the resulting voltage difference
𝑉 between the terminals. The resistance is 𝑅 = 𝑉/𝐼 . 

Hint: Use symmetry. But it’s still a hard problem! 

Problem 3.45 Inertia tensor 
Here is an inertia tensor (the generalization of moment of inertia) of a particular 
object, calculated in an ill-chosen (but Cartesian) coordinate system: 

⎛⎜⎜ 
⎝ 

4 0 0 
0 5 4 
0 4 5 

⎞⎟⎟ 
⎠ 

(3.108) 

a. Change the coordinate system to a set of principal axes, where the inertia tensor 
has the diagonal form 

⎛⎜⎜ 
⎝ 

𝐼xx 0 0 
0 𝐼yy 0 
0 0 𝐼zz 

⎞⎟⎟ 
⎠ 

(3.109) 

and give the principal moments of inertia 𝐼xx, 𝐼yy, and 𝐼zz. Hint: Which proper-
ties of a matrix are invariant when changing coordinate systems? 

b. Give an example of an object with a similar inertia tensor. Rhetorical question: 
In which coordinate system is it easier to think of such an object? 

This problem was inspired by a problem on the physics written qualifying exam 
during my days as a PhD student. The problem required diagonalizing an inertia 
tensor, and there was too little time to rederive or even apply the change-of-basis 
formulas. Time pressure sometimes pushes one toward better solutions! 

Problem 3.46 Temperature distribution on an infinite sheet 

T = 0T
=

1On this infinite, uniform sheet, the 𝑥 axis is held at zero tempera-
ture, and the 𝑦 axis is held at unit temperature (𝑇 = 1). Find the 
temperature everywhere (except the origin!). Use Cartesian co-
ordinates 𝑇(𝑥, 𝑦) or polar coordinates 𝑇(𝑟, 𝜃), whichever choice 
makes it easier to describe the temperature. 
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When there is change, look for what does not change. That principle, in-
troduced when we studied symmetry and conservation (Chapter 3), is also 
the basis for our next tool, proportional reasoning. 

4.1 Population scaling 
An everyday example of proportional reasoning often happens when cook-
ing for a dinner party. When I prepare fish curry, which I normally cook 
for our family of four, I buy 250 grams of fish. But today another family of 
four will join us. 

How much fish do I need? 

I need 500 grams. As a general relation,
 

new amount = old amount × 
new number of diners
 

(4.1)usual number of diners . 

Another way to state this relation is that the amount of fish is proportional 
to the number of diners. In symbols, 
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𝑚fish ∝ 𝑁diners, (4.2) 

where the ∝ symbol is read “is proportional to.” 

But where in this analysis is the quantity that does not change? 

Another way to write the proportionality relation is 
new amount of fish old amount of fish = (4.3)new number of diners old number of diners . 

Thus, even when the number of diners changes, the quotient 
amount of fish 

(4.4)number of diners 
does not change. 
For an analogous application of proportional reasoning, here’s one way to 
estimate the number of gas stations in the United States. Following the 
principle of using human-sized numbers, which we discussed in Section 1.4, 
I did not try to estimate this large number directly. Instead, I started with 
my small hometown of Summit, New Jersey. It had maybe 20 000 people 
and maybe five gas stations; the “maybe” indicates that these childhood 
memories may easily be a factor of 2 too small or too large. If the number 
of gas stations is proportional to the population (𝑁stations ∝ 𝑁people), then 

𝑁 US people

⏞ 
𝑁US = 𝑁 Summit 

3×108 . (4.5)stations stations × 
2 × 104⏟ 
𝑁 Summit people 

The population ratio is roughly 15 000. Therefore, if Summit has five gas 
stations, the United States should have 75 000. We can check this estimate. 
The US Census Bureau has an article (from 2008) entitled “A Gas Station for 
Every 2,500 People”; its title already indicates that an estimate of roughly
105 gas stations is reasonably accurate: Summit, in my reckoning, had 4000 
people per gas station. Indeed, the article gives the total as 116 855 gas 
stations—as close to the estimate as we can expect given the uncertainties 
in childhood memories! 

Problem 4.1 Homicide rates 
The US homicide rate (in 2011) was roughly 14 000 per year. The UK rate in the 
same year was roughly 640. Which is the more dangerous country (per person), 
and by what factor? 
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4.2 Finding scaling exponents 
The dinner example (Section 4.1) used linear proportionality: When the 
number of dinner guests doubled, so did the amount of food. The relation 
between the quantities had the form 𝑦 ∝ 𝑥 or, more explicitly, 𝑦 ∝ 𝑥1. The 
exponent, which here is 1, is called the scaling exponent. For that reason, 
proportionalities are often called scaling relations. Scaling exponents are a 
powerful abstraction: Once you know the scaling exponent, you usually do 
not care about the mechanism underlying it. 

4.2.1 Warmup 
After linear proportionality, the next simplest and most common 
type of proportionality is quadratic—a scaling exponent of 

5=big𝑑
1/2its close cousin, a scaling exponent of 

2—and 
. As an example, here is 

a big circle with diameter cm. 

What is the diameter of the circle with one-half the area of this circle? 

dbig
=
√ 5 cm

Abig

Let’s first do the very common brute-force solution, which does not 
use proportional reasoning, so that you see what not to do. It begins 
with the area of the big circle: 

𝐴big = 
𝜋
4 
𝑑2 = 4

5𝜋 cm2. (4.6)big 

The area of the small circle 𝐴small is 𝐴big/2, so 𝐴small = 5𝜋/8 cm2. 
Therefore, the diameter of the small circle is given by 

𝑑small = 
𝐴small 
𝜋/4 

= 
5 
2 
cm. (4.7) 

Although this result is correct, by including 𝜋/4 and then dividing it out, 
we run around Robin Hood’s barn (all of Sherwood forest) to reach a simple 

d small
= ?

Asmall =
Abig

2

result. There must be a more elegant and insightful approach. 
This improved approach also starts with the relation between a circle’s area 
and its diameter: 𝐴 = 𝜋𝑑2/4. However, it discards the complexity early—in 
the next step—rather than carrying it through the analysis and having it 
vanish only at the end. An everyday analog of this approach is packing for 
a trip. Rather than dragging around books that you will not read or clothes 
that you will not wear, prune early and travel light: Pack only what you will 
use and set aside the rest. 
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To lighten your problem-solving luggage, observe that all circles, indepen-
dent of their diameter, have the same prefactor 𝜋/4 connecting 𝑑2 and 𝐴. 
Therefore, when we make a proportionality or scaling relation between 𝐴 
and 𝑑, we discard the prefactor. The result is the following quadratic pro-
portionality (one where the scaling exponent is 2): 

𝐴 ∝ 𝑑2. (4.8) 

For finding the new diameter, we need the inverse scaling relation: 
𝑑 ∝ 𝐴1/2. (4.9) 

In this form, the scaling exponent is 1/2. This proportionality is shorthand 
for the ratio relation 

1/2𝑑small 𝐴small 
𝑑big 

= ⎛⎜
⎝ 𝐴big 

⎞⎟
⎠ 

. (4.10) 

The area ratio is 1/2, so the diameter ratio is 1/ 2 . Because the large diam-
eter is 5 cm, the small diameter is 5/2 cm. 

Abig =
5π
4

cm2 Asmall =
5π
8

cm2

dbig =
√

5 cm dsmall =

√
5
2

cm

Abig =
5π
4

cm2 Asmall =
5π
8

cm2

dbig =
√

5 cm dsmall =

√
5
2

cm

A =
π
4

d2 d =
√

A
π/4

d ∝ A1/2

prop. reasoning

(extra baggage)

The proportional-reasoning solution is 
shorter than the brute-force approach, 
so it offers fewer places to go wrong. It 
is also more general: It shows that the 
result does not require that the shape 
be a circle. As long as the area of the 
shape is proportional to the square of 
its size (as a length)—a relation that 
holds for all planar shapes—the length ratio is 1/ 2 whenever the area ratio 
is 1/2. All that matters is the scaling exponent. 

Problem 4.2 Length of the horizontal bisecting path 

In Problem 3.23, about the shortest path that bisects an equilateral 
triangle, one candidate path is a horizontal line. How long is that 
line relative to a side of the triangle? 

Areas are connected to flux, because flux is rate per area. Thus, the scaling 
exponent for area—namely, 2—appears in flux relationships. For example: 

What is the solar flux at Pluto’s orbit? 

The solar flux 𝐹 at a distance 𝑟 from the Sun is the solar luminosity 𝐿Sun—the 
radiant power output of the sun—spread over a sphere with radius 𝑟: 
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𝐹 = 
𝐿Sun (4.11)
4𝜋𝑟2 

. 

Even as 𝑟 changes, the solar luminosity remains the same (conservation!), 
as does the factor of 4𝜋 . Therefore, in the spirit of packing light for a trip, 
simplify the equality 𝐹 = 𝐿Sun/4𝜋𝑟2 to the proportionality 

𝐹 ∝ 𝑟−2 (4.12) 

by discarding the factors 𝐿Sun and 4𝜋 . The scaling exponent here is −2: The 
minus sign indicates the inverse proportionality between flux and area, and 
the 2 is the scaling exponent connecting 𝑟 to area. 

The scaling relation is shorthand for 
−2𝐹Pluto’s orbit = ( 

𝑟Pluto’s orbit ) , (4.13)𝐹Earth’s orbit 𝑟Earth’s orbit 
or 

−2 

𝐹Pluto’s orbit = 𝐹Earth’s orbit ( 
𝑟Pluto’s orbit ) . (4.14)𝑟Earth’s orbit 

The ratio of orbital radii is roughly 40. Therefore, the solar flux at Pluto’s 
orbit is roughly 40−2 or 1/1600 of the flux at the Earth’s orbit. The resulting 
flux is roughly 0.8 watts per square meter: 

1300 W 1𝐹Pluto’s orbit = × . (4.15)
m2m2 1600 

≈ 
0.8 W 

Receiving such a small amount of sunlight, Pluto must be very cold. We 
can estimate its surface temperature with a further proportionality. 

Surface temperature depends mostly on so-called 
blackbody radiation. The surface temperature is 
the temperature at which the radiated flux equals 
the incoming flux; we are making another box 
model. The radiated flux is given by the blackbody formula (which we 
will derive in Section 5.5.2) 

energy
at planet
surface

sunlight blackbody

radiation

𝐹 = 𝜎𝑇 4, (4.16) 

where 𝑇 is the temperature, and 𝜎 is the Stefan–Boltzmann constant: 

𝜎 ≈ 5.7 ×10−8 W 
(4.17) 

m2 K4 . 

What is the resulting surface temperature on Pluto? 
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termediate form, because it does not first produce a fraction smaller than 1 
and then take its reciprocal with a negative exponent.) The ratio of orbital 

40 or roughly 6. 

4 Proportional reasoning 

As with any proportional-reasoning calculation, there is a long-winded, 
brute-force alternative (try Problem 4.5). The elegant approach directly 
uses the proportionalities 

𝑇 ∝ 𝐹1/4 and 𝐹 ∝ 𝑟−2, (4.18) 

where 𝑟 is the orbital radius. Together, they produce a new proportionality 

𝑇 ∝ (𝑟−2)1/4 = 𝑟−1/2. (4.19) 

A compact graphical notation, similar to the divide-and-conquer trees, en-
capsulates this derivation: 

r TF−2
1
4

As indicated by the 𝑟 → 𝐹 arrow, changing 𝑟 changes 𝐹. The boxed number 
along the arrow gives the scaling exponent. Therefore, the 𝑟 → 𝐹 arrow 
represents 𝐹 ∝ 𝑟−2. The 𝐹 → 𝑇 arrow indicates that changing 𝐹 changes 𝑇 
and, in particular, that 𝑇 ∝ 𝐹1/4. 
To find the scaling exponent connecting 𝑟 to 𝑇 , multiply the scaling expo-
nents along the path: 

−2 × 
1
4 

= − 
1 

(4.20)2 . 

Problem 4.3 Explaining the graphical notation 

In our graphical representation of scaling relations, why is the final scaling expo-
nent the product, rather than the sum, of the scaling exponents along the way? 

This scaling exponent represents the following comparison: 
−1/2 1/2𝑇Earth = ( 

𝑟Earth’s orbit ) = (𝑟Pluto’s orbit ) . (4.21)𝑇Pluto 𝑟Pluto’s orbit 𝑟Earth’s orbit 
(The rightmost form, with the positive exponent, is more direct than the in-

radii is 40, so the ratio of surface temperatures should be 
Pluto’s surface temperature should be roughly 50 K: 

≈ 
293 K𝑇Pluto ≈ 

𝑇Earth ≈ 50 K. (4.22)6 6 

Pluto’s actual mean surface temperature is 44 K, very close to our prediction 
based on proportional reasoning. 
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Problem 4.4 Explaining the discrepancy 
Why is our prediction for Pluto’s mean temperature slightly too high? 

Problem 4.5 Brute-force calculation of surface temperature 
To practice recognizing common but inferior problem-solving methods, use the 
brute-force method to estimate the surface temperature on Pluto: (a) From the so-
lar flux at Pluto’s orbit, calculate the solar flux averaged over the surface; (b) use 
that flux to estimate a blackbody temperature. 

4.2.2 Orbital periods 
In the preceding examples, the scaling relations formed chains (trees with-
out branching): 

food for a dinner party :
 mfishNguests +1

Acircler +2

r TF−2
1
4

area of a circle : (4.23) 

surface temperature :
 

More elaborate relationships also occur—as we will find in rederiving a 
famous law of planetary motion. 

How does a planet’s orbital period depend on its orbital radius 𝑟? 

We’ll study the special case of circular orbits (many planetary orbits are 
close to circular). Our exploratory thinking is often aided by making pro-
portionality questions concrete. Therefore, rather than finding the scaling 
exponent using the abstract notion of “depend on,” answer the doubling 
question: “When I double this quantity, what happens to that quantity?” 

What is so special about doubling? 

Doubling—multiplying by a factor of 2—is the simplest useful change. A 
factor of 1 is simpler; however, being no change at all, it is too simple. 

What happens to the period if we double the orbital radius? 

The most direct effect of doubling the orbital radius is that gravity gets 
weaker. Because the gravitational force is an inverse-square force—that is,
𝐹 ∝ 𝑟−2—the gravitational force falls by a factor of 4. A compact and in-
tuitive notation for these changes is to mark the change directly under the 
quantity: A notation of ×𝑛 indicates multiplication by a factor of 𝑛. 
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𝐹󾏟 ∝ 𝑟󾏟 −2. (4.24) 
× 14 ×2 

Because force is proportional to acceleration, the planet’s acceleration 𝑎 falls 
by the same factor of 4. 

)1/2

The orbital period is 𝑇 ∼ 𝑟/𝑣 (the ∼ contains the dimensionless prefactor 
2𝜋 ), so it increases by a factor of 23/2: 

𝑇󾏟 (4.26) 

𝑣󾏟
× 1

2 

= ( 𝑎󾏟
×1

4

∼ 𝑟󾏟 × 𝑣−1

×2 

.⏟ 
× 2

23/2. In general, the connection between 𝑟 and 𝑇 is 

× 𝑟󾏟 . 

In circular motion, acceleration and velocity are related by 𝑎 = 𝑣2/𝑟. (We 
will derive this relation in Section 5.1.1 and Section 6.3.4, with two different 
reasoning tools.) Therefore, the orbital velocity 𝑣 is 𝑎𝑟 , and doubling the 
radius increases the orbital speed by a factor of 1/2 : 

1/2 

(4.25) 

2 . 

×2 

Although this calculation is correct, when it is stated as a factor of 
it confounds our expectations and produces numerical whiplash. As we 
finish reading “increases by a factor of,” we expect a number greater than 1. 
But we get a number smaller than 1. An increase by a factor smaller than 1 
is more simply described as a decrease. Therefore, it is more direct to say 
that the orbital speed falls by a factor of 

×23/2 

In summary, doubling the orbital radius multiplies the orbital period by

𝑇 ∝ 𝑟3/2. (4.27) 

This result is Kepler’s third law for circular orbits. Our scaling analysis has 
the following graphical representation: 

a

r v

T

F +1

−2

−1
+ 1

2

+ 1
2

+1

In this structure, the new feature is that two paths reach the orbital veloc-
ity 𝑣. There we add the incoming exponents. 
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1. r v+ 1
2 represents the 𝑟 in 𝑣 = 𝑎𝑟 . It carries +1/2 powers of 𝑟. 

2. a v+ 1
2 represents the 𝑎 in 𝑣 = 𝑎𝑟 . To determine how many 

powers of 𝑟 flow through this arrow, follow the chain containing it: 

ar vF−2 +1 + 1
2

One power of 𝑟 starts at the left side. It becomes −2 powers after pass-
ing through the first scaling exponent and arriving at 𝐹. It remains −2 
powers on arrival at 𝑎. Finally, it becomes −1 power on arrival at 𝑣. This 
path therefore carries −1 power of 𝑟. 
Its contribution is the result of multiplying the three scaling exponents 
along the chain: 

−2 × +1 × − 2
1 = −1. (4.28)

⏟ ⏟ ⏟ 
𝑟→𝐹 𝐹→𝑎 𝑎→𝑣 

The −1 power carried by the three-link chain, representing 𝑟−1, combines 
with the +1/2 from the direct 𝑟 → 𝑣 arrow, which represents 𝑟+1/2. Adding 
the exponents on 𝑟, the result is that 𝑣 contains −1/2 powers of 𝑟: 

× 𝑟+1/2 𝑟−1/2𝑣 ∝ 𝑟⏟−1 ⏟ = . (4.29) 
via 𝐹 direct 

Let’s practice the same reasoning by finding the scaling relation connecting
𝑇 and 𝑟—which is Kepler’s third law. The direct 𝑟 → 𝑇 arrow, with a scaling 
exponent of +1, carries +1 powers of 𝑟. The 𝑣 → 𝑇 arrow carries −1 powers 
of 𝑣. Because 𝑣 contains −1/2 powers of 𝑟, the 𝑣 → 𝑇 arrow carries +1/2 
powers of 𝑟: 

−1
2 × −1 = + 

1 
(4.30)2 .⏟ ⏟ 

𝑟→𝑣 𝑣→𝑇 

Together, the two arrows contribute +3/2 powers of 𝑟 and give us Kepler’s 
third law: 

𝑇 ∝ 𝑟+1 × 𝑟+1/2 = 𝑟+3/2. (4.31) 
𝑟→𝑇 via 𝑣 
⏟ ⏟ 

To summarize the exponent rules, for which we now have several illustra-
tions: (1) Multiply exponents along a path, and (2) add exponents when 
paths meet. 
Now let’s apply Kepler’s third law to a nearby planet. 
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How long is the Martian year? 

The proportionality 𝑇 ∝ 𝑟3/2 is shorthand for the comparison 
3/2𝑇Mars = ( 

𝑟Mars ) , (4.32)𝑇ref 𝑟ref 
where 𝑟Mars is the orbital radius of Mars, 𝑟ref is the orbital radius of a refer-
ence planet, and 𝑇ref is its orbital period. Because we are most familiar with 
the Earth, let’s choose it as the reference planet. The reference period is 1 
(Earth) year; and the reference radius is 1 astronomical unit (AU), which is 
1.5×1011 meters. The benefit of this choice is that we will obtain the period 
of Mars’s orbit in the familiar unit of Earth years. 

The distance of Mars to the Sun varies between 2.07 × 1011 meters (1.38 as-
tronomical units) and 2.49 × 1011 meters (1.67 astronomical units). Thus, 
the orbit of Mars is not very circular and has no single orbital radius 𝑟Mars. 
(Its significant deviation from circularity allowed Kepler to conclude that 
planets move in ellipses.) As a proxy for 𝑟Mars, let’s use the average of the 
minimum and maximum radii. It is 1.52 astronomical units, making the 
ratio of orbital periods approximately 1.88: 

3/2𝑇Mars = ( 
1.52 AU ) ≈ 1.88. (4.33)𝑇Earth 1 AU 

Therefore, the Martian year is 1.88 Earth years long. 

Problem 4.6 Brute-force calculation of the orbital period 

To emphasize the contrast between proportional reasoning and the brute-force ap-
proach, find the period of Mars’s orbit using the brute-force approach by starting 
with Newton’s law of gravitation and then finding the orbital velocity and circum-
ference. 

A surprising conclusion about orbits comes from our doubling question 
introduced on page 109. 

What happens to the period of a planet if you double its mass? 

Using a type of thought experiment due to Galileo, imagine two identical 
planets, orbiting one just behind the other along the same orbital path. They 
have the same period. Now tie them together. The rope does not change 
the period, so the double-mass planet has same period as each individual 
planet: The scaling exponent is zero (𝑇 ∝ 𝑚0)! 
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Problem 4.7 Pendulum period versus mass 
How does the period of an ideal pendulum depend on the mass of the bob? 

4.2.3 Projectile range
 
In the previous examples, only one variable was 
independent; changing it changed all the others. 
However, many problems contain multiple inde-
pendent variables. An example is the range 𝑅 of 
a rock launched at an angle 𝜃 with speed 𝑣. The 
traditional derivation uses calculus. You solve for the position of the rock 
as a function of time, solve for the time when its height is zero (the ground 
level), and then insert that time into the horizontal position to find the range. 
This analysis is not wrong, but its result still seems like magic. I leave un-
satisfied, thinking, “The result must be true. But I still do not know why.” 

v

θ

R

That “why” insight comes from proportional reasoning, which discards the 
nonessential complexity. Let’s begin with our doubling question. 

How does doubling each of the independent variables affect the range? 

The independent variables include the launch velocity 𝑣, the gravitational 
acceleration 𝑔 (because gravity returns the rock to Earth), and the launch 
angle. However, angles do not fit so easily into proportional reasoning, so 
we won’t explore the role of 𝜃 here (we will handle it in Section 8.2.2.1 using 
the tool of easy cases, or you can try Problem 4.9). 

Because the only forces are vertical, the rock’s horizontal velocity remains 
constant throughout its flight (an invariant!). Thus, the range is given by 

𝑅 = time aloft × initial horizontal velocity. (4.34) 

The time aloft is determined by the initial vertical velocity, because gravity 
steadily reduces it (at the rate 𝑔): 

time aloft ∼ 
initial vertical velocity 

. (4.35)𝑔 

Problem 4.8 Missing dimensionless prefactor 
What is the missing dimensionless prefactor in the preceding expression for the 
time that the rock stays aloft? 
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Now double the launch velocity 𝑣. That change doubles the initial horizon-
tal and vertical components of the velocity. Doubling the vertical compo-
nent doubles the time aloft. Because the range is proportional to the hori-
zontal velocity and to the time aloft, when the launch velocity doubles, the 
range quadruples. The scaling exponent connecting 𝑣 to 𝑅 is 2: 𝑅 ∝ 𝑣2. 

What is the effect of doubling 𝑔? 

Doubling 𝑔 doesn’t change the horizontal velocity or the initial vertical ve-
locity, but it halves the time aloft and therefore the range as well. The scal-
ing exponent connecting 𝑔 to 𝑅 is −1: 𝑅 ∝ 𝑔−1. 
The combined scaling relation, which gives the dependence of 𝑅 on both 𝑔 
and 𝑣, is 

𝑅 ∝ 
𝑣
𝑔
2
. (4.36) 

Using 𝑣𝑥 and 𝑣𝑦 for the horizontal and vertical components of the launch 
velocity, the graphical representation of this reasoning is 

g

vx

vy

R

t

v
+1

−1

+1

+1

+1
+1

This graph shows a new feature: two independent variables, 𝑣 and 𝑔 . We’ll 
need to track the powers of 𝑣 and 𝑔 separately. 
The range 𝑅 has two incoming paths. The path via the horizontal velocity 
𝑣𝑥 contributes +1 × +1 = +1 powers of 𝑣 but no powers of 𝑔 . The path 
via 𝑡 also contributes +1 powers of 𝑣, and contributes −1 powers of 𝑔 . The 
diagram compactly represents how 𝑅 became proportional to 𝑣2/𝑔 . 
The full range formula, including the launch angle 𝜃 is 

𝑅 ∼ 
𝑣
𝑔
2 
sin 𝜃 cos 𝜃. (4.37) 

The dependence on 𝑣 and 𝑔 is just as we predicted. 
The moral of this example is that you can derive and understand relations 
by ignoring constants of proportionality and instead concentrating on the 
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scaling exponents. Furthermore, you can use this ability in order to spot 
mistakes: Just check each independent variable’s scaling exponent. For ex-
ample, if someone proposes that projectile range 𝑅 is proportional to 𝑣3/𝑔 , 
think, “The 1/𝑔 makes sense from the time aloft. But what about the 𝑣3? 
One power of 𝑣 comes from the horizontal velocity and one power from 
the time aloft, which explains two powers of 𝑣. But where does the third 
power comes from? The range should instead contain 𝑣2/𝑔 .” 

Problem 4.9 Angular factors in projectile range 
Explain the sin 𝜃 and cos 𝜃 factors by using the relation 

range = time aloft × horizontal velocity. (4.38) 

4.2.4 Planetary surface gravity 
Scaling, or proportional reasoning, connects independent to dependent vari-
ables. Often we have freedom in choosing the independent variables. Here 
is an example to show you how to use that freedom. 

Assuming that planets are uniform spheres, how does 𝑔 , the gravitational accelera-
tion at the surface, depend on the planet’s radius 𝑅? 

We seek the scaling exponent 𝑛 in 𝑔 ∝ 𝑅𝑛. At the planet’s surface, the grav-
itational force 𝐹 on an object of mass 𝑚 is 𝐺𝑀𝑚/𝑅2, where 𝐺 is Newton’s 
constant, and 𝑀 is the planet’s mass. The gravitational acceleration 𝑔 is 
𝐹/𝑚 or 𝐺𝑀/𝑅2. Because 𝐺 is the same for all objects, we pack light and 
eliminate 𝐺 to make the proportionality 

𝑔 ∝ 
𝑀 

(4.39)
𝑅2 

. 

In this form, with mass 𝑀 and radius 𝑅 as the independent variables, the 
scaling exponent 𝑛 is −2. 
However, an alternative relation comes from noticing that the planet’s mass
𝑀 depends on the planet’s radius 𝑅 and density 𝜌 as 𝑀 ∼ 𝜌𝑅3. Then 

𝑔 ∝ 
𝜌𝑅3 

= 𝜌𝑅. (4.40)
𝑅2 

In this form, with density and radius as the independent variables, the scal-
ing exponent on 𝑅 is now only 1. 

Which scaling relation, with mass or density, is preferable? 
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Planets vary widely in their mass: from 3.3 × 1023 kilograms (Mercury) to 
1.9×1027 kilograms (Jupiter), a range 4 decades wide (a factor of 104). They 
vary greatly in their radius: from 7 × 104 kilometers (Jupiter) down to 2.4 × 
103 kilometers (Mercury), a range of a factor of 30. The quotient 𝑀/𝑅2 has 
huge variations in the numerator and denominator that mostly oppose each 
other. When there is change, look for what does not change—or, at least, 
what does not change as much. In contrast to masses, planetary densities 
vary from only 0.7 grams per cubic centimeter (Saturn) to 5.5 grams per 
cubic centimeter (Earth)—a range of only a factor of 8. The variations in 
planetary surface gravity are easier to understand using the planet’s radius 
and density rather than its radius and mass. 
This result is general. Mass is an extensive quantity: When two objects 
combine, their masses add. Density, in contrast, is an intensive quantity. 
Adding more of a particular substance does not change its density. Using 
intensive quantities for the independent variables usually leads to more 
insightful results than using extensive quantities does. 

Problem 4.10 Distance to the Moon 

The orbital period near the Earth’s surface (say, for a low-flying satellite) is roughly
1.5 hours. Use that information to estimate the distance to the Moon. 

Problem 4.11 Moon’s angular diameter and radius 
On a night with a full moon, estimate the Moon’s angular diameter—that is, the 
visual angle subtended by the Moon. Use that angle and the result of Problem 4.10 
to estimate the Moon’s radius. 

Problem 4.12 Surface gravity on the Moon 

Assuming that all planets (and moons) have the same density, use the radius of the 
Moon (Problem 4.11) to estimate its surface gravity. Then compare your estimate 
with the actual value and suggest an explanation for the discrepancy. 

Problem 4.13 Gravitational strength inside a planet 
Imagine a uniform, spherical planet with radius 𝑅. How does the gravitational 
acceleration 𝑔 depend on 𝑟, the distance from the center of the planet? Give the 
scaling exponent when 𝑟 < 𝑅 and when 𝑟 ≥ 𝑅, and sketch 𝑔(𝑟). 

Problem 4.14 Making toast land butter-side up 

As a piece of toast slides off a dining table (starting with almost no horizontal 
velocity), it picks up angular velocity. Once it leaves the table, its angular velocity 
remains constant. In everyday experience, a toast usually backflips (rotates 180∘) 
by the time it hits the ground, and lands butter-side down. How high would tables 
have to be for a piece of toast to land butter-side up? 
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4.3 Scaling exponents in fluid mechanics 
The preceding introductory examples may mislead you into thinking that 
proportional reasoning is useful only when we could also find the exact 
solution. As a counterexample, we return to that source of mathematical 
beauty but also misery, fluid mechanics, where exact solutions exist for 
hardly any situations of practical interest. To make progress, we need to 
discard complexity by focusing on the scaling exponents. 

4.3.1 Falling cones 
In Section 3.5.1, we used conservation reasoning to show that the drag force 
is given by 

𝐹drag ∼ 𝜌𝐴cs𝑣2. (4.41) 

In Section 3.5.2, we tested this result by correctly predicting the terminal 
speed of a falling paper cone. However, that experiment concerned only 
one cone of a particular size. A natural generalization of that experiment is 
to predict a cone’s terminal speed as a function of its size. 

How does the terminal speed of a paper cone depend on its size? 

Size is an ambiguous notion. It might refer to an area, a volume, or a length. 
Here, let’s consider size to be the cone’s cross-sectional radius 𝑟. The quan-
titative question is to find the scaling exponent 𝑛 in 𝑣 ∝ 𝑟𝑛, where 𝑣 is the 
cone’s terminal speed. 

The doubling question is, “What happens to the terminal speed when we 
double 𝑟?” At the terminal speed, drag and weight 𝑚𝑔 balance: 

𝑣2 ∼ 𝑚𝑔. (4.42) 𝜌air𝐴cs ⏟⏟⏟⏟⏟⏟ 
drag weight 

Therefore, the terminal speed is just what we found in Section 3.5.2: 

𝑣 ∼ 
𝑚𝑔 

𝜌air𝐴cs 
. (4.43) 

All cones feel the same 𝑔 and 𝜌air, so we pack light and eliminate these 
variables to make the proportionality 

𝑣 ∝ 
𝑚 
𝐴cs 

. (4.44) 

http:����.(4.42
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Doubling 𝑟 quadruples the amount of paper used to make the cone and 
therefore its mass 𝑚. It also quadruples its cross-sectional area 𝐴cs. Accord-
ing to the proportionality, the two effects cancel: When 𝑟 doubles, 𝑣 should 
remain constant. All cones of the same shape (and made from the same 
paper) should fall at the same speed! 

This result always surprises me. So I tried the experiment. I printed the 
cone template in Section 3.5.2 at 400-percent magnification (a factor of 4 in-
crease in length), cut it out, taped the two straight edges together, and raced 
the small and big cones by dropping them from a height of about 2 meters. 
After a roughly 2-second fall, they landed almost simultaneously—within 
0.1 seconds of each other. Thus, their terminal speeds are the same, give or 
take 5 percent. 

Proportional reasoning triumphs again! Surprisingly, the proportional-rea-
soning result is much more accurate than the drag-force estimate 𝜌air𝐴cs𝑣2 

on which it is based. 

How can predictions based on proportional reasoning be more accurate than the 
original relations? 

To see how this happy situation arose, let’s redo the calculation but include 
the dimensionless prefactor in the drag force. With the dimensionless pref-
actor (shaded in gray), the drag force is 

𝐹drag 2
1𝑐d 𝜌air𝐴cs𝑣2, (4.45)= 

where 𝑐d is the drag coefficient (introduced in Section 3.2.1). The prefactor 
carries over to the terminal speed: 

𝑣 = 
𝑚 

1 
2 
𝑐d 𝐴cs 

. (4.46) 

Ignoring the prefactor decreases 𝑣 by a factor of 2/𝑐d . (For nonstreamlined 
objects, 𝑐d ∼ 1, so the decrease is roughly by a factor of 2 .) 

In contrast, in the ratio of terminal speeds 𝑣big/𝑣small, the prefactor drops 
out. Here is the ratio with the prefactors shaded in gray: 

𝑣big 
𝑣small 

= 
𝑚big 

1 
2 
𝑐big d 𝐴big cs 

⁄ 

𝑚small 
1 
2 
𝑐small d 𝐴small cs 

. (4.47) 
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As long as the drag coefficients 𝑐d are the same for the big and small cones, 
they divide out from the ratio. Then the scaling result—that the terminal 
speed is independent of size—is exact, independent of the drag coefficient. 

The moral, once again, is to build on what we know, rather than computing 
quantities that we do not need and that only clutter the analysis and thereby 
our thinking. Scaling relations bootstrap our knowledge. Here, if you know 
the terminal speed of the small cone, use that speed—and the scaling result 
that speed is independent of size—to find the terminal speed of the large 
cone. In the next section, we will apply this approach to estimate the fuel 
consumption of a plane. 

Problem 4.15 Taping the cones 
The big cone, with twice the radius of the small cone, has four times the weight 
of paper. But what about the tape? If you tape along the entire radius of the cone 
template, how does the length of the tape compare between the large and small 
cones? How should you apply the tape in order to maintain the 4 : 1 weight ratio? 

Problem 4.16 Bigger and bigger cones 
Further test the scaling relation 𝑣 ∝ 𝑟0 (terminal speed is independent of size) by 
building a huge cone from a template with four times the radius of the template 
for the small cone. Then race the small, big, and huge cones. 

Problem 4.17 Four cones versus one cone 
Use the cone template in Section 3.5.2 (at 200-percent enlarge-
ment) to make five small cones. Then stack four of the cones
 
to make one heavy small cone. How much faster will the
 
four-cone stack fall in comparison to the single small cone?
 
That is, predict the ratio of terminal speeds
 

𝑣four cones . (4.48)𝑣one cone
 
Then check your prediction by trying the experiment.
 

4.3.2 Fuel consumption of a Boeing 747 jumbo jet 
In Section 3.5.4, we estimated the fuel consumption of automobiles. For the 
next example, we’ll estimate the fuel consumption of a Boeing 747 jumbo 
jet. Rather than repeating the structure of the automobile estimate in Sec-
tion 3.5.4 but with parameters for a plane—which would be the brute-force 
approach—we will reuse the automobile estimate and supplement it with 
proportional reasoning. 
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A plane uses its fuel to generate energy to fight drag and to generate lift. 
However, for this estimate, forget about lift. At a plane’s cruising speed, 
lift and drag are comparable (as we will show in Section 4.6). Neglecting 
lift ignores only a factor of 2, because lift plus drag is twice the lift alone, 
and allows us to make a decent estimate without having to estimate the lift. 
Divide and conquer: Don’t bite off all the complexity at once! 

The energy consumed fighting drag is proportional to the drag force: 

𝐸 ∝ 𝜌air𝐴cs𝑣2.	 (4.49) 

This scaling relation is shorthand for the following comparison between a 
plane and a car: 

𝜌cruising altitude 𝐴plane 2𝐸plane	 𝑣planeair cs= × × ( ) .	 (4.50)
𝜌sea level 𝐴car𝐸car	 𝑣carair cs 

Thus, the energy-consumption ratio breaks into three ratio estimates. 

What are reasonable estimates for the three ratios? 

1.	 Air density. A plane’s cruising altitude is typically 35 000 feet or 10 kilo-
meters, which is slightly above Mount Everest. At that height, mountain 
climbers require oxygen tanks, so the air, and oxygen, density must be 
significantly lower than it is at sea level. (Once you learn the reasoning 
tool of lumping, you can predict the density—see Problem 6.36.) The 
density ratio turns out to be roughly 3: 

𝜌cruising altitude
 air
 
𝜌sea level 

≈ 3
1 . (4.51) 

air 

The thinner air wins the plane a factor of 3 in fuel efficiency. 

2.	 Cross-sectional area. To estimate the cross-sectional area of the 
plane, we need to estimate the width and height of the plane’s 
body; its wings are very streamlined, so they contribute negli-
gible drag. When estimating lengths, let’s make our measuring 
rod (our unit) a person length. Using this measuring rod has 
two benefits. First, the measuring rod is easy for our gut to pic-

3 units

plane body

cross section

ture, because we feel our own size innately. Second, the lengths that we 
will measure will be only a small multiple of a person length. The nu-
merical part of the quantity (for example, the 1.5 in “1.5 person lengths”) 
will be comparable to 1, and therefore also easy to picture. As a rule of 
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thumb, ratios between 1/3 and 3 are easy to picture and feel in our gut 
because our mental number hardware is exact for the quantities 1, 2, 
and 3. We choose our measuring rods accordingly. 
In applying the person-length measuring rod to the width of the plane’s 
body, I remember the comfortable days of regulated air travel. As a 
child, I would find three adjacent empty seats in the back of the plane 
and sleep for the whole trip (which explains why my parents insist that 
traveling with small children was easy). A jumbo jet is three or four such 
seat groups across—call it three person lengths—and its cross section is 
roughly circular. A circle is roughly a square, so the cross-sectional area 
is roughly 10 square person lengths: 

(3 person lengths)2 ≈ 10 (person length)2.	 (4.52) 

Although we might worry that this estimate used too many approxima-
tions, we should do it anyway: It gives us a rough-and-ready value and 
allows us to make progress. Our goal is edible jam today, not delicious 
jam tomorrow! 

Now let’s estimate the cross-sectional area of a car. In standard 
units, it’s about 3 square meters, as we estimated in Section 3.5.4. 
But let’s apply our person-sized measuring rod. From noctur-
nal activities in cars, you may have experienced that cars, un-
comfortably, are about one person across. A car’s cross section 
is roughly square, so the cross-sectional area is roughly 1 square 

1 unit

car cross section

person length. 

Problem 4.18 Comparing the cross-sectional areas 
How well does 1 square person length match 3 square meters? 

The ratio of cross-sectional areas is roughly 10; therefore, the plane’s 
larger cross-sectional area costs it a factor of 10 in fuel efficiency. 

3.	 Speed. A reason to fly rather than drive is that planes travel faster than 
cars. A plane travels almost at the speed of sound: 1000 kilometers per 
hour or 600 miles per hour. A car travels at around 100 kilometers per 
hour or 60 miles per hour. The speed ratio is roughly a factor of 10, so 

𝑣plane 2 

( ) ≈ 100. (4.53)𝑣car 
The plane’s greater speed costs it a factor of 100 in fuel efficiency. 
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Now we can combine the three ratio estimates to estimate the ratio of energy 
consumptions: 

𝐸plane 1∼ × 10 × 100 ≈ 300. (4.54)𝐸car ⏟3 ⏟ ⏟
 
density area (speed)2
 

A plane should be 300 times less fuel efficient than a car—terrible news for 
anyone who travels by plane! 

Should you therefore never fly again? 

Our conscience is saved because a plane carries roughly 300 passengers, 
whereas a typical (Western) car is driven by one person to and from work. 
Therefore, per person, a plane and a car should have comparable fuel effi-
ciencies: 30 passenger miles per gallon, as we estimated in Section 3.5.4, or 
8 liters per 100 passenger kilometers. 

According to Boeing’s technical data on the 747-400 model, the plane has a 
range of 13 450 kilometers, its fuel tank contains 216 840 liters, and it carries 
416 passengers. These data correspond to a fuel consumption of 4 liters per 
100 passenger kilometers: 

216 840 ℓ 1 4 ℓ × (4.55)13 450 km 416 passengers 
≈ 100 passenger km 

. 

Our proportional-reasoning estimate of 8 liters per 100 passenger kilome-
ters is very reasonable, considering the simplicity of the method compared 
to a full fluid-dynamics analysis. 

Problem 4.19 Density of air by proportional reasoning 
Make rough estimates of your own top swimming and cycling speeds, or use the 
data that a record 5-kilometer swim time is 56:16.6 (almost 1 hour). Thereby ex-
plain why the density of water must be roughly 1000 times the density of air. Why 
is this estimate more accurate when based on cycling rather than running speeds? 

Problem 4.20 Raindrop speed versus size 
How does a raindrop’s terminal speed depend on its radius? 

Problem 4.21 Estimating an air ticket price from fuel cost 
Estimate the fuel cost for a long-distance plane journey—for example, London to 
Boston, London to Cape Town, or Los Angeles to Sydney. How does the fuel cost 
compare to the ticket price? (Airlines do not pay many of the fuel taxes paid by 
ordinary motorists, so their fuel costs are lower than motorists’ fuel costs.) 
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Problem 4.22 Relative fuel efficiency of a cycling 
Estimate the fuel efficiency, relative to a car, of a bicyclist powered by peanut but-
ter traveling at a decent speed (say, 10 meters per second or 20 miles per hour). 
Compare your estimate with your estimate in Problem 3.34. 

4.4 Scaling exponents in mathematics 
Our scaling relations so far have connected physical quantities. But propor-
tional reasoning can also bring us insight in mathematics. A classic exam-
ple is the birthday paradox. 

How many people must be in a room before the probability that two people share a 
birthday (for example, two people are born on July 18) is at least 50 percent? 

Almost everyone, including me, reasons that, with 365 days in the year, we 
need roughly 50 percent of 365, or 183 people. Let’s test this conjecture. The 
actual probability of having a shared birthday is 

1 2 31 − (1 − 365)(1 − 365)(1 − 365)⋯(1 − 
𝑛 − 1 

(4.56)365 
) . 

(A derivation is in Everyday Probability and Statistics [50, p. 49] or in the ad-
vanced classic Probability Theory and its Application [13, vol. 1, p. 33]. But 
you can explain its structure already: Try Problem 4.23.) For 𝑛 = 183, the 
probability is 1 − 4.8 × 10−25 or almost exactly 1. 

Problem 4.23 Explaining the probability of a shared birthday 
Explain the pieces of the formula for the probability of a shared birthday: What is 
the reason for the 1− in front of the product? Why does each factor in the product 
have a 1 − ? And why does the last factor have (𝑛 − 1)/365 rather than 𝑛/365? 

To make this surprisingly high probability seem plausible, I gave random 
birthdays to 183 simulated people. Two people shared a birthday on 14 days 
(and we need only one such day); and three people shared a birthday on 
three days. According to this simulation and to the exact calculation, the 
plausible first guess of 183 people is far too high. This surprising result is 
the birthday paradox. 
Even though we could use the exact probability to find the threshold num-
ber of people that makes the probability greater than 50 percent, we would 
still wonder why: Why is the plausible argument that 𝑛 ≈ 0.5×365 so badly 
wrong? That insight comes from a scaling analysis. 
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At roughly what 𝑛 does the probability of a shared birthday rise above 50 percent? 

An image often helps me translate a problem into mathematics. Imagine 
everyone in the room greeting all the others by shaking hands, one hand-
shake at a time, and checking for a shared birthday with each handshake. 

How many handshakes happen? 

Each person shakes hands with 𝑛 − 1 others, making 𝑛(𝑛 − 1) arrows from 
one person to another. But a handshake is shared between two people. To 
avoid counting each handshake twice, we need to divide 𝑛(𝑛−1) by 2. Thus, 
there are 𝑛(𝑛 − 1)/2 or roughly 𝑛2/2 handshakes. 

With 365 possible birthdays, the probability, per handshake, of a shared 
birthday is 1/365. With 𝑛2/2 handshakes, the probability that no hand-
shake joins two people with a shared birthday is approximately 

𝑛2/21(1 − . (4.57)365)

To approximate this probability, take its natural logarithm: 
𝑛2/21 𝑛2 1ln(1 − = 2 

ln (1 − 365) . (4.58)365)


Then approximate the logarithm using ln(1 + 𝑥) ≈ 𝑥 (for 𝑥 ≪ 1):
 
1
ln (1 − 365) ≈ − 

1 
(4.59)365 . 

(You can test this useful approximation using a calculator, or see the picto-
rial explanation in Street-Fighting Mathematics [33, Section 4.3].) With that 
approximation, 

1ln (probability of no shared birthday) ≈ − 
𝑛
2
2 
× (4.60)365 . 

When the probability of no shared birthday falls below 0.5, the probability 
of a shared birthday rises above 0.5. Therefore, the condition for having 
enough people is 

ln (probability of no shared birthday) < ln 
1
2 . (4.61) 

Because ln(1/2) = − ln 2, the condition simplifies to
 
𝑛2
 

2 × 365 
> ln 2. (4.62) 
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From this scaling analysis, we can compactly explain what went wrong 
with the plausible conjecture. It assumed that the shared-birthday prob-
ability 𝑝 is proportional to the number of people 𝑛, reaching 𝑝 = 0.5 when 
𝑛 = 0.5 × 365. The handshake picture, however, shows that the probability 
is related to the number of handshakes, which is proportional to 𝑛2. What 
a difference from a simple change in a scaling exponent! 

Using the approximation ln 2 ≈ 0.7, the threshold 𝑛 is approximately 22.6: 

𝑛 > ln 2 × 2 × 365 ≈ 22.6. (4.63) 

People do not come in fractions, so we need 23 people. Indeed, the exact 
calculation for 𝑛 = 23 gives the probability of sharing a birthday as 0.507! 

Problem 4.24 Three people sharing a birthday 
Extend our scaling analysis to the three-birthday problem: How many people must 
be in a room before the probability of three people sharing a birthday rises above
0.5? (The results of the exact calculation, along with many approximations, are 
given by Diaconis and Mosteller [10].) 

Problem 4.25 Scaling of bubble sort 
The simplest algorithm for sorting—for example, to sort a list of 𝑛 web pages ac-
cording to relevance—is bubble sort. You go through the list in passes, comparing 
neighboring items and swapping any that are out of order. 

a. How many passes through the list do you need in order to guarantee that the 
list is sorted? 

b. The running time 𝑡 (the time to sort the list) is proportional to the number of 
comparisons. What is the scaling exponent 𝛽 in 𝑡 ∝ 𝑛𝛽? 

Problem 4.26 Scaling of merge sort 
Bubble sort (Problem 4.25) is easy to describe, but there is an alternative that is 
almost as easy: merge sort. It is a recursive, divide-and-conquer algorithm. You 
divide the list of 𝑛 items into two equal parts (assume that 𝑛 is a power of 2), and 
sort each half using merge sort. To make the sorted list, just merge the two sorted 
halves. 

a. Here is a list of eight randomly generated numbers: 98, 33, 34, 62, 31, 58, 61, 
and 15. Draw a tree illustrating how merge sort works on this list. Use two 
lines for each internal node, showing on one line the original list and on the 
second line the sorted list. 

b. The running time 𝑡 is proportional to the number of comparison operations. 
What are the scaling exponents 𝛼 and 𝛽 in 

𝑡 ∝ 𝑛𝛼(log 𝑛)𝛽? (4.64) 
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c.	 If you were a revenue agency and had to sort the tax records of all residents in 
a country, which algorithm would you use, merge sort or bubble sort? 

Problem 4.27 Scaling of standard multiplication 

In the usual school algorithm for multiplying 𝑛 digit numbers, you find and add 
partial products. If the running time 𝑡 is proportional to the number of single-digit 
multiplications, what is the scaling exponent 𝛽 in 𝑡 ∝ 𝑛𝛽? 

Problem 4.28 Scaling of Karatsuba multiplication 

The Karatsuba algorithm for multiplying two 𝑛-digit numbers, discovered by Ana-
toly Karatsuba in 1960 [28] and published in 1962 [29], was the first development 
in the theory of multiplication in centuries. Similarly to merge sort, you first break 
each number into two equal-length halves. For example, you split 2743 into 27 
and 43. Using Karatsuba multiplication recursively, you form three products from 
those halves, and combine the three products to get the original product. The 
subdividing stops when the numbers are short enough to be multiplied by the 
computer’s hardware (typically, at 32 or 64 bits). 

The expensive step, repeated many times, is hardware multiplication, so the run-
ning time 𝑡 is proportional to the number of hardware multiplications. Find the 
scaling exponent 𝛽 in 𝑡 ∝ 𝑛𝛽. (You will find a scaling exponent that occurs rarely 
in physical scalings, namely an irrational number.) How does this 𝛽 compare with 
the exponent in the school algorithm for multiplication (Problem 4.27)? 

4.5 Logarithmic scales in two dimensions 
Scaling relations, which are so helpful in understanding the physical and 
mathematical worlds, have a natural representation on logarithmic scales, 
the representation that we introduced in Section 3.1.3 whereby distances 
correspond to factors or ratios rather than to differences. 

As an example, here is the gravitational strength 𝑔 at a 
distance 𝑟 from the center of a planet. Outside the planet, 
𝑔 ∝ 𝑟−2 (the inverse-square law of gravitation). On lin-
ear axes, the graph of 𝑔 versus 𝑟 looks curved, like a hy-
perbola. However, its exact shape is hard to identify; the 
graph does not make the relation between 𝑔 and 𝑟 obvi-
ous. For example, let’s try to represent our favorite scal-
ing analysis: When 𝑟 doubles, from, say, 𝑅Earth to 2𝑅Earth, 
the gravitational acceleration falls from 𝑔Earth to 𝑔Earth/4. The graph shows 
that 𝑔(2𝑅) is smaller than 𝑔(𝑅); unfortunately, the scaling is hard to extract 
from these points or from the curve. 

g ∝ r−2

Rearth

gearth

2Rearth

gearth
4
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However, using logarithmic scales for both 𝑔 and 𝑟—called 
log–log axes—makes the relation clear. Let’s try again to 
represent that when 𝑟 doubles, the gravitational accelera-
tion falls by a factor of 4. Call 1 unit on either logarithmic 
scale a factor of 2. The factor of 2 increase in 𝑟 corresponds 
to moving 1 unit to the right. The factor of 4 decrease in 𝑔 
corresponds to moving 2 units downward. Therefore, the 
graph of 𝑔 versus 𝑟 is a straight line—and its slope is −2. 
On logarithmic scales, scaling relations turn into straight 
lines whose slope is the scaling exponent. 

g ∝ r−2

slope = −2

Rearth

gearth

2Rearth

gearth
4

2
un

it
s

1 unit

Problem 4.29 Sketching gravitational field strength 

Imagine, as in Problem 4.13, a uniform spherical planet with radius 𝑅. Sketch, on 
log–log axes, gravitational field strength 𝑔 versus 𝑟, the distance from the center 
of the planet. Include the regions 𝑟 < 𝑅 and 𝑟 ≥ 𝑅. 

Many natural processes, often for unclear reasons, obey 
scaling relations. A classic example is Zipf’s law. In its 
simplest form, it states that the frequency of the 𝑘th most 
common word in a language is proportional to 1/𝑘 . The 
table gives the frequencies of the three most frequent Eng-
lish words. For English, Zipf’s law holds reasonably well 
up to 𝑘 ∼ 1000. 

Zipf’s law is useful for estimation. For example, suppose that you have to 
estimate the government budget of Delaware, one of the smallest US states 
(Problem 4.30). A key step in the estimate is the population. Delaware 
might be the smallest state, at least in area, and it is probably nearly the 
smallest in population. To use Zipf’s law, we need the data for the most pop-
ulous state. That information I happen to remember (information about the 
biggest item is usually easier to remember than information about the small-
est item): The most populous state is California, with roughly 40 million 
people. Because the United States has 50 states, Zipf’s law predicts that the 
smallest state will have a population 1/50th of California’s, or roughly 1 mil-
lion. This estimate is very close to Delaware’s actual population: 917 000. 

Problem 4.30 Government budget of Delaware 
Based on the population of Delaware, estimate its annual government budget. Then 
look up the value and check your estimate. 

word rank frequency 

the 1 7.0% 

of 2 3.5 

and 3 2.9 
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4.6 Optimizing flight speed 
With our skills in proportional reasoning, let’s return to the energy and 
power consumption in forward flight (Section 3.6.2). In that analysis, we 
took the flight speed as a given; based on the speed, we estimated the power 
required to generate lift. Now we can estimate the flight speed itself. We 
will do so by estimating the speed that minimizes energy consumption. 

4.6.1 Finding the optimum speed 
Flying requires generating lift and fighting drag. To 
find the optimum flight speed, we need to estimate 
the energy required by each process. The lift was the 
subject of Section 3.6.2, where we estimated the power 
required as 

𝑃lift ∼ 
(𝑚𝑔)2 

(4.65)
𝜌air𝑣𝐿2 

, 

body

wing

wing

L v

where 𝑚 is the plane’s mass, 𝑣 is its forward velocity, and 𝐿 is its wingspan. 
The lift energy required to fly a distance 𝑑 is this power multiplied by the 
travel time 𝑑/𝑣: 

𝑑 (𝑚𝑔)2
𝐸lift = 𝑃lift 𝜌air𝑣2𝐿2 

𝑑. (4.66)𝑣 
∼ 

In fighting drag, the energy consumed is the drag force times the distance. 
The drag force is 

𝐹drag = 2
1𝑐d𝜌air𝑣2𝐴cs, (4.67) 

where 𝑐d is the drag coefficient. To simplify comparing the energies re-
quired for lift and drag, let’s write the drag force as 

𝐹drag = 𝐶𝜌air𝑣2𝐿2, (4.68) 

where 𝐶 is a modified drag coefficient: It doesn’t use the 1/2 that is part 
of the usual combination 𝑐d/2, and it is measured relative to the squared 
wingspan 𝐿2 rather than to the cross-sectional area 𝐴cs. 

For a 747, which drag coefficient, 𝑐d or 𝐶, is smaller? 

The drag force has two equivalent forms: 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

4.6 Optimizing flight speed 129 

⎧𝐶𝐿2
{

𝐹drag = 𝜌air𝑣2 × ⎨ 1 (4.69)
{⎩ 2𝑐d𝐴cs. 

Thus, 𝐶𝐿2 = 𝑐d𝐴cs/2. For a plane, the squared wingspan 𝐿2 is much larger 
than the cross-sectional area, so 𝐶 is much smaller than 𝑐d. 

With the new form for 𝐹drag, the drag energy is 

𝐸drag = 𝐶𝜌air𝑣2𝐿2𝑑, (4.70) 

and the total energy required for flying is 
(𝑚𝑔)2

𝐸total ∼ + 𝐶𝜌air𝑣2𝐿2𝑑. (4.71)

𝜌air 𝑣2𝐿2 𝑑 

⏟⏟⏟⏟⏟⏟⏟
 ⏟⏟⏟⏟⏟
 
𝐸lift 𝐸drag
 

This formula looks intimidating because of the many para-
meters such as 𝑚, 𝑔 , 𝐿, and 𝜌air. As our interest is the flight 
speed 𝑣 (in order to find the total energy), let’s use propor-
tional reasoning to reduce the energies to their essentials:
𝐸drag ∝ 𝑣2 and 𝐸lift ∝ 𝑣−2. On log–log axes, each relation is 
a straight line with slope +2 for drag and slope −2 for lift. Because the re-
lations have different slopes, corresponding to different scaling exponents, 
their graphs must intersect. 

To interpret the intersection, let’s incorporate a sketch of the 
total energy 𝐸total = 𝐸drag+𝐸lift. At low speeds, the dominant 
consumer of energy is lift because of its 𝑣−2 dependence, so 
the sketch of 𝐸total follows 𝐸lift. At high speeds, the dominant 
consumer of energy is drag because of its 𝑣2 dependence, so 
the sketch of 𝐸total follows 𝐸drag. Between these extremes is 
an optimum speed that minimizes the energy consumption. 
(Because the axes are logarithmic, and log(𝑎 + 𝑏) ≠ log 𝑎 + 
log 𝑏, the sum of the two straight lines is not straight!) This 
optimum speed, marked 𝑣special, is the speed at which 𝐸drag 
and 𝐸lift cross. 

vspecial

slope
=
−

2

Elift ∝ v−2

sl
op

e
=
+

2

Edrag ∝ v2

vspecial

slope
=
−

2

Elift ∝ v−2

sl
op

e
=
+

2

Edrag ∝ v2

Etotal

Why is the optimum right at the crossing speed, rather than faster 
or slower than the crossing speed? 

Symmetry! Try Problem 4.31 and then look afresh at Section 3.2.3, where 
we minimized 𝐸total without the benefit of log–log axes. 
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Flying faster or slower than the optimum speed means consuming more 
energy. That extra consumption cannot always be avoided. A plane is de-
signed so that its cruising speed is its minimum-energy speed. At takeoff 
and landing, when it flies far below the minimum-energy speed, a plane 
must work harder to stay aloft, which is one reason that the engines are so 
loud at takeoff and landing (another reason is that the engine noise reflects 
off the ground and back to the plane). 
The optimization constraint, that a plane flies at the minimum-energy speed, 
allows us to eliminate 𝑣 from the total energy. As we saw on the graph, at 
the minimum-energy speed, the drag and lift energies are equal: 

(𝑚𝑔)2 

∼ 𝐶𝜌air𝑣2𝐿2𝑑, (4.72) 
𝜌air𝑣2𝐿2 

𝑑 
⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 

total energy, not the flight speed itself. To find the energy without finding 
the speed, notice a reusable idea, an abstraction, within the right side of the 
equation for 𝑚𝑔—which otherwise looks like a mess. 

connected through the square root of our modified drag coefficient 𝐶. 

𝐸total ∼ 𝐸drag (4.76) 

The energy consumed by drag—which, within a factor of 2, is also the total 
energy—is the drag force times the distance 

⏟
𝐹drag𝑑 

∼ 𝐶 𝑚𝑔𝑑. 

𝑑. Therefore, the total energy 
is given by 

𝐸lift 𝐸drag 

or, solving for 𝑚𝑔 (and rejoicing that 𝑑 canceled out), 
𝑚𝑔 ∼ 𝐶 𝜌air𝑣2𝐿2. (4.73) 

Now we could solve for 𝑣 explicitly (and you get to find and use that so-
lution in Problems 4.34 and 4.36). However, here we are interested in the 

Namely, the mess contains 𝜌air𝑣2𝐿2, which is 𝐹drag/𝐶. Therefore, when the 
plane is flying at the minimum-energy speed, 

𝑚𝑔 ∼ 𝐶 
𝐹drag 
𝐶 

, (4.74) 

so 
𝐹drag ∼ 𝐶 𝑚𝑔. (4.75) 

Thanks to our abstraction and all the surrounding approximations, we learn 
a surprisingly simple relation between the drag force and the plane’s weight, 

http:��drag(4.76
http:����air��2��2��,(4.72
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By using an optimum flight speed, we have eliminated the flight speed 𝑣 
from the total energy. 

Does the total energy depend in reasonable ways upon 𝑚, 𝑔 , 𝐶, and 𝑑? 

Yes! First, lift overcomes the weight 𝑚𝑔 ; therefore, the energy should, and 
does, increase with 𝑚𝑔 . Second, a streamlined plane (low 𝐶) should use 
less energy than a bluff, blocky plane (high 𝐶); the energy should, and does, 
increase with the modified drag coefficient 𝐶. Finally, because the plane is 
flying at a constant speed, the energy should be, and is, proportional to the 
travel distance 𝑑. 

4.6.2 Flight range 

𝐸fuel𝑑 ∼ 

From the total energy, we can estimate the range of the 747—the distance 
that it can fly on a full tank of fuel. The energy is 𝐶 𝑚𝑔𝑑, so the range 𝑑 is 

𝐶 𝑚𝑔 
, (4.77) 

where 𝐸fuel is the energy in the full tank of fuel. To estimate 𝑑, we need to 
estimate 𝐸fuel, the modified drag coefficient 𝐶, and maybe also the plane’s 
mass 𝑚. 

How much energy is in a full tank of fuel? 

The fuel energy is the fuel mass times its energy density (as an energy per 
mass). Let’s describe the fuel mass relative to the plane’s mass 𝑚, as a frac-
tion 𝛽 of the plane’s mass: 𝑚fuel = 𝛽𝑚. Using ℰfuel for the energy density of 
fuel, 

𝑑 ∼ 
𝛽ℰfuel 

range then simplifies to a relation independent of mass: 

When we put this expression into the range 𝑑, the plane’s mass 𝑚 in 𝐸fuel, 
which is the numerator of 𝑑, cancels the 𝑚 in the denominator 𝐶 𝑚𝑔 . The 

𝐸fuel = 𝛽𝑚ℰfuel. (4.78) 

𝐶𝑔 
. (4.79) 

For the fuel fraction 𝛽, a reasonable guess for long-range flight is 𝛽 ≈ 0.4: a 
large portion of the payload is fuel. For the energy density ℰfuel, we learned 
in Section 2.1 that ℰfuel is roughly 4×107 joules per kilogram (9 kilocalories 
per gram). This energy density is what a perfect engine would extract. At 
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the usual engine efficiency of one-fourth, ℰfuel becomes roughly 107 joules 
per kilogram. 

How do we find the modified drag coefficient 𝐶? 

This estimate is the trickiest part of the range estimate, because 𝐶 needs to 
be converted from more readily available data. According to Boeing, the 
manufacturer of the 747, a 747 has a drag coefficient of 𝐶′ ≈ 0.022. As the 
prime symbol indicates, 𝐶′ is yet another drag coefficient. It is measured 
using the wing area 𝐴wing and uses the traditional 1/2: 

𝐹drag = 2
1𝐶′𝐴wing𝜌air𝑣2. (4.80) 

So we have three drag coefficients, depending on whether the coefficient is 
referenced to the cross-sectional area 𝐴cs (the usual definition of 𝑐d), to the 
wing area 𝐴wing (Boeing’s definition of 𝐶′), or to the squared wingspan 𝐿2 

(our definition of 𝐶, which also lacks the factor of 1/2 that the others have). 
To convert between these definitions, compare the three ways to express the 
drag force: 

⎧ 1
2𝐶′𝐴wing (Boeing’s definition),{{{

𝐹drag = 𝜌air𝑣2 × ⎨𝐶𝐿2 (our definition), (4.81)
{{{
2
1𝑐d𝐴cs (the usual definition).⎩ 

From this comparison, 
1 1 
2𝐶′𝐴wing = 𝐶𝐿2 = 2𝑐d𝐴cs. (4.82) 

The conversion from 𝐶′ to 𝐶 is therefore 
𝐴wing𝐶 = 

1
2𝐶′ . (4.83)

𝐿2 

Using 𝑙 for the wing’s front-to-back length, the wing 
area becomes 𝐴wing = 𝐿𝑙. Then the area ratio 𝐴wing/𝐿2 

simplifies to 𝑙/𝐿 (the reciprocal of the wing aspect ra-
tio), and the drag coefficient 𝐶 simplifies to 

𝐶 = 
1
2𝐶′ 𝑙 (4.84)𝐿 

. 

For a 747, 𝑙 ≈ 10 meters, 𝐿 ≈ 60 meters, and 𝐶′ ≈ 0.022, 

body

wing

wing

L v

l

so 𝐶 ≈ 1/600:
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1𝐶 ∼ 
1
2 × 0.022 × 

10 m ≈ (4.85)60 m 600 . 

The resulting range is roughly 10 000 kilometers: 

≈ 107 m = 104 km. (4.86)𝑑 ∼ 

𝛽 

0.4⏞ × 

ℰfuel 

107 J kg−1⏞⏞⏞⏞⏞ 

1/600⏟⏟⏟⏟⏟ 
𝐶 

× 10 ms−2
⏟⏟⏟⏟⏟ 

𝑔 

The actual maximum range of a 747-400 is 13 450 kilometers (a figure we 
used in Section 4.3.2): Our approximate analysis is amazingly accurate. 

Problem 4.31 Graphical interpretation of minimization using symmetry 
In Section 3.2.3, we started with the general form for the total energy 

𝐸 ∼ 
𝐴 

𝑣2⏟ 
𝐸lift 

+ 𝐵𝑣2 

⏟ 
𝐸drag 

(4.87) 

and found the optimum (minimum-energy) speed by constructing the following 
symmetry operation: 

𝑣 ⟷ 
𝐴/𝐵
𝑣 

. (4.88) 

On the log–log plot of the energies versus 𝑣, what is the geometric interpretation 
of this symmetry operation? 

Problem 4.32 Minimum-power speed 

We estimated the flight speed 𝑣E that minimizes energy consumption. We could 
also have estimated 𝑣P, the speed that minimizes power consumption. What is the 
ratio 𝑣P/𝑣E? Before doing an exact calculation, sketch 𝑃lift, 𝑃drag, and 𝑃lift + 𝑃drag 
(on log–log axes) and place 𝑣P on the correct side of 𝑣E. Then check your placement 
against the result of the exact calculation. 

Problem 4.33 Coefficient of lift 
Just as we can define a dimensionless drag coefficient 𝑐d, where 

𝐹drag = 
1 
2 
𝑐d𝜌air𝐴𝑣2, (4.89) 

we can define a dimensionless lift coefficient 𝑐L, where 

𝐹lift = 
1 
2 
𝑐L𝜌air𝐴𝑣2, (4.90) 

where the area 𝐴 here is usually the wing area. (The same formula structure shows 
up in drag and lift—abstraction!) Estimate 𝑐L for a 747 in cruising flight. 
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4.6.3 Flight range versus size 
In proportional reasoning, we ask, “How does one quantity change when 
we change an independent variable (for example, if we double an indepen-
dent variable)?” Because flying objects come in such a wide range of sizes, 
a natural independent variable is size. 

How does the flight range depend on the plane’s size? 

Let’s assume that all planes are geometrically similar—that is, that they 
have the same shape and differ only in their size. Now let’s see how chang-

using intensive quantities, as we discussed in Section 4.2.4 when we made 
a scaling relation for planetary surface gravity. Finally, the drag coefficient
𝐶 depends only on the plane’s shape (on how streamlined it is), not on its 
size, so it too remains constant. Therefore, the flight range is independent 
of the plane’s size! 

for the comparison 

ℰ fuel −1/2
𝑑plane 𝛽plane plane 𝐶plane
= ( ) . (4.92)
ℰ fuel𝑑bird 𝛽bird 𝐶bird bird 

The ratio of fuel fractions is roughly 1: For the plane, 𝛽 ≈ 0.4; and a bird, 
having eaten all summer, is perhaps 40 percent fat (the bird’s fuel). The 
energy density in jet fuel and fat is similar, as is the efficiency of engines 
and animal metabolism (at about 25 percent). Therefore, the ratio of energy 
densities is also roughly 1. Finally, a bird has a similar shape to a plane, 
so the ratio of drag coefficients is also roughly 1. Therefore, planes and 
well-fattened migrating birds should have a similar maximum range, about 
10 000 kilometers. 

Let’s check. The longest known nonstop flight by an animal is 11 680 kilo-
meters: made by a bar-tailed godwit tracked by satellite by Robert Gill and 
his colleagues [19] as the bird flew nonstop from Alaska to New Zealand! 

ing the plane’s size changes the quantities in the range 

𝑑 ∼ 
𝛽ℰfuel 
𝐶 𝑔 

. (4.91) 

The gravitational acceleration 𝑔 remains fixed. The fuel energy density ℰfuel 
and the fuel fraction 𝛽 also remain fixed—which shows again the benefit of 

A further surprise comes from comparing the range of planes with the 
range of migrating birds. The proportionality 𝑑 ∝ 𝛽ℰfuel⁄ 𝐶 is shorthand 
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4.7 Summary and further problems 
Proportional reasoning focuses our attention on how one quantity deter-
mines another. (A wonderful collection of pointers to further reading is 
the American Journal of Physics’s “Resource Letter” on scaling laws [49].) By 
guiding us toward what is often the most important characteristic of a prob-
lem, the scaling exponent, it helps us discard spurious complexity. 

Problem 4.34 Cruising speed versus mass 
For geometrically similar animals (the same shape and composition but different 
sizes) in forward flight, how does the animal’s minimum-energy flight speed 𝑣 
depend on its mass 𝑚? In other words, what is the scaling exponent 𝛽 in 𝑣 ∝ 𝑚𝛽? 

Problem 4.35 Hovering power versus size 
In Section 3.6.1, we derived the power required to hover. For geometrically simi-
lar birds, how does the power per mass depend on the animal’s size 𝐿? In other 
words, what is the scaling exponent 𝛾 in 𝑃hover/𝑚 ∝ 𝐿𝛾 ? Why are there no large 
hummingbirds? 

Problem 4.36 Cruising speed versus air density 
How does a plane’s (or a bird’s) minimum-energy speed 𝑣 depend on 𝜌air? In other 
words, what is the scaling exponent 𝛾 in 𝑣 ∝ 𝜌𝛾 

air? 

Problem 4.37 Speed of a bar-tailed godwit 
Use the results of Problem 4.34 and Problem 4.36 to write the ratio 𝑣747/𝑣godwit as 
a product of dimensionless factors, where 𝑣747 is the minimum-energy (cruising) 
speed of a 747, and 𝑣godwit is the minimum-energy (cruising) speed of a bar-tailed 
godwit. Using 𝑚godwit ≈ 400 grams, estimate the cruising speed of a bar-tailed 
godwit. Compare your result to the average speed of the record-setting bar-tailed 
godwit that was studied by Robert Gill and his colleagues [19], which made its 
11 680-kilometer journey in 8.1 days. 

Problem 4.38 Thermal resistance of a house versus a tea mug 
When we developed the analogy between low-pass electrical and thermal filters 
(Section 2.4.5)—whether 𝑅𝐶 circuits, tea mugs, or houses—we introduced the ab-
straction of thermal resistance 𝑅thermal. In this problem, you estimate the ratio of 

⁄𝑅tea mug thermal resistances 𝑅house thermal thermal . 

House walls are thicker than teacup walls. Because thermal resistance, like electri-
cal resistance, is proportional to the length of the resistor, the house’s thicker walls 
raise its thermal resistance. However, the house’s larger surface area, like having 
many resistors in parallel, lowers the house’s thermal resistance. Estimate the size 
of these two effects and thus the ratio of the two thermal resistances. 
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Problem 4.39 General birthday problem 

Extend the analysis of Problem 4.24 to 𝑘 people sharing a birthday. Then compare 
your predictions to the exact results given by Diaconis and Mosteller in [10]. 

Problem 4.40 Flight of the housefly 
Estimate the mechanical power required for a common housefly Musca domestica 
(𝑚 ≈ 12 milligrams) to hover. From everyday experience, estimate its typical flight 
speed. At this flight speed, compare the power requirements for forward flight and 
for hovering. 
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In 1906, Los Angeles received 540 millimeters of precipitation (rain, snow, 
sleet, and hail). 

Is this rainfall large or small? 

On the one hand, 540 is a large number, so the rainfall is large. On the other 
hand, the rainfall is also 0.00054 kilometers, and 0.00054 is a tiny number, 
so the rainfall is small. These arguments contradict each other, so at least 
one must be wrong. Here, both are nonsense. 
A valid argument comes from a meaningful comparison—for example, com-
paring 540 millimeters per year with worldwide average rainfall—which 
we estimated in Section 3.4.3 as 1 meter per year. In comparison to this rain-
fall, Los Angeles in 1906 was dry. Another meaningful comparison is with 
the average rainfall in Los Angeles, which is roughly 350 millimeters per 
year. In comparison, 1906 was a wet year in Los Angeles. 
In the nonsense arguments, changing the units of length changed the re-
sult of the comparison. In contrast, the meaningful comparisons are inde-
pendent of the system of units: No matter what units we select for length 
and time, the ratio of rainfalls does not change. In the language of symme-
try, which we met in Chapter 3, changing units is the symmetry operation, 
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and meaningful comparisons are the invariants. They are invariant because 
they have no dimensions. When there is change, look for what does not 
change: Make only dimensionless comparisons. 

This criterion is necessary for avoiding nonsense; however, it is not suffi-
cient. To illustrate the difficulty, let’s compare rainfall with the orbital speed 
of the Earth. Both quantities have dimensions of speed, so their ratio is in-
variant under a change of units. However, judging the wetness or dryness 
of Los Angeles by comparing its rainfall to the Earth’s orbital speed pro-
duces nonsense. 

Here is the moral of the preceding comparisons. A quantity with dimen-
sions is, by itself, meaningless. It acquires meaning only when compared 
with a relevant quantity that has the same dimensions. This principle un-
derlies our next tool: dimensional analysis. 

Problem 5.1 Book boxes are heavy 
In Problem 1.1, you estimated the mass of a small moving-box packed with books. 
Modify your calculation to use a medium moving-box, with a volume of roughly
0.1 cubic meters. Can you think of a (meaningful!) comparison to convince some-
one that the resulting mass is large? 

Problem 5.2 Making energy consumption meaningful 
The United States’ annual energy consumption is roughly 1020 joules. Suggest two 
comparisons to make this quantity meaningful. (Look up any quantities that you 
need to make the estimate, except the energy consumption itself!) 

Problem 5.3 Making solar power meaningful 
In Problem 3.31, you should have found that the solar power falling on Earth is 
roughly 1017 watts. Suggest a comparison to make this quantity meaningful. 

Problem 5.4 Energy consumption by the brain 

The human brain consumes about 20 watts, and has a mass of 1–2 kilograms. 

a. Make the power more meaningful by estimating the brain’s fraction of the 
body’s power consumption:
 

brain power
 
(5.1)basal metabolism 

. 

b.	 Make this fraction even more meaningful by estimating the ratio
 

the brain’s fraction of the body’s power consumption
 
. (5.2)the brain’s fraction of the body’s mass 
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Problem 5.5 Making oil imports meaningful 
In Section 1.4, we estimated that the United States imports roughly 3 × 109 barrels 
of oil per year. This quantity needs a comparison to make it meaningful. As one 
possibility, estimate the ratio 

cost of the imported oil 
(5.3)US military spending to “defend” oil-rich regions . 

If this ratio is less than 1, suggest why the US government does not cancel that 
part of the military budget and use the savings to provide US consumers with free 
imported oil. 

Problem 5.6 Making the energy in a 9-volt battery meaningful 
Using your estimate in Problem 1.11 for the energy in a 9–volt battery, estimate 

energy content of the battery 
. (5.4)cost of the battery 

Compare that quotient to the same quotient for electricity from the wall socket. 

5.1 Dimensionless groups 
Because dimensionless quantities are the only meaningful quantities, we 
can understand the world better by describing it in terms of dimensionless 
quantities. But we need to find them. 

5.1.1 Finding dimensionless groups 
To illustrate finding these dimensionless quantities, let’s try 
an example that uses familiar physics: When learning a new 
idea, it is helpful to try it on a familiar example. We’ll find a 
train’s inward acceleration as it moves on a curved track. The 
larger the acceleration, the more the track or the train needs 
to tilt so that the passengers do not feel uncomfortable and (if 
the track is not tilted enough) the train does not tip over. 

r
a

v

Our goal is the relation between the train’s acceleration 𝑎, its 
speed 𝑣, and the track’s radius of curvature 𝑟. In our state of knowledge 
now, the relation could be almost anything. Here are a few possibilities: 

𝑎 + 𝑣2 𝑣3 𝑟 + 𝑎2 𝑎2 𝑣 𝑎 + 𝑣 = = = . (5.5)𝑟 𝑎 
; 𝑣 𝑣 + 𝑟 ; 𝑟𝑎 + 𝑣3 𝑟2 

Although those possibilities are bogus, among the vast sea of possible rela-
tions, one relation is correct. 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

140 5 Dimensions
 

To find the constraint that will shrink the sea to a few drops, first defocus 
our eyes and see all the choices as examples of the general form 

blob A

⏟⏟⏟⏟⏟ 

= blob B

⏟⏟⏟⏟⏟ 

(5.6) 

some function of another function of
 
𝑎, 𝑣, and 𝑟 𝑎, 𝑣, and 𝑟
 

Even though the blobs might be complicated functions, they must have 
identical dimensions. By dividing both sides by blob B, we get a simpler 
form: 

blob A

blob B

= 1. (5.7) 

Now each side is dimensionless. Therefore, whatever the relation between 
𝑎, 𝑣, and 𝑟, we can write it in dimensionless form. 

The preceding process is not limited to this problem. In any valid equa-
tion, all the terms have identical dimensions. For example, here is the total 
energy in a spring–mass system: 

1𝐸total = 2𝑚𝑣2 + 
1
2𝑘𝑥

2. (5.8) 

The kinetic-energy term (𝑚𝑣2/2) and the potential-energy term (𝑘𝑥2/2) have 
the same dimensions (of energy). The same process of dividing by one of 
the terms turns any equation into a dimensionless equation. As a result, any 
equation can be written in dimensionless form. Because the dimensionless 
forms are a small fraction of all possible forms, this restriction offers us a 
huge reduction in complexity. 

To benefit from this reduction, we must compactly describe all such forms: 
Any dimensionless form can be built from dimensionless groups. A dimen-
sionless group is the product of the quantities, each raised to a power, such 
that the product has no dimensions. In our example, where the quantities 
are 𝑎, 𝑣, and 𝑟, any dimensionless group 𝐺 has the form 

𝐺 ≡ 𝑎𝑥𝑣𝑦𝑟𝑧, (5.9) 
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where 𝐺 has no dimensions and where the exponents 𝑥, 𝑦, and 𝑧 are real 
numbers (possibly negative or zero). 

Because any equation describing the world can be written in dimensionless 
form, and because any dimensionless form can be written using dimension-
less groups, any equation describing the world can be written using dimen-
sionless groups. 

That news is welcome, but how do we find these groups? 

The first step is to tabulate the quantities with their descrip- LT−2𝑎 acceleration 
tions and dimensions. By convention, capital letters are LT−1𝑣 speed
used to represent dimensions. For now, the possible di- 𝑟 L radius 
mensions are length (L), mass (M), and time (T). Then, for 
example, the dimensions of 𝑣 are length per time or, more compactly, LT−1 . 

Then, by staring at the table, we find all possible dimensionless groups. A 
dimensionless group contains no length, mass, or time dimensions. For our 
example, let’s start by getting rid of the time dimension. It occurs in 𝑎 as 
T−2 and in 𝑣 as T−1. Therefore, any dimensionless group must contain 𝑎/𝑣2. 
This quotient has dimensions of L−1 . To make it dimensionless, multiply 
it by the only quantity that is purely a length, which is the radius 𝑟. The 
result, 𝑎𝑟/𝑣2, is a dimensionless group. In the 𝑎𝑥𝑣𝑦𝑟𝑧 form, it is 𝑎1𝑣−2𝑟1. 

Are there other dimensionless groups? 

To get rid of time, we started with 𝑎/𝑣2 and then ended, inevitably, with 
the group 𝑎𝑟/𝑣2. To make another dimensionless group, we would have to 
choose another starting point. However, the only starting points that get rid 
of time are powers of 𝑎/𝑣2—for example, 𝑣2/𝑎 or 𝑎2/𝑣4—and those choices 
lead to the corresponding power of 𝑎𝑟/𝑣2. Therefore, any dimensionless 
group can be formed from 𝑎𝑟/𝑣2. Our three quantities 𝑎, 𝑟, and 𝑣 produce 
exactly one independent dimensionless group. 

As a result, any statement about the circular acceleration can be written 
using only 𝑎𝑟/𝑣2. All dimensionless statements using only 𝑎𝑟/𝑣2 have the 
general form

𝑎𝑟 = dimensionless constant, (5.10)
𝑣2 

because there are no other independent dimensionless groups to use on the 
right side. 
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Why can’t we use 𝑎𝑟/𝑣2 on the right side? 

We can, but it doesn’t create new possibilities. As an example, let’s try the 
following dimensionless form: 

𝑎𝑟 
𝑣2 

= 3( 
𝑣
𝑎𝑟
2 ) − 1. (5.11) 

Its solution is 𝑎𝑟/𝑣2 = 1/2, which is another example of our general form 
𝑎𝑟 = dimensionless constant. (5.12)
𝑣2 

But what if we use a more complicated function? 

Let’s try one: 
2 

𝑣
𝑎𝑟
2 
= ( 

𝑎𝑟 − 1. (5.13)
𝑣2 

)

Its solutions are 
𝑎𝑟 
𝑣2 

= { 
𝜙,

(5.14)−1/𝜙, 

where 𝜙 is the golden ratio (1.618…). Deciding between these solutions 
would require additional information or requirements, such as the sign con-
vention for the acceleration. Even so, each solution is another example of 
the general form

𝑎𝑟 = dimensionless constant. (5.15)
𝑣2 

Using that form, which we cannot escape, the acceleration of the train is 

𝑎 ∼ 
𝑣
𝑟
2
, (5.16) 

where the ∼ contains the (unknown) dimensionless constant. In this case, 
the dimensionless constant is 1. However, dimensional analysis, as this 
procedure is called, does not tell us its value—which would come from a 
calculus analysis or, approximately, from a lumping analysis (Section 6.3.4). 
Using 𝑎 ∼ 𝑣2/𝑟, we can now estimate the inward acceleration of the train 
going around a curve. Imagine a moderately high-speed train traveling at
𝑣 ≈ 60 meters per second (approximately 220 kilometers or 135 miles per 
hour). At such speeds, railway engineers specify that the track’s radius of 
curvature be at least 2 or 3 kilometers. Using the smaller radius of curvature, 
the inward acceleration becomes 
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Here are three ways to check whether our pendulum model of walking is 
reasonable. First, the resulting formula, 

𝑣max ∼ 𝑔𝑙 , (5.18) 

explains why tall people, with a longer leg length, generally walk faster 
than short people. 
Second, it predicts a reasonable maximum walking speed. With a leg length 
of 𝑙 ∼ 1 meter, the limit is 3 meters per second or about 7 miles per hour: 
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𝑎 ∼ 
(60 ms−1)2 

= 1.8 ms−2. (5.17) 

This change happens when 𝑣 ∼ 𝑔𝑙 . Then your foot leaves the ground, and 
the walk turns into a run. Therefore, gait is determined by the dimension-
less ratio 𝑣2/𝑔𝑙. This ratio, which also determines the speed of water waves 
(Problem 5.15) and of ships (Problem 5.64), is called the Froude number 
and abbreviated 𝖥𝗋. 

2 × 103 m 

Because no quantity with dimensions is large or small on its own, 
this acceleration by itself is meaningless. It acquires meaning in 
comparison with a relevant acceleration: the gravitational accel-
eration 𝑔 . For this train, the dimensionless ratio 𝑎/𝑔 is approx-
imately 0.18. This ratio is also tan 𝜃 , where 𝜃 is the train’s tilt 
that would make the passengers feel a net force perpendicular to 
the floor. With 𝑎/𝑔 ≈ 0.18, the comfortable tilt angle is approx-
imately 10∘. Indeed, tilting trains can tilt up to 8∘. (This range 
is usually sufficient, as a full tilt is disconcerting: One would see 
a tilted ground but would still feel gravity acting as it normally 
does, along one’s body axis.) 
Using our formula for circular acceleration, we can also es-
timate the maximum walking speed. In walking, one foot 
is always in contact with the ground. As a rough model of 
walking, the whole body, represented as a point mass at its 
center of mass (CM), pivots around the foot in contact with 
the ground—as if the body were an inverted pendulum. If 
you walk at speed 𝑣 and have leg length 𝑙, then the result-
ing circular acceleration (the acceleration toward the foot) is
𝑣
gravity cannot supply enough acceleration. 
. When you walk fast enough such that this acceleration is more than 2/𝑙 𝑔 , 

train

a

g

θ

θ

lleg

CM
m v

𝑣max ∼ 10 ms−2 × 1 m ≈ 3 ms−1. (5.19) 
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This prediction is consistent with world-record racewalking speeds, where 
the back toe may not leave the ground until the front heel has touched the 
ground. The world records for 20-kilometer racewalking are 1h:24m:50s 
for women and 1h:17m:16s for men. The corresponding speeds are 3.9 and 
4.3 meters per second. 
The third test is based on gait. In a fascinating experiment, Rodger Kram 
and colleagues [31] reduced the effective gravity 𝑔 . This reduction changed 
the speed of the walking–running transition, but the speed still satisfied
𝑣2/𝑔𝑙 ∼ 0.5. The universe cares only about dimensionless quantities! 
Another moral of this introduction to dimensional analysis is that 
every dimensionless group is an abstraction. Here, the group 
𝑎𝑟/𝑣2 tells us that the universe cares about 𝑎, 𝑟, or 𝑣 through 
the combination 𝑎𝑟/𝑣2. This relation is described by the tree dia-
gram (the edge label of −2 is the exponent of 𝑣 in 𝑣−2). Because 
there is only one independent dimensionless group, the universe 

a r v

ar/v2

−2

cares only about 𝑎𝑟/𝑣2. Therefore, the universe cares about 𝑎, 𝑟, and 𝑣 only 
through the combination 𝑎𝑟/𝑣2. This freedom not to worry about individ-
ual quantities simplifies our picture of the world. 

5.1.2 Counting dimensionless groups 
Finding the circular acceleration required finding all possible dimension-
less groups and showing that all groups could be constructed from one 
group—say, 𝑎𝑟/𝑣2. That reasoning followed a chain of constraints: To get 
rid of the time, the dimensionless group had to contain the quotient 𝑎/𝑣2; 
to get rid of the length, the quotient needed to be multiplied by the correct 
power of 𝑟. 

For each problem, do we have to construct a similar chain of reasoning in order to 
count the dimensionless groups? 

Following the constraints is useful for finding dimensionless groups, but 
there is a shortcut for counting independent dimensionless groups. The 
number of independent groups is, roughly, the number of quantities minus 
the number of dimensions. A more precise statement will come later, but 
this version is enough to get us started. 
Let’s test it using the acceleration example. There are three quantities: 𝑎, 𝑣, 
and 𝑟. There are two dimensions: length (L) and time (T). There should be, 
and there is, one independent dimensionless group. 
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Let’s also test the shortcut on a familiar physics formula: 𝑊 MLT−2 weight 
𝑊 = 𝑚𝑔 , where 𝑊 is an object’s weight, 𝑚 is its mass, and 𝑔 𝑚 M mass 
is the gravitational acceleration. There are three quantities LT−2𝑔 gravity 
(𝑊 , 𝑚, and 𝑔) made from three dimensions (M, L, and T). 
Our shortcut predicts no dimensionless groups at all. However, 𝑊/𝑚𝑔 is 
dimensionless, which refutes the prediction! 

What went wrong? 

Although the three quantities seem to contain three dimensions, the three 
dimensional combinations actually used—force (MLT−2), mass (M), and 
acceleration (LT−2)—can be constructed from just two dimensions. For ex-
ample, we can construct them from mass and acceleration. 

But acceleration is not a fundamental dimension, so how can we use it? 

The notion of fundamental dimensions is a human convention, part of our 
system of measurement. Dimensional analysis, however, is a mathematical 
process. It cares neither about the universe nor about our conventions for 
describing the universe. That lack of care may appear heartless and seem 
like a disadvantage. However, it means that dimensional analysis is inde-
pendent of our arbitrary choices, giving it power and generality. 
As far as dimensional analysis is concerned, we can choose 𝑊 M × [𝑎] weight 
any set of dimensions as our fundamental dimensions. The 𝑚 M mass 
only requirement is that they suffice to describe the dimen- 𝑔 [𝑎] gravity 
sions of our quantities. Here, mass and acceleration suffice, 
as the rewritten dimensions table shows: Using the notation [𝑎] for “the 
dimensions of 𝑎,” the dimensions of 𝑊 are M × [𝑎] and the dimensions of 
𝑔 are just [𝑎]. 
In summary, the three quantities contain only two independent dimensions. 
Three quantities minus two independent dimensions produce one indepen-
dent dimensionless group. Accordingly, the revised counting shortcut is 

number of quantities 
− number of independent dimensions (5.20) 

number of independent dimensionless groups 

This shortcut, known as the Buckingham Pi theorem [4], is named after 
Edgar Buckingham and his uppercase Pi (Π) notation for dimensionless 
groups. (It is also the rank–nullity theorem of linear algebra [42].) 
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Problem 5.7 Bounding the number of independent dimensionless groups 
Why is the number of independent dimensionless groups never more than the 
number of quantities? 

Problem 5.8 Counting dimensionless groups 
How many independent dimensionless groups do the following sets of quantities 
produce? 

a. period 𝑇 of a spring–mass system in a gravitational field: 𝑇 , 𝑘 (spring constant), 
𝑚, 𝑥0 (amplitude), and 𝑔 . 

b. impact speed 𝑣 of a free-falling object: 𝑣, 𝑔 , and ℎ (initial drop height). 

c. impact speed 𝑣 of a downward-thrown free-falling object: 𝑣, 𝑔 , ℎ, and 𝑣0 (launch 
velocity). 

Problem 5.9 Using angular frequency instead of speed 

Redo the dimensional-analysis derivation of circular acceleration using the radius
𝑟 and the angular frequency 𝜔 as independent variables. Using 𝑎 = 𝑣2/𝑟, find the 
dimensionless constant in the general dimensionless form 

dimensionless group proportional to 𝑎 = dimensionless constant. (5.21) 

Problem 5.10 Impact speed of a dropped object 
Use dimensional analysis to estimate the impact speed of a freely falling rock that 
is dropped from a height ℎ. 

Problem 5.11 Speed of gravity waves on deep water 

𝑣 LT−1 wave speed 

𝑔 LT−2 gravity 
𝜔 T−1 angular freq. 
𝜌 ML−3 water density 

In this problem, you use dimensional analysis to 
find the speed of waves on the open ocean. These 
waves are the ones you would see from an airplane 
and are driven by gravity. Their speed could de-
pend on gravity 𝑔 , their angular frequency 𝜔, and 
the density of water 𝜌. Do the analysis as follows. 

a. Explain why these quantities produce one independent dimensionless group. 

b. What is the group proportional to 𝑣? 

c. With the further information that the dimensionless constant is 1, predict the 
speed of waves with a period of 17 seconds (you can measure the period by 
timing the interval between each wave’s arrival at the shore). This speed is 
also the speed of the winds that produced the waves. Is it a reasonable wind 
speed? 

d. What would the dimensionless constant be if, in the table of quantities, angular 
frequency 𝜔 is replaced by the period 𝑇 ? 
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Problem 5.12 Using period instead of speed 

In finding a formula for circular acceleration (Section 5.1.1), our independent vari-
ables were the radius 𝑟 and the speed 𝑣. Redo the dimensional-analysis derivation 
using the radius 𝑟 and the period 𝑇 as the independent variables. 

a. Explain why there is still only one independent dimensionless group. 

b. What is the independent dimensionless group proportional to 𝑎? 

c. What dimensionless constant is this group equal to? 

5.2 One dimensionless group 
The most frequent use of dimensional analysis involves one independent 
dimensionless group—for example, 𝑎𝑟/𝑣2 in our analysis of circular accel-
eration (Section 5.1.1). Let’s look at this kind of case more closely, which 
has lessons for more complicated problems. 

5.2.1 Universal constants 
What we will find is that dimensional analysis reduces complexity by
 
generating results with wide application. That is, in the general form
 

independent dimensionless group = dimensionless constant, (5.22) 

the dimensionless constant is universal. Let’s see what universal means 
through an example—the analysis of a small-amplitude pendulum. So, 

l

m

θ0

imagine releasing a pendulum from a small angle 𝜃0. 

What is its period of oscillation? 

The first step in dimensional analysis is to list the relevant 𝑇 T period
quantities. The list begins with the goal quantity—here, LT−2𝑔 gravity 
the period 𝑇 . It depends on gravity 𝑔 , the string length 𝑙 L string length 
𝑙, perhaps the mass 𝑚 of the bob, and perhaps the ampli- 𝑚 M mass of bob 
tude 𝜃0. Fortunately, when the amplitude is small, as it is 
here, then the amplitude turns out not to matter, so we won’t list it. 

What are the dimensionless groups? 

These four quantities contain three independent dimensions (M, L, and T). 
By the Buckingham Pi theorem (Section 5.1.2), they produce one indepen-
dent dimensionless group. This group cannot contain 𝑚, because 𝑚 is the 
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However, because our eventual goal is the period 𝑇 , let’s make a 
dimensionless group proportional to 𝑇 itself rather than to 𝑇 2. This group 
is 𝑇 𝑔/𝑙 . Then the most general dimensionless statement is 

𝑔𝑇 2/𝑙. 

𝑇 
𝑔
𝑙 = 𝐶, 

only quantity with dimensions of mass. A simple dimensionless group is

(5.23) 

where 𝐶 is a dimensionless constant. Even though its value is, for the mo-
ment, unknown, it is universal. The same constant applies to a pendulum 
with a shorter string or, perhaps more surprisingly, to a pendulum on Mars, 
with its different gravitational strength. If we find the constant for one pen-
dulum on one planet, we know it for all pendulums on all planets. 

There are at least three ways to find 𝐶. The first is to solve the pendulum 
differential equation—which is hard work. The second approach is to solve 
a cleverly designed simpler problem (Problem 3.4). Although the approach 
is clever, it is not as general as the third method. 

The third method is to measure 𝐶 with a home experiment! For that 
purpose, I turned my key ring into a pendulum by hanging it from a 
string. The string was roughly twice the length of American letter paper 
(thus, 2 × 11 inches) and the period was roughly 1.5 seconds. Therefore, 

𝐶 = 𝑇 
𝑔 
𝑙 ≈ 1.5 s × 

32 ft s−2 

2 ft = 6. (5.24) 

Would the constant be different in a modern system of units? 

l

key ring

In metric units, 𝑔 ≈ 9.8 meters per second per second, 𝑙 ≈ 0.6 meters, and 
𝐶 is, within calculation inaccuracies, still 6: 

𝐶 ≈ 1.5 s × 
9.8 m/s2 

0.6 m 
≈ 6. (5.25) 

The system of units does not matter—which is the reason for using dimen-
sionless groups: They are invariant under a change of units. Even so, an 
explicit 6 probably would not appear if we solved the pendulum differen-
tial equation honestly. But a more precise measurement of 𝐶 might suggest 
a closed form for this dimensionless constant. 

The pendulum length, from the knot where I hold it to the center of the key 
ring is 0.65 meters (slightly longer than the rough estimate of 0.6 meters). 
Meanwhile, 10 periods took 15.97 seconds. Then 𝐶 is close to 6.20: 
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9.8 ms−2

𝐶 ≈ 1.597 s × ≈ 6.20. (5.26)
 

What dimensionless numbers could produce 6.20? 

𝑙 𝑙𝑇 = 𝐶 𝑔 
= 2𝜋 (5.27)𝑔 

. 

This value is close to 2𝜋 , which is approximately 6.28. That guess feels 
like a leap, but have courage. The guess is plausible once we remember 
that pendulums oscillate and oscillations often involve 2𝜋 , or that we are 
asking for the period rather than the angular frequency, a choice that often 
introduces a 2𝜋 (as in Problem 5.11(d)). The resulting period 𝑇 is 

(For a physical explanation of the 2𝜋 , try Problem 3.4.) 
This example shows how dimensional analysis, a mathematical approach, 
sits between two physical approaches. First we used our physical knowl-
edge to list the relevant quantities. Then we reduced the space of possi-
ble relations by using dimensional analysis. Finally, to find the universal 
constant 𝐶, which dimensional analysis could not tell us, we again used 
physical knowledge (a home experiment). 

Problem 5.13 Your own measurement 
Make your own pendulum and measure the universal constant 𝑇 𝑔/𝑙 . 

Problem 5.14 Period of a spring–mass system 

Use dimensional analysis to find, except for a dimensionless constant, the period
𝑇 of a spring–mass system with spring constant 𝑘 , mass 𝑚, and amplitude 𝑥0. Find 
the dimensionless constant in the most general dimensionless statement 

group proportional to 𝑇 = dimensionless constant. (5.28) 

Problem 5.15 Speed of waves in shallow water 
In shallow water, where the wavelength is much larger than the depth, waves dri-
ven by gravity travel at a speed that could depend on gravity 𝑔 , the water depth ℎ, 
and the density of water 𝜌. 

a. Find the independent dimensionless group proportional to 𝑣2, where 𝑣 is the 
wave speed. Compare this group to the Froude number, the dimensionless 
ratio that we introduced to study walking (Section 5.1.1). 

b. What therefore is the scaling exponent 𝛽 in the scaling 
relation 𝑣 ∝ ℎ𝛽? Test your prediction by measuring 
𝑣(1 cm) and 𝑣(4 cm). To make the measurement, fill 
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a baking dish with water and excite a sloshing wave by slightly lifting and 
quickly setting down one end of the dish. 

c. Using your data, estimate the universal (dimensionless) constant in the relation 

dimensionless group from part (a) = dimensionless constant. (5.29) 

d. Predict the speed of tidal waves, which are (shallow-water!) waves created by 
underwater earthquakes. How long does a tidal wave take to cross an ocean? 

5.2.2 Atomic blast energy 
Problems with only one dimensionless group need not be simple or 𝑡 (ms) 𝑅 (m)
easy to by other methods. A classic example is finding the energy re-

3.26 59.0leased by the first atomic bomb, detonated in the New Mexico desert 
4.61 67.3 in 1945. The blast energy, or yield, was top secret. Yet declassified 

15.0 106.5photographs of the blast, because they had a scale bar, provided data 
62.0 185.0on the radius of the fireball at several times after the explosion. The
 

data must have seemed innocuous enough to release.
 

But from these data, G. I. Taylor of Cambridge University pre-
dicted the yield [44]. The analysis, like many calculations in 
fluid mechanics, is long and complicated. We’ll instead use 
dimensional analysis to find the relation between the blast ra-

R

dius 𝑅, the time 𝑡 since the blast, the blast energy 𝐸, and the air density 𝜌. 
Then we’ll use the 𝑅(𝑡) data to predict 𝐸. 

These four quantities contain three independent di- 𝐸 ML2T−2 blast energy 
mensions. Thus, they produce one independent di- 𝑅 L blast radius 
mensionless group. To find it, let’s eliminate one 𝑡 T time since blast 
dimension at a time. Here, a bit of luck simplifies ML−3𝜌air air density 
the process, because we have dimensions that are 
easy to eliminate. 

Do any dimensions occur in only one or two quantities? 

Yes: Mass occurs in 𝐸 as M1 and in 𝜌air also as M1; time appears in 𝐸 as T−2 

and in 𝑡 as T1. Therefore, to eliminate mass, the dimensionless group must 
contain 𝐸/𝜌air. To eliminate time, the dimensionless group must contain 𝐸𝑡2. 
Thus, 𝐸𝑡2/𝜌air eliminates mass and time. Because it has dimensions of L5 , 
the only way to remove these dimensions without introducing any powers 
of time or mass is to divide by 𝑅5. The result, 𝐸𝑡2/𝜌air𝑅5, is an independent 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

151 5.2 One dimensionless group 

dimensionless group. It is also the only dimensionless group proportional 
to our goal, the blast energy 𝐸. 

With only one dimensionless group, the most general dimensionless state-
ment about the blast energy is 

𝐸𝑡2 

𝜌air𝑅5 
∼ 1. (5.30) 

For a particular explosion, 𝐸 is fixed (although unknown), as is 𝜌air. There-
fore, these quantities drop out of the corresponding scaling relation, which 
becomes 𝑡2 ∝ 𝑅5 or 𝑅 ∝ 𝑡2/5. On log–log axes, the data on the blast radius 
should fall along a line of slope 2/5—as they almost exactly do: 

3.26

59

4.61

67.3

15

106.5

62

185

0.4 slope

t (ms)

R (m)

With the dimensional analysis result 𝐸𝑡2/𝜌air𝑅5 ∼ 1, each point predicts a 
blast energy according to 𝐸 ∼ 𝜌air𝑅5/𝑡2. Using 1 kilogram per cubic meter 
for 𝜌air, the 𝐸 estimates lie between 5.6 and 6.7 × 1013 joules. Unfortunately 
for judging the accuracy of the estimate, joules are an unfamiliar unit for 
the energy of a bomb blast. The familiar unit is tons of TNT. 

What is the predicted blast energy as a mass of TNT? 

One gram of TNT releases 1 kilocalorie or roughly 4 kilojoules. It con-
tains only one-fourth the energy density of sugar, but the energy is released 
much more rapidly! One kiloton is 109 grams, which release 4×1012 joules. 
Our predicted yield of 6 × 1013 joules is thus roughly 15 kilotons of TNT. 

Just for fun, if we reestimate the yield using a more accurate air density of
1.2 kilograms per cubic meter, the blast energy would be 18 kilotons. This 
result is shockingly accurate considering the number of approximations it 
contains: The classified yield was 20 kilotons. (The missing universal con-
stant for shock-wave explosions must be very close to 1.) 

Dimensional analysis is powerful! 
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5.3 More dimensionless groups 
The biggest change in dimensional analysis comes with a second indepen-
dent dimensionless group. With only one dimensionless group, the most 
general statement that the universe could make was 

dimensionless group ∼ 1. (5.31) 

With a second group, the universe gains freedom on the right side: 

group 1 = 𝑓 (group 2), (5.32) 

where 𝑓 is a dimensionless function: It takes a dimensionless number as its 
input, and it produces a dimensionless number as its output. 

(the previous problem is the case 𝑣0 = 0). 

With this complication, what are independent dimensionless groups? 

As an example of two independent dimensionless groups, let’s extend the 
analysis of Problem 5.10, where you predicted the impact speed of a rock 
dropped from a height ℎ. The impact speed depends on 𝑔 and ℎ, so a reason-
able choice for the independent dimensionless group is 𝑣/ 𝑔ℎ . Therefore, 
its value is a universal, dimensionless constant (which turns out to be 2 ). 
To make a second independent dimensionless group, we add a degree of 
freedom to the problem: that the rock is thrown downward with speed 𝑣0 

Adding a quantity but no new independent dimension creates one more 
independent dimensionless group. Therefore, there are two independent 
groups—for example, 𝑣/ 𝑔ℎ and 𝑣0/ 𝑔ℎ . The most general dimensionless 
statement, which has the form group 1 = 𝑓 (group 2), is 

𝑣 
𝑔ℎ 

= 𝑓 ⎛⎜ 
⎝ 

𝑣0 

𝑔ℎ 
⎞⎟ 
⎠ 
. (5.33) 

This point is as far as dimensional analysis can take us. To go further re-
quires adding physics knowledge (Problem 5.16). But dimensional analysis 
already tells us that this function 𝑓 is a universal function: It describes the 
impact speed of every thrown object in the universe, no matter the launch 
velocity, the drop height, or the gravitational field strength. 

Problem 5.16 Impact speed of a thrown rock 

For a rock thrown downward with speed 𝑣0, use conservation of energy to find the 
form of the dimensionless function 𝑓 in 𝑣/ 𝑔ℎ = 𝑓 (𝑣0/ 𝑔ℎ ). 
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Problem 5.17 Nonideal spring 
T

x0

A

D

C

B

E
0

0

Imagine a mass connected to a spring with force law
𝐹 ∝ 𝑥3 (instead of the ideal-spring force 𝐹 ∝ 𝑥) and 
therefore with potential energy 𝑉 ∼ 𝐶𝑥4 (where 𝐶 is a 
constant). Which curve shows how the system’s oscil-
lation period 𝑇 depends on the amplitude 𝑥0? 

Problem 5.18 Rolling down the plane 

θ

In this problem, you use dimensional analysis to simplify 
finding the acceleration of a ring rolling (without slipping) 
down an inclined plane. 

a. List the quantities on which the ring’s acceleration de-
pends. Hint: Include the ring’s moment of inertia and its radius. Do you also 
need to include its mass? 

b. Form independent dimensionless groups to write the dimensionless statement 

group proportional to 𝑎 = 𝑓 (groups not containing 𝑎). (5.34) 

c. Does a bigger ring roll faster than a smaller ring? 

d. Does a denser ring roll faster than a less dense ring (of the same radius)? 

5.3.1 Bending of starlight by the Sun 
Our next example of two independent dimensionless groups—the deflec-
tion of starlight by the Sun—will illustrate how to incorporate physical 
knowledge into the mathematical results from dimensional analysis. 

Rocks, birds, and people feel the effect of gravity. So why not light? The 
analysis of its deflection is a triumph of Einstein’s theory of general relativ-
ity. However, the theory is based on ten coupled, nonlinear partial-differ-
ential equations. Rather than solving these difficult equations, let’s use di-
mensional analysis. 

Because this problem is more complicated than the previous examples, let’s 
organize the complexity by making the steps explicit, including the step of 
incorporating physical knowledge. Divide and conquer! 

1. List the relevant quantities. 

2. Form independent dimensionless groups. 

3. Use the groups to make the most general statement about deflection. 

4. Narrow the possibilities by incorporating physical knowledge. 
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Step 1: Listing relevant quantities 
In the first step, we think of and list the quantities that determine the bend-
ing. To find them, I often draw a diagram with verbal but without quan-
titative labels. As the diagram cries out for quantitative labels, it suggests 
quantities for the list. 

Sun

star
eye

starlight

apparent
position

The bent path means that the star shifts its apparent position. The shift 
is most naturally measured not as an absolute distance but rather as an 
angle 𝜃 . For example, if 𝜃 = 180∘ (𝜋 radians), much larger than the likely 
deflection, the star would be shifted halfway around the sky. 
The labels and the list must include our goal, which 𝜃 1 angle
is the deflection angle 𝜃 . Because deflection is pro- 𝐺𝑚 L3T−2 Sun’s gravity 
duced by gravity, we should also include Newton’s 𝑟 L closest approach 
gravitational constant 𝐺 and the Sun’s mass 𝑚 (we’ll 
use the more general symbol 𝑚 rather than 𝑀Sun, because we may apply the 
formula to light paths around other stellar objects). These quantities could 
join the list as two separate quantities. However, the physical consequences 
of gravity—for example, the gravitational force—depend on 𝐺 and 𝑚 only 
through the product 𝐺𝑚. Therefore, let’s include just the 𝐺𝑚 abstraction 
on the list. (Problem 5.19 shows you how to find its dimensions.) 
The final quantity on the list is based on our knowledge that gravity gets 
weaker with distance. Therefore, we include the distance from the Sun to 
the light beam. The phrase “distance from the Sun” is ambiguous, because 
the beam is at various distances. Our quantity 𝑟 will be the shortest distance 
from the center of the Sun to the beam (the distance of closest approach). 

Sun

star
eye

starlight

apparent
position

r

θ

mass m
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Problem 5.19 Dimensions of 𝑮𝒎 and 𝑮 

Use Newton’s law of universal gravitation, 𝐹 = 𝐺𝑚1𝑚2/𝑟2, to find the dimensions 
of 𝐺𝑚 and 𝐺. 

Step 2: Form independent dimensionless groups 
The second step is to form independent dimensionless groups. One group 
is easy: The angle 𝜃 is already dimensionless. Unfortunately, three quanti-
ties and two independent dimensions (L and T) produce only one indepen-
dent dimensionless group. With only one dimensionless group, the most 
general statement is merely 𝜃 = constant. 

This prediction is absurd. The bending, if it is produced by gravity, has to 
depend on 𝐺𝑚 and 𝑟. These quantities have to appear in a second dimen-
sionless group. Creating a second group, we know from the Buckingham 
Pi theorem, requires at least one more quantity. Its absence indicates that 
our analysis is missing essential physics. 

What physics is missing? 

No quantity so far distinguishes between the path 𝜃 1 angle
of light and of, say, a planet. A crucial difference L3T−2𝐺𝑚 Sun’s gravity 
is that light travels far more rapidly than a planet. 𝑟 L closest approach 
Let’s represent this important characteristic of light 𝑐 LT−1 speed of light 
by including the 𝑐. 

This quantity, a speed, does not introduce a new independent dimension (it 
uses length and time). Therefore, it increases the number of independent 
dimensionless groups by one, from one to two. To find the new group, first 
check whether any dimension appears in only two quantities. If it does, the 
search simplifies. Time appears in only two quantities: in 𝐺𝑚 as T−2 and 
in 𝑐 as 𝑇 −1. To cancel out time, the new dimensionless group must contain 
𝐺𝑚/𝑐2. This quotient contains one power of length, so our dimensionless 
group is 𝐺𝑚/𝑟𝑐2. 

As we hoped, the new group contains 𝐺𝑚 and 𝑟. Its form illustrates again 
that quantities with dimensions are not meaningful alone. For knowing just
𝐺𝑚 is not enough to decide whether or not gravity is strong. As a quantity 
with dimensions, 𝐺𝑚 must be compared to another relevant quantity with 
the same dimensions. Here, that quantity is 𝑟𝑐2, and the comparison leads 
to the dimensionless ratio 𝐺𝑚/𝑟𝑐2. 
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Can we choose other pairs of independent dimensionless groups? 

Yes. For example, 𝜃 and 𝐺𝑚𝜃/𝑟𝑐2 also make a set of independent dimen-
sionless groups. Mathematically, all pairs of independent dimensionless 
groups are equivalent, in that any pair can represent any quantitative state-
ment about light bending. 

However, look ahead to the goal: We hope to solve for 𝜃 . If 𝜃 appears in both 
groups, we will end up with an implicit equation for 𝜃 , where 𝜃 appears on 
both sides of the equals sign. Although such an equation is mathematically 
legitimate, it is much harder to think about and to solve than is an explicit 
equation, where 𝜃 is on the left side only. 

Therefore, when choosing independent dimensionless groups, place the 
goal quantity in only one group. This rule of thumb does not remove all 
our freedom in choosing the groups, but it greatly limits the choices. 

Problem 5.20 Physical interpretation of the new group 

Interpret the dimensionless group 𝐺𝑚/𝑟𝑐2 by multiplying by 𝑚light/𝑚light and re-
grouping the quantities until you find physical interpretations for the numerator 
and denominator. 

Step 3: Make the most general dimensionless statement 
The third step is to use the independent dimensionless groups to write the 
most general statement about the bending angle. It has the form group 1 = 
𝑓 (group 2). Here, 

𝜃 = 𝑓 ( 
𝐺𝑚 

(5.35)
𝑟𝑐2 

) , 

where 𝑓 is a universal, dimensionless function. Dimensional analysis can-
not determine 𝑓 . However, it has told us that 𝑓 is a function only of 𝐺𝑚/𝑟𝑐2 

and not of the four quantities 𝐺, 𝑚, 𝑟, and 𝑐 separately. That information is 
the great simplification. 

Step 4: Use physical knowledge to narrow the possibilities 
The space of possible functions—here, all nonpathological functions of one 
variable—is vast. Therefore, the fourth and final step is to narrow the pos-
sibilities for 𝑓 by incorporating physical knowledge. First, imagine increas-
ing the effect of gravity by increasing the mass 𝑚—which increases 𝐺𝑚/𝑟𝑐2. 
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This change should, based on our physical intuition about gravity, also in-
crease the bending angle. Therefore, 𝑓 should be a monotonically increas-
ing function of 𝐺𝑚/𝑟𝑐2. Second, imagine an antigravity world, where the 
gravitational constant 𝐺 is negative. Then the Sun would deflect light away 
from it, making the bending angle negative. In terms of 𝑥 ≡ 𝐺𝑚/𝑟𝑐2, this 
constraint eliminates even functions of 𝑥, such as 𝑓 (𝑥) ∼ 𝑥2, which produce 
the same sign for the bending angle independent of the sign of 𝑥. 
The simplest function meeting both the monotonicity and sign constraints 
is 𝑓 (𝑥) ∼ 𝑥. In terms of the second group 𝐺𝑀/𝑟𝑐2, the form 𝑓 (𝑥) ∼ 𝑥 is 
the dimensionless statement about bending 

𝜃 ∼ 
𝐺𝑚 

(5.36)
𝑟𝑐2 

. 

All reasonable theories of gravity will predict this relation, because it is 
almost entirely a mathematical requirement. The theories differ only in the 
dimensionless factor hidden in the single approximation sign ∼: 

⎧ 1 (simplest guess);
𝜃 = 

𝐺𝑚 
⎨ 2 (Newtonian gravity); (5.37)

𝑟𝑐2 
×
{⎩

{

4 (general relativity). 

The factor of 2 for Newtonian gravity results from solving for the trajectory 
of a rock roving past the Sun with speed 𝑐. The factor of 4 for general relativ-
ity, double the Newtonian value, results from solving the ten partial-differ-
ential equations in the limit that the gravitational field is weak. 

How large are these angles? 

Let’s first estimate the bending angles closer to home—produced by the 
Earth’s gravity. For a light ray just grazing the surface of the Earth, the 
bending angle (in radians!) is roughly 10−9: 

𝐺 𝑚Earth
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ × 

⏞⏞⏞⏞⏞6.7 × 10−11 kg−1 m3 s−2 6×1024 kg
𝜃Earth ∼ ≈ 0.7 × 10−9. (5.38)

6.4 × 106 m × 1017 m2 s−2⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 
𝑅Earth 𝑐2 

Can we observe this angle? 

The bending angle is the angular shift in the position of the star making 
the starlight. To observe these shifts, astronomers compare a telescope pic-
ture of the star and surrounding sky, with and without the deflection. A 
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telescope with lens of diameter 𝐷 can resolve angles roughly as small as 
𝜆/𝐷, where 𝜆 is the wavelength of light. As a result, a lens that can resolve 
0.7 × 10−9 radians has a diameter of at least 700 meters: 

𝜆 ∼ 
0.5×10−6 m𝐷 ∼ ≈ 700 m. (5.39)𝜃Earth 0.7 × 10−9 

On its own, this length does not mean much. However, the largest telescope 
lens has a diameter of roughly 1 meter; the largest telescope mirror, in a 
different telescope design, is still only 10 meters. No practical lens or mirror 
can be 700 meters in diameter. Thus, there is no way to see the deflection 
produced by the Earth’s gravitational field. 
Physicists therefore searched for a stronger source of light bending. The 
bending angle is proportional to 𝑚/𝑟. The largest mass in the solar system 
is the Sun. For a light ray grazing the surface of the Sun, 𝑟 = 𝑅Sun and 
𝑚 = 𝑀Sun. So the ratio of Sun-to-Earth-produced bending angles is 

𝜃Sun = 
𝑀Sun × ( 

𝑅Sun )
−1 

. (5.40)𝜃Earth 𝑚Earth 𝑅Earth 

The mass ratio is roughly 3 × 105; the radius ratio is roughly 100. The ratio 
of deflection angles is therefore roughly 3000. The required lens diame-
ter, which is inversely proportional to 𝜃 , is correspondingly smaller than 
700 meters by a factor of 3000: roughly 25 centimeters or 10 inches. That 
lens size is plausible, and the deflection might just be measurable. 
Between 1909 and 1916, Einstein believed that a correct theory of gravity 
would predict the Newtonian value of 4.2×10−6 radians or 0.87 arcseconds: 

0.7 × 10−9 rad × 2 × 3000 ∼ 4.2×10−6 rad. (5.41)⏟⏟⏟⏟⏟⏟⏟ ⏟ ⏟ 
∼𝜃Earth Newtonian gravity 𝜃Sun/𝜃Earth 

The German astronomer Soldner had derived the same result in 1803. The 
eclipse expeditions to test his (and Soldner’s) prediction got rained out or 
clouded out. By the time an expedition got lucky with the weather, in 1919, 
Einstein had invented a new theory of gravity—general relativity—and it 
predicted a deflection twice as large, or 1.75 arcseconds. 
The eclipse expedition of 1919, led by Arthur Eddington of Cambridge Uni-
versity and using a 13-inch lens, measured the deflection. The measure-
ments are difficult, and the results were not accurate enough to decide 
clearly which theory was right. But 1919 was the first year after World War 
One, in which Germany and Britain had fought each other almost to obliv-
ion. A theory invented by a German, confirmed by an Englishman (from 
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Newton’s university, no less)—such a picture was welcome after the war. 
The world press and scientific community declared Einstein vindicated. 
A proper confirmation of Einstein’s prediction came only with the advent 
of radio astronomy, which allowed small deflections to be measured accu-
rately (Problem 5.21). The results, described as the dimensionless factor 
multiplying 𝐺𝑚/𝑟𝑐2, were around 4 ± 0.2—definitely different from the 
Newtonian prediction of 2 and consistent with general relativity. 

Problem 5.21 Accuracy of radio-telescope measurements 
The angular resolution of a telescope is 𝜆/𝐷, where 𝜆 is the wavelength and 𝐷 is the 
telescope’s diameter. But radio waves have a much longer wavelength than light. 
How can measurements of the bending angle that are made with radio telescopes 
be so much more accurate than measurements made with optical telescopes? 

Problem 5.22 Another theory of gravity 
An alternative to Newtonian gravity and to general relativity is the Brans–Dicke 
theory of gravitation [3]. Look up what it predicts for the angle that the Sun 
would deflect starlight. Express your answer as the dimensionless prefactor in
𝜃 ∼ 𝐺𝑚/𝑟𝑐2. 

5.3.2 Drag 
Even more difficult than the equations of general relativity, which at least 
have been solved for realistic problems, are the Navier–Stokes equations of 
fluid mechanics. We first met them in Section 3.5, where their complexity 
pushed us to find an alternative to solving them directly. We used a conser-
vation argument, which we tested using a falling cone, and concluded that 
the drag force on an object traveling through a fluid is 

𝐹drag ∼ 𝜌𝑣2𝐴cs, (5.42) 

where 𝜌 is the density of the fluid, 𝑣 is the speed of the object, and 𝐴cs is 
its cross-sectional area. This result is the starting point for our dimensional 
analysis. 
With 𝐹drag dependent on 𝜌, 𝑣, and 𝐴cs, there are four quantities and three 
independent dimensions. Therefore, by the Buckingham Pi theorem, there 
is one independent dimensionless group. Our expression for the drag force 
already gives one such group: 

𝐹drag . (5.43)
𝜌𝑣2𝐴cs 
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Because the 𝜌𝑣2 in the denominator looks like 𝑚𝑣2 in kinetic energy, a factor 
of one-half is traditionally included in the denominator: 

𝐹drag group 1 ≡ 1 
. (5.44) 

2𝜌𝑣
2𝐴cs 

The resulting dimensionless group is called the drag coefficient 𝑐d. 
𝐹drag 𝑐d ≡ 1 

(5.45) 
2𝜌𝑣

2𝐴cs 

As the only dimensionless group, it has to be a constant: There is no other 
group on which it could depend. Therefore, 

𝐹drag = dimensionless constant. (5.46)1 
2𝜌𝑣

2𝐴cs 

This result is equivalent to our prediction based on conservation of energy, 
that 𝐹drag ∼ 𝜌𝑣2𝐴cs. However, trouble happens when we wonder about the 
dimensionless constant’s value. 

Dimensional analysis, as a mathematical technique, cannot predict the con-
stant. Doing so requires physical reasoning, which starts with the obser-
vation that drag consumes energy. Here, no quantity on which 𝐹drag de-
pends—namely, 𝜌, 𝑣, or 𝐴cs—represents a mechanism of energy loss. There-
fore, the drag coefficient should be zero. Although this value is consistent 
with the prediction that the drag coefficient is constant, it contradicts all 
our experience of fluids! 

Our analysis needs to include a mechanism of energy loss. In fluids, loss 
is due to viscosity (for an object moving at a constant speed and generat-
ing no waves). Its physics is the topic of Section 7.3.2, as an example of a 
diffusion constant. For our purposes here, we need just its dimensions in 
order to incorporate viscosity into a dimensionless group: The dimensions 
of kinematic viscosity 𝜈 are L2T−1. (Unfortunately, in almost every font, the 
standard symbols for velocity and kinematic viscosity, 𝑣 and 𝜈 , look similar; 
however, even more confusion would result from selecting new symbols.) 

Thus, the kinematic viscosity joins our list. Adding one quantity without 
adding a new independent dimension creates a new independent dimen-
sionless group. Similarly, in our analysis of the deflection of starlight (Sec-
tion ), adding the speed of light 𝑐 created a second independent dimension-
less group. 
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What is this new group containing viscosity? 

Before finding the group, look ahead to how it will be used. With a second 
group, the most general statement has the form 

group 1 = 𝑓 (group 2). (5.47)⏟⏟⏟⏟⏟
 
𝑐d
 

Our goal is 𝐹drag, which is already part of group 1. Including 𝐹drag also 
in group 2 would be a bad tactic, because it would produce an equation 
with 𝐹drag on both sides and, additionally, wrapped on the right side in the 
unknown function 𝑓 . Keep 𝐹drag out of group 2. 

To make this group from the other quantities 𝑣, 𝐴cs, 𝜌, 𝑣 LT−1 speed
and 𝜈 , look for dimensions that appear in only one or 𝐴cs L2 area 
two quantities. Mass appears only in the density; thus, ML−3𝜌 fluid density 
the density cannot appear in group 2: If it were part of L2T−1𝜈 viscosity 
group 2, there would be no way to cancel the dimen-
sions of mass, and group 2 could not be dimensionless. 
Time appears in two quantities: speed 𝑣 and viscosity 𝜈 . Because each quan-
tity contains the same power of time (T−1), group 2 has to contain the quo-
tient 𝑣/𝜈 —otherwise the dimensions of time would not cancel. 

Instead of 𝐴cs , usually one uses the diameter 𝐷. With that choice, our 
group 2 is called the Reynolds number 𝖱𝖾: 

Here’s what we know so far about this dimensionless group: So that mass 
disappears, it cannot contain the density 

dimensionless group. 
has dimensions of L𝑣/𝜈 The quotient 

𝜌; so that time disappears, it must 
contain 𝑣 and 𝜈 as their quotient 𝑣/𝜈 . The remaining task is to make length 

cs𝐴, so −1
disappear—for which purpose we use the object’s cross-sectional area 𝐴cs. 

𝑣/𝜈 is a new, independent 

𝖱𝖾 ≡ 
𝑣𝐷 . (5.48)𝜈 

The conclusion from dimensional analysis is then 

drag coefficient = 𝑓 ( Reynolds number ). (5.49)⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟
 
𝑐d 𝖱𝖾
 

For each shape, the dimensionless function 𝑓 is a universal function; it de-
pends on the shape of the object, but not on its size. For example, a sphere, 
a cylinder, and a cone have different functions 𝑓sphere, 𝑓cylinder, and 𝑓cone. Sim-
ilarly, a narrow-angle cone and a wide-angle cone have different functions. 
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But a small and a large sphere are described by the same function, as are 
a large and a small cone of the same opening angle. Any difference in the 
drag coefficients for different-sized objects of the same shape results only 
from the difference in Reynolds numbers (different because the sizes are 
different). 
Here we see the power of dimensional analysis. 
It shows us that the universe doesn’t care about 
the size, speed, or viscosity individually. The uni-
verse cares about them only through the abstrac-
tion known as the Reynolds number. It is the only 
information needed to determine the drag coeffi-

speed v size D viscosity ν

Reynolds number vD/ν

−1

cient (for a given shape). 
Now let’s use this dimensionless framework to analyze the cone experi-
ment: The experimental data showed that the small and large cones fell 
at the same speed—roughly 1 meter per second. 

What are the corresponding Reynolds numbers? 

The small cone has a diameter of 0.75×7 centimeters (0.75 because one-quar-
ter of the original circumference was removed), which is roughly 5.3 cen-
timeters. The viscosity of air is roughly 1.5×10−5 square meters per second 
(an estimate that we will make in Section 7.3.2). The resulting Reynolds 
number is roughly 3500: 

𝑣 𝐷

⏞⏞⏞⏞⏞ × ⏞⏞⏞⏞⏞
 1 ms−1 0.053 m𝖱𝖾 = ≈ 3500. (5.50)
1.5 × 10−5 m2 s−1⏟⏟⏟⏟⏟⏟⏟⏟⏟
 

𝜈
 

What is the Reynolds number for the large cone? 

Never make a calculation from scratch when you can use proportional rea-
soning. Both cones experience the same viscosity and share the same fall 
speed. Therefore, we can consider 𝜈 and 𝑣 to be constants, leaving the 
Reynolds number 𝑣𝐷/𝜈 proportional just to the diameter 𝐷. 
Because the large cone has twice the diameter of the small cone, it has twice 
the Reynolds number: 

𝖱𝖾large = 2 × 𝖱𝖾small ≈ 7000. (5.51) 

At that Reynolds number, what is the cone’s drag coefficient? 
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The drag coefficient is 
𝐹drag 𝑐d ≡ 1 

(5.52) 
2𝜌air𝑣

2𝐴cs 
The cone falls at its terminal speed, so the drag force is also its weight 𝑊 : 

𝐹drag = 𝑊 = 𝐴paper𝜎paper 𝑔, (5.53) 

where 𝜎paper is the areal density (mass per area) of paper and 𝐴paper is the 
area of the cone template. The drag coefficient is then 

𝐹drag
 
⏞⏞⏞⏞⏞⏞⏞
 𝐴paper𝜎paper 𝑔𝑐d = 1 

. (5.54) 
2𝜌air𝐴cs𝑣

2 

As we showed in Section 3.5.2, 

𝐴cs = 4
3𝐴paper. (5.55) 

This proportionality means that the areas cancel out of the drag coefficient: 
𝜎paper𝑔𝑐d = 1 

(5.56) 
2𝜌air × 34𝑣

2
. 

To compute 𝑐d, plug in the areal density 𝜎paper ≈ 80 grams per square meter 
and the measured speed 𝑣 ≈ 1 meter per second: 

𝜎paper 𝑔
 

⏞⏞⏞⏞⏞⏞⏞⏞⏞ × ⏞⏞⏞⏞⏞
 8 × 10−2 kg m−2 10 ms−2
𝑐d ≈ ≈ 1.8. (5.57)1 × 3 

2 × 1.2 kg m−3 × 1 m2 s−2
⏟⏟⏟⏟⏟ 4 ⏟⏟⏟⏟⏟ 

𝜌air 𝑣2 

Because no quantity in this calculation depends on the cone’s size, both 
cones have the same drag coefficient. (Our estimated drag coefficient is sig-
nificantly larger than the canonical drag coefficient for a solid cone, roughly 
0.7, and is approximately the drag coefficient for a wedge.) 
Thus, the drag coefficient is independent of Reynolds number—at least, 
for Reynolds numbers between 3500 and 7000. The giant-cone experiment 
of Problem 4.16 shows that the independence holds even to 𝖱𝖾 ∼ 14 000. 
Within this range, the dimensionless function 𝑓 in 

drag coefficient = 𝑓cone(Reynolds number) (5.58) 

is a constant. What a simple description of the complexity of fluid flow! 
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This conclusion for 𝑓cone is valid for most shapes. The most extensive drag 
data is for a sphere—plotted below on log–log axes (data adapted from 
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydro-
dynamic Resistance [23]): 
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104

cd

10−2 10−1 100 101 102 103 104 105 106 107

Re

Like the drag coefficient for the cone, the drag coefficient for a sphere is 
almost constant as the Reynolds number varies from 3500 to 7000. The drag 
coefficient holds constant even throughout the wider range 2000…3 × 105. 
Around 𝖱𝖾 ≈ 3× 105, the drag coefficient falls by a factor of 5, from 0.5 to 
roughly 0.1. This drop is the reason that golf balls have dimples (you will 
explain the connection in Problem 7.24). 
At low Reynolds numbers, the drag coefficient becomes large. This behav-
ior, which represents a small object oozing through honey, will be explained 
in Section 8.3.1.2 using the tool of easy cases. The main point here is that, 
for most everyday flows, where the Reynolds number is in the “few thou-
sand to few hundred thousand” range, the drag coefficient is a constant that 
depends only on the shape of the object. 

Problem 5.23 Giant cone 
How large, as measured by the diameter of its cross section, would a paper cone 
need to be in order for its fall to have a Reynolds number of roughly 3 × 105 (the 
Reynolds number at which the drag coefficient of a sphere drops significantly)? 

Problem 5.24 Reynolds numbers 
Estimate the Reynolds number for (a) a falling raindrop, (b) a flying mosquito, (c) a 
person walking, and (d) a jumbo jet flying at its cruising speed. 
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Problem 5.25 Compound pendulum 

mass m

l

Use dimensional analysis to deduce as much as you can about the 
period 𝑇 of a compound pendulum—that is, a pendulum where the 
bob is not a point mass but is an extended object of mass 𝑚. The 
light rod (no longer a string) of length 𝑙 is fixed to the center of mass 
of the object, which has a moment of inertia 𝐼CM about the point of 
attachment. (Assume that the oscillation amplitude is small and 
therefore doesn’t affect the period.) 

Problem 5.26 Terminal velocity of a raindrop 

In Problem 3.37, you estimated the terminal speed of a raindrop using 

𝐹drag ∼ 𝜌air𝐴cs𝑣2. (5.59) 

Redo the calculation using the more precise information that 𝑐d ≈ 0.5 and retain-
ing the factor of 4𝜋/3 in the volume of a spherical raindrop. 

5.4 Temperature and charge 
The preceding examples of dimensional analysis have been mechanical, us-
ing the dimensions of length, mass, and time. Temperature and charge are 
also essential to describing the world and are equally amenable to dimen-
sional analysis. Let’s start with temperature. 

5.4.1 Temperature 

To handle temperature, do we need to add another fundamental dimension? 

Representing temperature as a new fundamental dimension is one method, 
and the dimension is symbolized by Θ. However, there’s a simpler method. 
It uses another fundamental constant of nature: Boltzmann’s constant 𝑘B. 
It has dimensions of energy per temperature; thus, it connects temperature 
to energy. In SI units, 𝑘B is roughly 1.6 × 10−23 joules per kelvin. When a 
temperature 𝑇 appears, convert it to the corresponding energy 𝑘B𝑇 (just as 
we convert 𝐺, in gravity problems, to 𝐺𝑚). 
For our first temperature example, let’s estimate the speed of air molecules. 
We will then use that knowledge to estimate the speed of sound. Because 
the speed 𝑣 of air molecules is a result of thermal energy, it depends on 
𝑘B𝑇 . But 𝑣 and 𝑘B𝑇 —two quantities made from two independent dimen-
sions—cannot make a dimensionless group. We need one more quantity: 
the mass 𝑚 of an air molecule. 
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Although these three quantities contain three di- 𝑣 LT−1 thermal speed 
mensions, only two of the dimensions are indepen- 𝑘B𝑇 ML2T−2 thermal energy 
dent—for example, M and LT−1 . Therefore, the 𝑚 M molecular mass 
three quantities produce one independent dimen-
sionless group. A reasonable choice for it is 𝑚𝑣2/𝑘B𝑇 . Then 

𝑣 ∼ 
𝑘B𝑇
𝑚 

.

8/𝜋the root-mean-square speed and 
This result is quite accurate. The missing dimensionless prefactor is 

The dimensional-analysis result helps predict the speed of sound. 

for the mean speed. 

(5.60) 

3 for 

In a 
gas, sound travels because of pressure, which is a result of thermal motion. 

should be comparable to the 

(5.61) 

(5.62) 

(5.63) 

The denominator in the square root is 𝑚𝑁A: the mass of one molecule mul-
tiplied by Avogadro’s number. It is therefore the mass of one mole of air 
molecules. Air is mostly N2, with an atomic mass of 28. Including the oxy-
gen for us animals, the molar mass of air is roughly 30 grams per mole. 

ancy remaining is due to the difference between isothermal and adiabatic 
compression and expansion. For a related effect, later try Problem 8.27.) 

Thus, it is plausible that the speed of sound 𝑐s 
thermal speed. Then, 

𝑐s ∼ 
𝑘B𝑇 
𝑚 

. 

To evaluate the speed numerically, multiply by a form of 1 based on Avo-
gadro’s number: 

𝑐s ∼ 
𝑘B𝑇 
𝑚 

× 
𝑁A 

𝑁A 
. 

The numerator now contains 𝑘B𝑁A, which is the universal gas constant 𝑅: 
8 J 
mol K 

.𝑅 ≈
 

Plugging in 300 K for room temperature gives a thermal speed of roughly 
300 meters per second: 

𝑐s ∼ 
8 J mol−1 K−1 × 300 K 

3 × 10−2 kg mol−1 
≈ 300 m s−1. (5.64) 

The actual sound speed is 340 meters per second, not far from our estimate 
based on dimensional analysis and a bit of physical reasoning. (The discrep-
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With this understanding of how to handle temperature, let’s use dimen-
sional analysis to estimate the height of the atmosphere. This height, called 
the scale height 𝐻 , is the length over which the atmosphere’s properties, 
such as pressure and density, change significantly. At the height 𝐻 , the at-
mospheric density and pressure will be significantly lower than at sea level. 

The first step in dimensional analysis is to list 𝐻 L atmosphere height 
the quantities that determine the height. That 𝑔 LT−2 gravity 
list requires a physical model: The atmosphere ML2T−2𝑘B𝑇 thermal energy 
is a competition between gravity and thermal 𝑚 M molecular mass 
motion. Gravity drags molecules toward Earth; 
thermal motion spreads them all over the universe. Our list must include 
quantities representing both sides of that competition: 𝑚 and 𝑔 for gravity, 
and 𝑘B𝑇 for thermal energy. 

Four quantities (including the goal 𝐻 ) built from three independent dimen-
sions produce one independent dimensionless group. A reasonable choice 
for the group—reasonable because it is proportional to the goal 𝐻—is the 
ratio 𝑚𝑔𝐻/𝑘B𝑇 . Therefore, the atmosphere’s scale height is given by 

𝐻 ∼ 
𝑘B𝑇 

(5.65)𝑚𝑔 
. 

To evaluate this height numerically, again convert Boltzmann’s constant 𝑘B 

to the universal gas constant 𝑅 by multiplying by 𝑁A/𝑁A: 
𝑅𝑅 ⏞⏞⏞⏞⏞⏞⏞ × 300 K⏞ 𝑇𝑘B𝑁A 8 J mol−1 K−1

𝐻 ∼ ≈ ≈ 8 km. (5.66)
𝑚𝑁A 𝑔 3×10−2 kg mol−1 × 10 ms−2⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝑚molar 𝑚molar 

Thus, by 8 kilometers above sea level, atmospheric pressure and density 
should be significantly lower than at sea level. This conclusion is reason-
able: Mount Everest is 9 kilometers high, where the significantly thinner 
air requires climbers to carry oxygen tanks. 

As a rule of thumb for a decaying function such as atmospheric pressure 
or density, a “significant change” can be estimated as a rise or, here, a fall 
by a factor of 𝑒. (For more on this rule of thumb, try Problem 6.36 after you 
have studied lumping; see also Section 3.2.1 of Street-Fighting Mathematics 
[33].) Indeed, at 8 kilometers, the standardized atmospheric parameters 
relative to sea level are 𝜌/𝜌0 ≈ 0.43 and 𝑝/𝑝0 ≈ 0.35. For comparison, 1/𝑒 is 
approximately 0.37. 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

168 5 Dimensions 

5.4.2 Charge 
Our second new dimension is charge, symbolized by Q. By introducing 
charge, we can apply dimensional analysis to electrical phenomena. Let’s 
begin by finding the dimensions of electrical quantities. 

What are the dimensions of current, voltage, and resistance? 

Current is the flow of charge; it has dimensions of charge per time. Using
𝐼 to denote current and [𝐼] to denote its dimensions, 

[𝐼] = QT−1. (5.67) 

The dimensions of voltage can be determined from the relation 

voltage × current = power. (5.68) 

The corresponding dimensional equation is 

[voltage] = 
[power] 

(5.69)[current] . 

Because the dimensions of power (energy per time) are ML2T−3, and the 
dimensions of current are QT−1, the dimensions of voltage are ML2T−2Q−1: 

[voltage] = 
ML2T−3 

= ML2T−2Q−1. (5.70)
QT−1 

In this expression, the dimensional combination ML2T−2 is energy. There-
fore, voltage is also energy per charge. As a result, an electron volt (1 elec-
tron charge times 1 volt) is an energy. A few electron volts is the energy 
in chemical bonds. Because chemical bonds reflect a change in one or two 
electrons, atomic and molecular voltages must be a few volts. (An everyday 
consequence is that typical batteries supply a few volts.) 
To find the dimensions of resistance, we’ll write Ohm’s law as a dimen-
sional equation: 

ML2T−2Q−1 

[resistance] = 
[voltage]

= = ML2T−1Q−2. (5.71)[current] QT−1 

To simplify these dimensions, use [𝑉]—the dimensions of voltage—as an 
abstraction for the dimensional mess ML2T−2Q−1. Then, 

[resistance] = [𝑉] × TQ−1. (5.72) 

This alternative is useful when the input to and output of a circuit is volt-
age. Then treating the dimensions of voltage as a fundamental dimension 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

169 5.4 Temperature and charge 

simplifies the task of finding dimensionless groups. (For practice in using 
the dimensions of voltage, try Problem 5.27.) 

Problem 5.27 Capacitance and inductance 
Express the dimensions of capacitance and inductance using L, M, T, and Q. Then 
write them using [𝑉] (the dimensions of voltage) along with any fundamental 
dimensions that you need. 

Problem 5.28 RC circuit 
In this problem, you apply dimensional analysis
 
to the low-pass 𝑅𝐶 circuit that we introduced in
 
Section 2.4.4. In particular, make the input volt-
age 𝑉in zero for time 𝑡 < 0 and a fixed voltage 𝑉0
 

for 𝑡 ≥ 0. The goal is the most general dimension-
less statement about the output voltage 𝑉 , which
 
depends on 𝑉0, 𝑡, 𝑅, and 𝐶.
 

R

C

Vin V

ground

a.	 Using [𝑉] to represent the dimensions of voltage, fill in a dimensional-analysis 
table for the quantities 𝑉 , 𝑉0, 𝑡, 𝑅, and 𝐶. 

b. How many independent dimensions are contained in these five quantities? 

c.	 Form independent dimensionless groups and write the most general statement 
in the form 

group containing 𝑉 but not 𝑡 = 𝑓 (group containing 𝑡 but not 𝑉, …), (5.73) 

where the … stands for the third dimensionless group (if it exists). Compare 
your expression to the analysis of the 𝑅𝐶 circuit in Section 2.4.4. 

Problem 5.29 Dimensional analysis of an LRC circuit 
In the 𝐿𝑅𝐶 circuit, the input voltage 𝑉in is the real 
part of a complex-exponential signal 𝑉0𝑒𝑗𝜔𝑡, where 
𝑉0 is the input amplitude and 𝜔 is the angular os-
cillation frequency. The output voltage 𝑉out is then 
the real part of 𝑉1𝑒𝑗𝜔𝑡, where 𝑉1 is the (possibly 
complex) output amplitude. What quantities deter-
mine the gain 𝐺, defined as the ratio 𝑉1/𝑉0? What is a good set of independent 
dimensionless groups built from 𝐺 and these quantities? 

L C

R

Vin Vout

ground

Along with the potential (or voltage) 𝑉 , a leading actor in electromagnetics 
is the electric field. (Once you understand how to handle electric fields, 
you can practice by analyzing magnetic fields—try Problems 5.31, 5.32, and 
5.33.) Electric fields not only transmit force; they also contain energy. This 
energy is important, not least because its transport is how the Sun warms 
the Earth. We will estimate the energy contained in electric fields by using 
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dimensional analysis. This analysis will give us the result that we used in 
Section 2.4.2 to estimate, by analogy, the energy in a gravitational field. Like 
the gravitational field, the electric field extends over space. Therefore, we 
usually want not the energy itself, but rather the energy per volume—the 
energy density. 

What is the energy density in an electric field? 

To answer this question with dimensional analysis, let’s follow most of the 
steps that we used in estimating the bending of starlight (Section 5.3.1). 
1. List the relevant quantities. 
2. Form independent dimensionless groups. 
3.	 Use the groups to make the most general statement about the energy 
density. 

4.	 Narrow the possibilities by incorporating physical knowledge. For this 
problem, we will be able to skip this step. 

Thus, the first step is to tabulate the quantities on which our goal, the energy 
density ℰ, depends. It definitely depends on the electric field 𝐸. It also prob-
ably depends on 𝜖0, the permittivity of free space appearing in Coulomb’s 
law, because most results in electrostatics contain 𝜖0. But ℰ shouldn’t de-
pend on the speed of light: The speed of light suggests radiation, which 
requires a changing electric field; however, even a constant electric field 
contains energy. Thus, our list might be complete. Let’s see, by trying to 
make a dimensionless group. 
So we list the quantities with their dimensions, ML−1T−2ℰ energy density 
with the goal at the head of the table. Energy 𝐸 MLT−2Q−1 electric field 
density is energy per volume, so its dimensions M−1L−3T2Q2𝜖0 SI constant 
are ML−1T−2 . Electric field is force per charge 
(just as gravitational field is force per mass—analogy!), so its dimensions 
are MLT−2Q−1 . 

What are the dimensions of 𝜖0? 

This quantity is the trickiest. It shows up in Coulomb’s law: 
𝑞2 1electrostatic force =	 (5.74)4𝜋𝜖0 𝑟2

. 

As a dimensional equation, 
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Q2 

[𝜖0] = (5.75)
[𝐹] L2

, 

where [𝐹] = MLT−2 represents the dimensions of force. Therefore, 𝜖0 has 
dimensions of M−1L−3T2Q2 . 

The second step is to find independent dimensionless groups. Any search 
is aided by knowing how many items to find. This count is provided by the 
Buckingham Pi theorem. To apply the theorem, we first need to count the 
independent dimensions. 

How many independent dimensions do the three quantities contain? 

At first glance, the quantities contain four independent dimensions: M, L, 
T, and Q. However, the Buckingham Pi theorem would then predict −1 
dimensionless groups, which is nonsense. Indeed, the number of indepen-
dent dimensions cannot exceed the number of quantities (a restriction that 
you explained in Problem 5.7). Here, as you verify in Problem 5.30, there are 
only two independent dimensions—for example, MLT−2Q−1 (the dimen-
sions of electric field) and L2Q−1 . 

Three quantities constructed from two independent dimensions produce 
one independent dimensionless group. A useful choice for this group, be-
cause it is proportional to the goal ℰ, is ℰ/𝜖0𝐸2. 

The third step is to use the independent dimensionless group to make the 
most general statement about the energy density. With only one group, the 
most general statement is 

ℰ ∼ 𝜖0𝐸2. (5.76) 

The fourth step is to narrow the possibilities by using physical knowledge. 
With only one independent dimensionless group, the space of possibilities 
is already narrow. The only freedom is the dimensionless prefactor hidden 
in the single approximation sign ∼; it turns out to be 1/2. In Section 5.4.3, 
the scaling ℰ ∝ 𝐸2 will help us explain the surprising behavior of the elec-
tric field produced by an accelerating charge—and thereby explain why 
stars are visible and radios work. 

Problem 5.30 Rewriting the dimensions 
Express the dimensions of ℰ, 𝐸, and 𝜖0 in terms of [𝐸] (the dimensions of electric 
field) and L2Q−1. Thus, show that the three quantities contain only two indepen-
dent dimensions. 
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Problem 5.31 Dimensions of magnetic field 

A magnetic field 𝐁 produces a force on a moving charge 𝑞 given by 
𝐅 = 𝑞(𝐯 × 𝐁), (5.77) 

where 𝐯 is the charge’s velocity. Use this relation to find the dimensions of mag-
netic field in terms of M, L, T, and Q. Therefore, give the definition of a tesla, the 
SI unit of magnetic field. 

Problem 5.32 Magnetic energy density 
Just as electric fields depend on 𝜖0, the permittivity of free space, magnetic fields 
depend on the constant 𝜇0 called the permeability of free space. It is defined as 

𝜇0 ≡ 4𝜋 × 10−7 N A−2, (5.78) 

where N is a newton and A is an ampere (a coulomb per second). Express the 
dimensions of 𝜇0 in terms of M, L, T, and Q. 
Then use the dimensions of magnetic field (Problem 5.31) to find the energy den-
sity in a magnetic field 𝐵. (As with the electric field, the dimensionless prefactor 
will be 1/2, but dimensional analysis does not give us that information.) What 
analogies can you make between electrostatics and magnetism? 

Problem 5.33 Magnetic field due to a wire 
Use the dimensions of 𝐵 (Problem 5.31) and of the permeability of free space 𝜇0 

(Problem 5.32) to find the magnetic field 𝐵 at a distance 𝑟 from an infinitely long 
wire carrying a current 𝐼 . The missing dimensionless prefactor, which dimensional 
analysis cannot tell us, turns out to be 1/2𝜋 . 
Magnetic-resonance imaging (MRI) machines for medical diagnosis use fields of 
the order of 1 tesla. If this field were produced by a current-carrying wire 0.5 me-
ters away, what current would be required? Therefore, explain why these magnetic 
fields are produced by superconducting magnets. 

Problem 5.34 Fields due to a uniform sheet of charge 
Imagine an infinite, uniform sheet of charge containing a charge per area 𝜎 . Use 
dimensional analysis to find the electric field 𝐸 at a distance 𝑧 from the sheet. (The 
missing dimensionless prefactor turns out to be 1!) Therefore, give the scaling 
exponent 𝑛 in 𝐸 ∝ 𝑧𝑛. (In Problem 6.21, you’ll investigate a physical explanation 
for this surprising result.) 
Use the analogy between electric and gravitational fields (Section 2.4.2) to find the 
gravitational field above a uniform sheet with mass per area 𝜎 . 

5.4.3 Power radiated by a moving charge 
In our next example, we’ll estimate the power radiated by a moving charge, 
which is how a radio broadcasting antenna works. This power, when com-
bined with our long-standing understanding of flux (Section 3.4.2) and our 
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new understanding of the energy density in an electric field (Section 5.4.2), 
will predict a surprising scaling relation for the strength of the radiation 
field, one responsible for our ability to see the world. The example also 
illustrates a simple way to manage the dimensions of charge. 

How does the power radiated by a moving charge depend on the acceleration of the 
charge? 

For the moment, let’s ignore the charge’s velocity. Most likely, the depen-
dence on acceleration is a scaling relation 

power ∝ (acceleration)𝑛. (5.79) 

We will find the scaling exponent 𝑛 using dimensional analysis. 

First, we list the quantities on which the goal, the radiated power 𝑃, de-
pends. It certainly depends on the charge’s motion, which is represented 
by its acceleration 𝑎. It also depends on the amount of charge 𝑞, because 
more charge probably means more radiation. The list should also include 
the speed of light 𝑐, because the radiation travels at the speed of light. 

It probably also needs the permittivity of free space 𝜖0. However, rather 
than including 𝜖0 directly, let’s reuse the shortcut for gravitation, where we 
combined Newton’s constant 𝐺 with a mass (in Section 5.3.1). Similarly, 𝜖0 

always appears as 𝑞2/4𝜋𝜖0, whether in electrostatic energy or force. There-
fore, rather than including 𝑞 and 𝜖0 separately, we can include only 𝑞2/4𝜋𝜖0. 

What happened to the charge’s velocity? 

If the radiated power depended on the velocity, then we could use the prin-
ciple of relativity to make a perpetual-motion machine: We generate en-
ergy simply by using a different (inertial) reference frame, one in which the 
charge moves faster. Rather than believing in perpetual motion, we should 
conclude that the velocity does not affect the power. Equivalently, we can 
eliminate the velocity by switching to a reference frame where the charge 
has zero velocity. 

Why doesn’t the reference-frame argument allow us to eliminate the acceleration? 

It depends on changing to another inertial reference frame—that is, a frame 
that moves at a constant velocity relative to the original frame. This relative 
motion does not affect the charge’s acceleration, only its velocity. 
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However, if we change to a noninertial—an accelerating—reference frame, 
we must modify the equations of motion, adding terms for the Coriolis, cen-
trifugal, and Euler forces. (For more on reference frames, a wonderful expo-
sition is John Taylor’s Classical Mechanics [45].) If we switch to a noninertial 
frame, all bets are off about the radiated power. In summary, acceleration 

tient has dimensions of L−1T−1. Multiplying it by 𝑐3/𝑎2, which has dimen-

is different from velocity. 

These four quantities, built from three inde-
pendent dimensions, produce just one inde-
pendent dimensionless group. Because mass 
appears in only 𝑃 and 𝑞2/4𝜋𝜖0 (as M

1), the 
group must contain 𝑃/(𝑞2/4𝜋𝜖0). This quo-

𝑃 

𝑞2/4𝜋𝜖0 

𝑐 
𝑎 

ML2T−3 

ML3T−2 

LT−1 

LT−2 

radiated power 
electrostatic mess 
speed of light 
acceleration 

sions of LT, makes the result dimensionless. Therefore, the independent 
dimensionless group proportional to 𝑃 is 

𝑃 𝑐3 
(5.80)

𝑞2/4𝜋𝜖0 𝑎2
. 

As the only group, it must be a dimensionless constant, so 
𝑞2 𝑎2𝑃 ∼ (5.81)4𝜋𝜖0 𝑐3

. 

The exact result is almost identical: 
𝑞2 𝑎2𝑃 = (5.82)6𝜋𝜖0 𝑐3

. 

This result is even correct at relativistic speeds, as long as we use the rela-
tivistic acceleration (the four-acceleration) as the generalization of 𝑎. 

As a scaling relation between 𝑃 and 𝑎, it is simple: 𝑃 ∝ 𝑎2. Doubling the 
acceleration quadruples the radiated power. The steep dependence on the 
acceleration is an important part of the reason that the sky is blue (we’ll do 
the analysis in Section 9.4.1). 

This power is carried by a changing electric field. By using the energy den-
sity in the electric field, we can estimate and explain the surprising strength 
of this field. We start by estimating the energy flux (the power per area) at 
a distance 𝑟, by spreading the radiated power over a sphere of radius 𝑟. The 
sphere’s surface area is comparable to 𝑟2, so 

𝑞2 𝑎2 1energy flux ∼ 
𝑃 

(5.83)
𝑟2 

∼ 4𝜋𝜖0 𝑐3 𝑟2
. 
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Energy flux, based on what we learned in Section 3.4.2, is connected to en-
ergy density by 

energy flux = energy density × transport speed. (5.84) 

The transport speed is the speed of light 𝑐, so 
𝑞2 𝑎2 1 ∼ 𝜖0𝐸2 × 𝑐. (5.85) 4𝜋𝜖0 𝑐3 𝑟2⏟⏟⏟⏟⏟⏟⏟ ⏟ ⏟ 
energy flux energy density speed 

Now we can solve for the electric field: 
𝑞𝑎 1𝐸 ∼ (5.86)
𝜖0𝑐2 𝑟 . 

As a scaling relation, 𝐸 ∝ 𝑟−1. Compare it to the −2 scaling exponent for 
an electrostatic field, where 𝐸 ∝ 𝑟−2 (Coulomb’s law). The radiation field 
therefore falls off more slowly with distance than the electrostatic field. This 
important difference explains why we can receive radio signals and see 
stars. If radiation fields were proportional to 1/𝑟2, stars, and most of the 
world, would be invisible. What difference a scaling exponent can make! 

5.5 Atoms, molecules, and materials 
With our growing repertoire of dimensional analyses, we can explore ever 
more of the world. Perhaps the most fundamental property of the world 
is that it is composed of atoms. Feynman argued for the importance of the 
atomic theory in his famous lectures on physics [14, Vol. 1, p. 1-2]: 
If, in some cataclysm, all of scientific knowledge were to be destroyed, and 
only one sentence passed on to the next generation of creatures, what statement 
would contain the most information in the fewest words? I believe it is the atomic 
hypothesis (or the atomic fact, or whatever you wish to call it) that all things are 
made of atoms—little particles that move around in perpetual motion, attracting each 
other when they are a little distance apart, but repelling upon being squeezed into one 
another. In that one sentence, you will see, there is an enormous amount of infor-
mation about the world…. [emphasis in original] 

The atomic theory was first stated over 2000 years ago by the ancient Greek 
philosopher Democritus. Using quantum mechanics, we can predict the 
properties of atoms in great detail—but the analysis involves complicated 
mathematics that buries the core ideas. By using dimensional analysis, we 
can keep the core ideas in sight. 

http:��.(5.85
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5.5.1 Dimensional analysis of hydrogen 
We’ll study the simplest atom: hydrogen. Dimensional analysis will ex-
plain its size, and its size will in turn explain the size of more complex 
atoms and molecules. Dimensional analysis will also help us estimate the 
energy needed to disassemble a hydrogen atom. This energy will in turn 
explain the bond energies in molecules. These energies will explain the 
stiffness of materials, the speed of sound, and the energy content of fat and 
sugar—all starting from hydrogen! 

In the dimensional analysis of the size of hydrogen, the zeroth step is to give 
the size a name. The usual name and symbol for the radius of hydrogen is 
the Bohr radius 𝑎0. 

The first step is to find the quantities that determine the size. That deter-
mination requires a physical model of hydrogen. A simple model is an 
electron orbiting a proton at a distance 𝑎0. Their electrostatic attraction 
provides the force 𝐹 holding the electron in orbit: 

𝑒2 1𝐹 = , (5.87)4𝜋𝜖0 𝑎02
proton+

a0

electron

where 𝑒 is the electron charge. Our list of quantities should include the 
quantities in this equation; in that way, we teach dimensional analysis about 
what kind of force holds the atom together. Thus, we should somehow in-
clude 𝑒 and 𝜖0. As when we estimated the power radiated by an accelerating 
charge (Section 5.4.3), we’ll include 𝑒 and 𝜖0 as one quantity, 𝑒2/4𝜋𝜖0. 

The force on the electron does not by itself deter- 𝑎0 L size 
mine the electron’s motion. Rather, the motion is ML3T−2𝑒2/4𝜋𝜖0 electrostatics 
determined by its acceleration. Computing the 𝑚e M electron mass 
acceleration from the force requires the electron 
mass 𝑚e, so our list should include 𝑚e. 

These three quantities made from three independent dimensions produce 
zero dimensionless groups (another application of the Buckingham Pi the-
orem introduced in Section 5.1.2). Without any dimensionless groups, we 
cannot say anything about the size of hydrogen. The lack of a dimension-
less group tells us that our simple model of hydrogen is too simple. 

There are two possible resolutions, each involving new physics that adds 
one new quantity to the list. The first possibility is to add special relativ-
ity by adding the speed of light 𝑐. That choice produces a dimensionless 
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group and therefore a size. However, this size has nothing to do with hydro-
gen. Rather, it is the size of an electron, considering it as a cloud of charge 
(Problem 5.37). 
The other problem with this approach is that electromagnetic radiation trav-
els at the speed of light, so once the list includes the speed of light, the elec-
tron might radiate. As we found in Section 5.4.3, the power radiated by an 
accelerating charge is 

𝑞2 𝑎2𝑃 ∼ (5.88)4𝜋𝜖0 𝑐3
. 

An orbiting electron is an accelerating electron (accelerating inward with 
the circular acceleration 𝑎 = 𝑣2/𝑎0), so the electron would radiate. Radia-
tion would carry away energy from the electron, the electron would spiral 
into the proton, and hydrogen would not exist—nor would any other atom. 
So adding the speed of light only compounds our problem. 
The second resolution is instead to add quantum mechanics. Its fundamen-
tal equation is the Schrödinger equation: 

(− 
ℏ2 

(5.89)2𝑚∇2 +𝑉)𝜓 = 𝐸𝜓. 

Most of the symbols in this partial-differential equation are not important 
for dimensional analysis—this disregard is how dimensional analysis sim-
plifies problems. For dimensional analysis, the crucial point is that Schrö-
dinger’s equation contains a new constant of nature: ℏ, which is Planck’s 
constant ℎ divided by 2𝜋 . We can include quantum mechanics in our model 
of hydrogen simply by including ℏ on our list of relevant quantities. In that 
way, we teach dimensional analysis about quantum mechanics. 
The new quantity ℏ is an angular momentum, which is a length (the lever 
arm) times linear momentum (𝑚𝑣). Therefore, its dimensions are 

L × M × LT−1 = ML2T−1. (5.90)⏟ ⏟ ⏟ 
[𝑟] [𝑚] [𝑣] 

The ℏ might save hydrogen. It contributes a 
fourth quantity without a fourth independent 

𝑎0 

𝑒2/4𝜋𝜖0 

L 

ML3T−2 

size 
electrostatic mess 

dimension. Therefore, it creates an indepen-
dent dimensionless group. 

𝑚e 
ℏ 

M 

ML2T−1 

electron mass 
quantum 

To find it, look for a dimension appearing in 
only two quantities. Time appears in 𝑒2/4𝜋𝜖0 as 𝑇 −2 and in ℏ as 𝑇 −1. There-
fore, the group contains the quotient ℏ2/(𝑒2/4𝜋𝜖0). Its dimensions are ML, 
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which can be canceled by dividing by 𝑚e𝑎0. The resulting dimensionless 
group is 

ℏ2 
(5.91)

𝑚e𝑎0(𝑒2/4𝜋𝜖0)
. 

As the only independent dimensionless group, it must be a dimensionless 
constant. Therefore, the size (as the radius) of hydrogen is given by 

ℏ2𝑎0 ∼ (5.92)
𝑚e(𝑒2/4𝜋𝜖0)

. 

Now let’s plug in the constants. We could just look up each constant, but 
that approach gives exponent whiplash; the powers of ten swing up and 
down and end on a seemingly random value. To gain insight, we’ll instead 
use the numbers for the backs of envelopes (p. xvii). That table deliberately 
has no entry for ℏ by itself, nor for the electron mass 𝑚e. Both omissions 
can be resolved with a symmetry operation (Problem 5.35). 

Problem 5.35 Shortcuts for atomic calculations 
Many atomic problems, such as the size or binding energy of hydrogen, end up in 
expressions with ℏ, the electron mass 𝑚e, and 𝑒2/4𝜋𝜖0. You can avoid remember-
ing those constants by instead remembering the following values: 

ℏ𝑐 ≈ 200 eV nm = 2000 eV Å
 

𝑚e𝑐2 ∼ 0.5×106 eV (the electron rest energy)
 (5.93)
𝑒2/4𝜋𝜖0 ≡ 𝛼 ≈ 1/137 (the fine-structure constant).ℏ𝑐 

Use these values and dimensional analysis to find the energy of a photon of green 
light (which has a wavelength of approximately 0.5 micrometers), expressing your 
answer in electron volts. 

In our expression for the Bohr radius, ℏ2/𝑚e(𝑒2/4𝜋𝜖0), we can replace ℏ 
with ℏ𝑐 and 𝑚e with 𝑚e𝑐2 simultaneously: Multiply by 1 in the form 𝑐2/𝑐2; 
it is a convenient symmetry operation. 

ℏ2 (ℏ𝑐)2𝑎0 ∼ = (5.94)
𝑚e(𝑒2/4𝜋𝜖0) 

× 
𝑐
𝑐
2

2 

𝑚e𝑐2(𝑒2/4𝜋𝜖0)
. 

Now the table provides the needed values: for ℏ𝑐, 𝑚e𝑐2, and 𝑒2/4𝜋𝜖0. How-
ever, we can make one more simplification because the electrostatic mess
𝑒2/4𝜋𝜖0 is related to a dimensionless constant. To see the relation, multiply 
and divide by ℏ𝑐: 
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𝑒2 ⎛𝑒2/4𝜋𝜖0⎞= ⎜ ⎟ ℏ𝑐. (5.95)4𝜋𝜖0 ℏ𝑐⎝ ⎠⏟⏟⏟⏟⏟⏟⏟
 
𝛼
 

The factor in parentheses is known as the fine-structure constant 𝛼; it is a 
dimensionless measure of the strength of electrostatics, and its numerical 
value is close to 1/137 or roughly 0.7 × 10−2. Then 

𝑒2 
= 𝛼ℏ𝑐. (5.96)4𝜋𝜖0 

This substitution further simplifies the size of hydrogen: 
(ℏ𝑐)2 (ℏ𝑐)2 ℏ𝑐𝑎0 ∼ = = (5.97)

𝑚e𝑐2 × 𝑒2/4𝜋𝜖0 𝑚e𝑐2 × 𝛼ℏ𝑐 𝛼 × 𝑚e𝑐2 
. 

Only now, having simplified the calculation down to abstractions worth 
remembering (𝛼, 𝑚e𝑐2, and ℏ𝑐), do we plug in the entries from the table. 

ℏ𝑐

⏞⏞⏞⏞⏞
 200 eV nm𝑎0 ∼ . (5.98)

⏟⏟⏟⏟⏟ 0.7 × 10−2 × 5 × 105 eV⏟⏟⏟⏟⏟ 
𝛼 𝑚e𝑐2 

This calculation we can do mentally. The units of electron volts cancel, leav-
ing only nanometers (nm). The two powers of ten upstairs (in the numer-
ator) and the three powers of ten downstairs (in the denominator) result 
in 10−1 nanometers or 1 ångström (10−10 meters). The remaining factors 
result in a factor of 1/2: 2/(0.7 × 5) ≈ 1/2. 

Therefore, the size of hydrogen—the Bohr radius—is about 0.5 ångströms: 

𝑎0 ∼ 0.5 × 10−10 m = 0.5 Å. (5.99) 

Amazingly, the missing dimensionless prefactor is 1. Thus, atoms are ång-
ström-sized. Indeed, hydrogen is 1 ångström in diameter. All other atoms, 
which have more electrons and therefore more electron shells, are larger. A 
useful rule of thumb is that a typical atomic diameter is 3 ångströms. 

What binding energy does this size produce? 

The binding energy is the energy required to disassemble the atom by re-
moving the electron and dragging it to infinity. This energy, denoted 𝐸0, 
should be roughly the electrostatic energy of a proton and electron sepa-
rated by the Bohr radius 𝑎0: 
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𝑒2 1𝐸0 ∼ . (5.100)4𝜋𝜖0 𝑎0 

With our result for 𝑎0, the binding energy becomes 

𝐸0 ∼ 𝑚e ( 
𝑒2 

)
2 1 

(5.101)4𝜋𝜖0 ℏ2
. 

The missing dimensionless prefactor is just 1/2: 

1 ( 
𝑒2 2 1𝐸0 = 2𝑚e ) (5.102)4𝜋𝜖0 ℏ2

. 

Problem 5.36 Shortcut to calculate the binding energy of hydrogen 

Use the shortcuts in Problem 5.35 to show that the binding energy of hydrogen is 
roughly 14 electron volts. From your symbolic expression for the energy, which is 
also the kinetic energy of the electron, estimate its speed as a fraction of 𝑐. 

In Problem 5.36, you showed, using the values of ℏ𝑐, 𝑚e𝑐2, and 𝛼, that this 
energy is roughly 14 electron volts. For the sake of a round number, let’s 
call the binding energy roughly 10 electron volts. 
This energy sets the scale for chemical bonds. In Section 3.2.1, we calcu-
lated, by unit conversion, that 1 electron volt per molecule corresponded 
to roughly 100 kilojoules per mole. Therefore, breaking a chemical bond 
requires roughly 1 megajoule per mole (of bonds). As a rough estimate, it 
is not far off. For example, if the molecule consists of a few life-related 
atoms (carbon, oxygen, and hydrogen), then the molar mass is roughly
50 grams—a small jelly donut. Therefore, burning a jelly donut, as our 
body does slowly when we eat the donut, should produce roughly 1 mega-
joule—a useful rule of thumb and way of imagining a megajoule. 

Problem 5.37 Adding the speed of light 
If we assume that 𝑎0 depends on 𝑒2/4𝜋𝜖0, 𝑚e, and 𝑐, what size would dimensional 
analysis predict for hydrogen? This size is called the classical electron radius and 
denoted 𝑟0. How does it compare to the actual Bohr radius? 

Problem 5.38 Thermal expansion 

Estimate a typical thermal-expansion coefficient, also denoted 𝛼. It is defined as 

𝛼 ≡ 
fractional change in a substance’s length 

. (5.103)change in temperature 

The thermal-expansion coefficient depends on the binding energy 𝐸0. Assuming 
𝐸0 ∼ 10 eV, compare your estimate for 𝛼 with its value for everyday substances. 
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Problem 5.39 Diffraction in the eye 

D

θ
Light passing through an opening, such as a telescope 
aperture or the pupil in the eye, diffracts (spreads out). 
By estimating the diffraction angle 𝜃 , we will be able 
to understand aspects of the design of the eye. 

a. What are the valid dimensionless relations connect-
ing the diffraction angle 𝜃 , the light wavelength 𝜆, 
and the pupil diameter 𝐷? 

b. Diffraction is the result of the photons in the beam acquiring a vertical momen-
tum Δ𝑝𝑦. What is the scaling exponent 𝛽 in 𝜃 ∝ (Δ𝑝𝑦)𝛽? 

c. The Heisenberg uncertainty principle from quantum mechanics says that the 
uncertainty in the photon’s vertical momentum Δ𝑝𝑦 is inversely proportional 
to the pupil diameter 𝐷. What is therefore the scaling exponent 𝛾 in 𝜃 ∝ 𝐷𝛾 ? 

d. Therefore find 𝜃 as a function of 𝜆 and 𝐷. 

e. Estimate a pupil diameter and the resulting diffraction angle. The light-sensi-
tive cells in the retina that we use in bright light are the cones. They are most 
dense in the fovea—the central region of the retina that we use for reading and 
any other task requiring sharp vision. At that location, their density is roughly
0.5 × 107 per square centimeter. Is that what you would predict? 

Problem 5.40 Kepler’s third law for non-inverse-square force laws 
With an inverse-square force, Kepler’s third law—the relation between orbit radius 
and period—is 𝑇 ∝ 𝑟3/2 (Section 4.2.2). Now generalize the law to forces of the 
form 𝐹 ∝ 𝑟𝑛, using dimensional analysis to find the scaling exponent 𝛽 in the 
orbital period 𝑇 ∝ 𝑟𝛽 as a function of the scaling exponent 𝑛 in the force law. 

Problem 5.41 Ground state energy for general potentials 
Just as we can apply dimensional analysis to classical orbits (Problem 5.40), we can 
apply it to quantum orbits. When the force law is 𝐹 ∝ 𝑟−2 (electrostatics), or the 
potential is 𝑉 ∝ 𝑟−1, we have hydrogen, for which we estimated the binding or 
ground-state energy. Now generalize to potentials where 𝑉 = 𝐶𝑟𝛽 . 

The relevant quantities are the ground-state energy 𝐸0, the proportionality con-
stant 𝐶 in the potential, the quantum constant ℏ, and the particle’s mass 𝑚. These 
four quantities, built from three dimensions, form one independent dimensionless 
group. But it is not easy to find. Therefore, use linear algebra to find the exponents
𝛾 , 𝛿, and 𝜖 that make 𝐸0𝐶𝛾ℏ𝛿𝑚𝜖 dimensionless. In the case 𝛽 = −1 (electrostatics), 
check that your result matches our result for hydrogen. 

5.5.2 Blackbody radiation 
With quantum mechanics and its new constant ℏ, we can explain the surface 
temperatures of planets or even stars. The basis is blackbody radiation: A 
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hot object—a so-called blackbody—radiates energy. (Here, “hot” means 
warmer than absolute zero, so every object is hot.) Hotter objects radiate 
more, so the radiated energy flux 𝐹 depends on the object’s temperature 𝑇 . 

How are the energy flux 𝐹 and the surface temperature 𝑇 connected? 

I stated the connection in Section 4.2, but now we know enough dimen-
sional analysis to derive almost the entire result without a detailed study 
of the quantum theory of radiation. Thus, let’s follow the steps of dimen-
sional analysis to find 𝐹, and start by listing the relevant quantities. 
The list begins with the goal, the energy flux 𝐹. Blackbody radiation can 
be understood properly through the quantum theory of radiation, which 
is the marriage of quantum mechanics to classical electrodynamics. (A dia-
gram of the connection, which requires the subsequent tool of easy cases, is 
in Section 8.4.2.) For the purposes of dimensional analysis, this theory sup-
plies two constants of nature: ℏ from quantum mechanics and the speed 
of light 𝑐 from classical electrodynamics. The list also includes the object’s 
temperature 𝑇 , so that dimensional analysis knows how hot the object is; 
but we’ll include it as the thermal energy 𝑘B𝑇 . 

𝐹 

𝑘B𝑇 

ℏ 

𝑐 

The four quantities built from three independent 
dimensions produce one independent dimension-
less group. Our usual route to finding this group, 
by looking for dimensions that appear in only one 
or two variables, fails because mass, like length, ap-

MT−3 

ML2T−2 

ML2T−1 

LT−1 

energy flux 
thermal energy 
quantum 

speed of light 

pears in three quantities, and time appears in all four. An alternative is to 
apply linear algebra, as you practiced in Problem 5.41. But it is messy. 
A less brute-force and more physically meaningful alternative is to choose 
a system of units where 𝑐 ≡ 1 and ℏ ≡ 1. Each of these two choices has 
a physical meaning. Before using the choices, it is worth understanding 
these meanings. Otherwise we are back to pushing symbols around. 
The first choice, 𝑐 ≡ 1, expresses the unity of space and time embedded and 
embodied in Einstein’s theory of special relativity. With 𝑐 ≡ 1, length and 
time have the same dimensions and are measured in the same units. We 
can then say that the Sun is 8.3 minutes away from the Earth. That time is 
equivalent to the distance of 8.3 light minutes (the distance that light travels 
in 8.3 minutes). 
The choice 𝑐 ≡ 1 also expresses the equivalence between mass and energy. 
We use this choice implicitly when we say that the mass of an electron is 
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5 × 105 electron volts—which is an energy. The complete statement is that, 
in the usual units, the electron’s rest energy 𝑚e𝑐2 is 5 × 105 electron volts. 
But when we choose 𝑐 ≡ 1, then 5 × 105 electron volts is also the mass 𝑚e. 
The second choice, ℏ ≡ 1, expresses the fundamental insight of quantum 
mechanics, that energy is (angular) frequency. The complete connection 
between energy and frequency is 

𝐸 = ℏ𝜔.	 (5.104) 

When ℏ ≡ 1, then 𝐸 is 𝜔.
 
These two unit choices implicitly incorporate their physical meanings into
 
our analysis. Furthermore, the choices so simplify our table of dimensions
 
that we can find the proportionality between flux and temperature without
 
any linear algebra.
 
First, choosing 𝑐 ≡ 1 makes the dimensions of length and time equivalent:
 

𝑐 ≡ 1 implies L ≡ T.	 (5.105) 

Thus, in the table we can replace T with L. 
Then adding the choice ℏ ≡ 1 contributes the dimensional equation 

≡ T−1ML2T−2 ⏟	 (5.106)⏟⏟⏟⏟⏟ 
[𝐸] [𝜔] 

It looks like a useless mess; however, replacing T with L (from 𝑐 ≡ 1) sim-
plifies it: 
M ≡ L−1.	 (5.107) 

In summary, setting 𝑐 ≡ 1 and ℏ ≡ 1 makes length and time equivalent 
dimensions and makes mass and inverse length equivalent dimensions. 
With these equivalences, let’s rewrite the table of dimensions, one quantity 
at a time. 
1.	 Flux 𝐹. Its dimensions, in the usual system, were MT−3 . In the new 

system, T−3 is equivalent to M3, so the dimensions of flux become M4 . 
2.	 Thermal energy 𝑘B𝑇 . Its dimensions were ML2T−2 . In the new system, 
T−2 is equivalent to L−2, so the dimensions of thermal energy become 
M. And they should: Choosing 𝑐 ≡ 1 makes energy equivalent to mass. 

3.	 Quantum constant ℏ. By fiat (when we chose ℏ ≡ 1), it is now dimension-
less and just 1, so we do not list it. 

4.	 Speed of light 𝑐. Also by fiat, 𝑐 is just 1, so we do not list it either. 
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Our list has become shorter and the dimensions in it M4𝐹 energy flux 
simpler. In the usual system, the list had four quan- 𝑘B𝑇 M thermal energy 
tities (𝐹, 𝑘B𝑇 , ℏ, and 𝑐) and three independent dimen-
sions (M, L, and T). Now the list has only two quantities (𝐹 and 𝑘B𝑇 ) and 
only one independent dimension (M). In both systems, there is only one 
dimensionless group. 
In the usual system, the Buckingham Pi calculation is as follows: 

4 quantities 
− 3 independent dimensions (5.108) 

1 independent dimensionless group 

In the new system, the calculation is 

2 quantities 
− 1 independent dimension (5.109) 

1 independent dimensionless group 

(If the number of independent dimensionless groups had not been the same, 
we would know that we had made a mistake in converting to the new sys-
tem.) In the simpler system, the independent dimensionless group propor-
tional to 𝐹 is now almost obvious. Because 𝐹 contains M4 and 𝑘B𝑇 contains 
M1, the group is just 𝐹/(𝑘B𝑇)4. 
Alas, no lunch is free and no good deed goes unpunished. Now we pay 
the price for the simplicity: We have to restore 𝑐 and ℏ in order to find the 
equivalent group in the usual system of units. Fortunately, the restoration 
doesn’t require any linear algebra. 
The first step is to compute the usual dimensions of 𝐹/(𝑘B𝑇)4: 

𝐹 MT−3 
= M−3L−8T5[

(𝑘B𝑇)4
] = . (5.110)

(ML2T−2)4 

The rest of the analysis for making this quotient dimensionless just rolls 
downhill without our needing to make any choices. The only way to get 
rid of M−3 is to multiply by ℏ3: Only ℏ contains a dimension of mass. 
The result has dimensions L−2T2: 

(𝑘B
𝐹
𝑇)4

ℏ3] = M−3L−8T5 × (ML2T−1)3 = L−2T2.
 
[𝐹/(𝑘B𝑇)4] [ℏ]
 

[ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ (5.111) 
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To clear these dimensions, multiply by 𝑐2. The independent dimensionless 
group proportional to 𝐹 is therefore 

𝐹ℏ3𝑐2 
(5.112)

(𝑘B𝑇)4 
. 

As the only independent dimensionless group, it is a constant, so 

𝐹 ∼ 
(𝑘B𝑇)4 

. (5.113)
ℏ3𝑐2 

Including the dimensionless prefactor hidden in the twiddle (∼), 
𝑘B 
4 

𝐹 = 
𝜋2 

𝑇4. (5.114)60 ℏ3𝑐2⏟⏟⏟⏟⏟ 
𝜎 

This result is the Stefan–Boltzmann law, and all the constants are lumped 
into 𝜎, the Stefan–Boltzmann constant: 

B𝜎 ≡ 
𝜋2 𝑘4 

(5.115)60 ℏ3𝑐2
. 

In Section 4.2.1, we used the scaling exponent in the Stefan–Boltzmann law 
to estimate the surface temperature of Pluto: We started from the surface 
temperature of the Earth and used proportional reasoning. Now that we 
know the full Stefan–Boltzmann law, we can directly calculate a surface 
temperature. In Problem 5.43, you will estimate the surface temperature of 
the Earth (and you then try to explain the life-saving discrepancy between 
prediction and reality). Here, we’ll estimate the surface temperature of the 
Sun using the Stefan–Boltzmann law, the solar flux at the top of the Earth’s 
atmosphere, and proportional reasoning. 
Let’s work backward from our goal toward what we know. We would like 
to find the Sun’s surface temperature 𝑇Sun. If we knew the energy flux 𝐹Sun 

at the Sun’s surface, then the Stefan–Boltzmann law would give us the tem-
perature: 

1/4
𝑇Sun = ( 

𝐹Sun . (5.116)𝜎 
)

We can find 𝐹Sun from the solar flux 𝐹 at the Earth’s orbit by using propor-
tional reasoning. Flux, as we argued in Section 4.2.1, is inversely propor-
tional to distance squared, because the same energy flow (a power) gets 
smeared over a surface area proportional to the square of the distance from 
the source. Therefore, 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

186 5 Dimensions 

2𝐹Sun’s surface = ( 
𝑟Earth’s orbit ) , (5.117)𝐹 𝑅Sun 

where 𝑅Sun is the radius of the Sun. 

A related distance ratio is. 
𝐷Sun 2𝑅Sun= , (5.118)𝑟Earth’s orbit 𝑟Earth’s orbit 

where 𝐷Sun is the diameter of the Sun. This ratio is the angular diameter of 
the Sun, denoted 𝜃Sun. Therefore, 

𝑟Earth’s orbit 2= . (5.119)𝑅Sun 𝜃Sun 

From a home experiment measuring the angular diameter of the Moon, 
which has the same angular diameter as the Sun, or from the table of con-
stants, the angular diameter 𝜃Sun is approximately 10−2. Therefore, the dis-
tance ratio is approximately 200, and the flux ratio is approximately 2002 or 
4 × 104. 

Continuing to unwind the reasoning chain, we get the flux at the Sun’s 
surface: 

𝐹Sun’s surface ≈ 4×104 × 1300 Wm−2 ≈ 5×107 Wm−2. (5.120)⏟⏟⏟⏟⏟⏟⏟ 
𝐹 

This flux, from the Stefan–Boltzmann law, corresponds to a surface temper-
ature of roughly 5400 K: 

5 × 107 Wm−2
𝑇Sun ≈ ( ≈ 5400 K. (5.121)

6 × 10−8 Wm−2 K−4 
)

1/4 

This prediction is quite close to the measured temperature of 5800 K. 

Problem 5.42 Redo the blackbody-radiation analysis using linear algebra 
Use linear algebra to find the exponents 𝑦, 𝑧, and 𝑤 that make the combination 
𝐹 × (𝑘B𝑇)𝑦ℏ𝑧𝑐𝑤 dimensionless. 

Problem 5.43 Blackbody temperature of the Earth 

Use the Stefan–Boltzmann law 𝐹 = 𝜎𝑇4 to predict the surface temperature of the 
Earth. Your prediction should be somewhat colder than reality. How do you ex-
plain the (life-saving) difference between prediction and reality? 

Problem 5.44 Lengths related by the fine-structure constant 
Arrange these important atomic-physics lengths in order of increasing size: 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

5.5 Atoms, molecules, and materials 187 

a. the classical electron radius (Problem 5.37) 𝑟0 ≡ (𝑒2/4𝜋𝜖0)/𝑚e𝑐2 (roughly the 
radius of an electron if its rest energy were entirely electrostatic energy). 

b. the Bohr radius 𝑎0 from Section 5.5.1. 

c. the reduced wavelength 𝜆 of a photon with energy 2𝐸0, where 𝜆 ≡ 𝜆/2𝜋 (analo-
gously to how ℏ ≡ ℎ/2𝜋 or 𝑓 = 𝜔/2𝜋 ) and 𝐸0 is the binding energy of hydrogen. 
(The energy 2𝐸0, also the absolute value of the potential energy in hydrogen, is 
called the Rydberg). 

d. the reduced Compton wavelength of the electron, defined as ℏ/𝑚e𝑐. 

Place the lengths on a logarithmic scale, and label the gaps (the ratios of successive 
lengths) in terms of the fine-structure constant 𝛼. 

5.5.3 Molecular binding energies 
We studied hydrogen, which as an element scarcely exists on Earth, mainly 
to understand chemical bonds. Chemical bonds are formed by attractions 
between electrons and protons, so the hydrogen atom is the simplest chem-
ical bond. The main defect of this model is that the electron–proton bond 
in a hydrogen atom is much shorter than in most bonds. A typical chemical 
bond is roughly 1.5 ångströms, three times larger than the Bohr radius. Be-
cause electrostatic energy scales as 𝐸 ∝ 1/𝑟, a typical bond energy should 
be smaller than hydrogen’s binding energy by a factor of 3. Hydrogen’s 
binding energy is roughly 14 electron volts, so 𝐸bond is roughly 4 electron 
volts—in agreement with the bond-energy values tabulated in Section 2.1. 
Another important bond is the hydrogen bond. These intermolecular bonds, 
which hold water molecules together, are weaker than the intramolecular 
hydrogen–oxygen bonds within a water molecule. But hydrogen bonds de-
termine important properties of the most important liquid on our planet. 
For example, the hydrogen-bond energy determines water’s heat of vapor-
ization—which determines much of our weather, including the average 
rainfall on the Earth (as we found in Section 3.4.3). 
To estimate the strength of hydrogen bonds, use the propor-
tionality 

. (5.122)𝐸electrostatic ∝ 
𝑞1
𝑟
𝑞2 

A hydrogen bond is slightly longer than a typical bond. Instead 
of the typical 1.5 ångströms, it is roughly 2 ångströms. The H+

O−

H+

H+

O−

H+

hydrogen
bond

bond length is in the denominator, so the greater length reduces the bond 
energy by a factor of 4/3. 
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Furthermore, the charges involved, 𝑞1 and 𝑞2, are smaller than the charges 
in a regular, intramolecular bond. A regular bond is between a full proton 
and a full electron of charge. A hydrogen bond, however, is between the 
excess charge on oxygen and the corresponding charge deficit on hydro-
gen. The excess and deficit are significantly smaller than a full charge. On 
oxygen the excess may be 0.5𝑒 (where 𝑒 is the electron charge). On each hy-
drogen, because of conservation, it would then be 0.25𝑒. These reductions 
in charge contribute factors of 1/2 and 1/4 to the hydrogen-bond energy. 
The resulting energy is roughly 0.4 electron volts: 

4 eV × 3
4 × 2

1 × 1
4 

≈ 0.4 eV. (5.123) 

This estimate is not bad considering the rough numbers that it used. Empir-
ically, a typical hydrogen bond is 23 kilojoules per mole or about 0.25 elec-
tron volts. Each water molecule forms close to four hydrogen bonds (two 
from the oxygen to foreign hydrogens, and one from each hydrogen to a 
foreign oxygen). Thus, each molecule gets credit for almost two hydrogen 
bonds—one-half of the per-molecule total in order to avoid counting each 
bond twice. Per water molecule, the result is 0.4 electron volts 

Because vaporizing water breaks the hydrogen bonds, but not the intramol-
ecular bonds, the heat of vaporization of water should be approximately
0.4 electron volts per molecule. In macroscopic units, it would be roughly 
40 kilojoules per mole—using the conversion factor from Section 3.2.1, that 
1 electron volt per molecule is roughly 100 kilojoules per mole. 

Because the molar mass of water is 1.8 × 10−2 kilograms, the heat of vapor-
ization is also 2.2 megajoules per kilogram: 

40 kJ 1 mol ≈ 
2.2 × 106 J× . (5.124)mol 1.8 × 10−2 kg kg 

And it is (p. xvii). We used this value in Section 3.4.3 to estimate the average 
worldwide rainfall. The amount of rain, and so the rate at which many 
plants grow, is determined by the strength of hydrogen bonds. 

Problem 5.45 Rotational energies 
The quantum constant ℏ is also the smallest possible angular momentum of a ro-
tating system. Use that information to estimate the rotational energy of a small 
molecule such as water (in electron volts). To what electromagnetic wavelength 
does this energy correspond, and where in the electromagnetic spectrum does it 
lie (for example, radio waves, ultraviolet, gamma rays)? 
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5.5.4 Stiffness and sound speeds 
An important macroscopic consequence of the per-atom and per-molecule 
energies is the existence of solid matter: substances that resist bending, 
twisting, squeezing, and stretching. These resistance properties are anal-
ogous to spring constants. 
However, a spring constant is not the quantity to estimate first, because it is 
not invariant under simple changes. For example, a thick bar resists stretch-
ing more than a thin bar does. Similarly, a shorter bar resists stretching 
more than a longer bar does. The property independent of the shape or 
amount of substance—invariant to these changes—is the stiffness or elastic 
modulus. There are several elastic moduli, of which the Young’s modulus 
is the most broadly useful. It is defined by 

stress 𝜎 applied to the substance 
𝑌 = (5.125)fractional change in its length [(Δ𝑙)/𝑙] . 

The ratio in the denominator occurs so often that it has its own name and 
symbol: the strain 𝜖 . 
Stress, like the closely related quantity pressure, 
is force per area: It is the applied force 𝐹 divided 
by the cross-sectional area. The denominator, the 
fractional change in length, is the dimensionless ratio (Δ𝑙)/𝑙. Thus, the di-
mensions of stiffness are the dimensions of pressure—which are also the 
dimensions of energy density. To see the connection between pressure and 
energy density, multiply the definition of pressure (force per area) by length 
over length: 

l ∆l
F F

force length energy 
pressure = × = (5.126)area length volume . 

As energy per volume, we can estimate a typical elastic modulus 𝑌 . For the 
numerator, a suitable energy is the typical binding energy per atom—the 
energy 𝐸binding required to remove the atom from the substance by breaking 
its bonds to surrounding atoms. For the denominator, a suitable volume 
is a typical atomic volume 𝑎3, where 𝑎 is a typical interatomic spacing (3 
ångströms). The result is 

𝐸binding𝑌 ∼ . (5.127)
𝑎3 

This derivation is slightly incomplete: In multiplying the definition of pres-
sure by length over length, we knew only that the two lengths have the 
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same dimensions, but not whether they have comparable values. If they do 
not, then the estimate for 𝑌 needs a dimensionless prefactor, which might 
be far from 1. Therefore, before we estimate 𝑌 , let’s confirm the estimate by 
using a second method, an analogy—a form of abstraction that we learned 
in Section 2.4. 

The analogy, with which we also began this discussion of stiffness, is be-
tween a spring constant (𝑘) and a Young’s modulus (𝑌). There are three 
physical quantities in the analogy. 

1.	 Stiffness. For a single spring, we measure stiffness using 𝑘 . For a material, 
we use the Young’s modulus 𝑌 . Therefore, 𝑘 and 𝑌 are analogous. 

2.	 Extension. For a single spring, we measure extension using the absolute 
length change Δ𝑥. For a material, we use the fractional length change 
(Δ𝑙)/𝑙 (the strain 𝜖). Therefore, Δ𝑥 and (Δ𝑙)/𝑙 are analogous. 

3.	 Energy. For a single spring, we measure energy using the energy 𝐸 di-
rectly. For a material, we use an intensive quantity, the energy density
ℰ ≡ 𝐸/𝑉 . Therefore, 𝐸 and ℰ are analogous. 

Because the energy in a spring is 

𝐸 ∼ 𝑘(Δ𝑥)2,	 (5.128) 

by analogy the energy density in a material will be 
2 

ℰ ∼ 𝑌 ( 
Δ𝑙 . (5.129)𝑙 ) 

Let’s estimate 𝑌 by setting Δ𝑙 ∼ 𝑙. Physically, this choice means stretching 
or compressing each bond by its own length. This harsh treatment is, as a 
reasonable assumption, sufficient to break the bond and release the binding 
energy. Then the right side becomes simply the Young’s modulus 𝑌 . 

The left side, the energy density, becomes simply the bond energy per vol-
ume. For the volume, if we use the volume of one atom, roughly 𝑎3, then 
the bond energy contained in this volume is the binding energy of one atom. 
Then the Young’s modulus becomes 

𝐸binding𝑌 ∼ .	 (5.130)
𝑎3 

This result is what we predicted based on the dimensions of pressure. How-
ever, we now have a physical model of the Young’s modulus, based on an 
analogy between it and spring constant. 
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Having arrived at this conclusion from dimensions and from an analogy, 
let’s apply it to estimate a typical Young’s modulus. To estimate the numer-
ator, the binding energy, start with the typical bond energy of 4 electron 
volts per bond. With each atom is connected to, say, five or six other atoms, 
the total energy is roughly 20 electron volts. Because bonds are connec-
tions between pairs of atoms, this 20 electron volts counts each bond twice. 
Therefore, a typical binding energy is 10 electron volts per atom. 

Using 𝑎 ∼ 3 ångströms, a typical stiffness or Young’s modulus is 
𝐸binding 10 eV 1.6 × 10−19 J ∼ 1𝑌 ∼ ∼ 2 ×1011 Jm−3. (5.131)

𝑎3 (3×10−10 m)3 
× eV 

For very rough estimates, a convenient value to remember 
is 1011 joules per cubic meter. Because energy density and 
pressure have the same dimensions, this energy density is 
also 1011 pascals or 106 atmospheres. (Because atmospheric 
pressure is only 1 atmosphere, a factor of 1 million smaller, 
it has little effect on solids.) 

Using a typical stiffness, we can estimate sound speeds in 
solids. The speed depends not only on the stiffness, but also 

𝑌 (1011 Pa) 

diamond 12 

steel 2 

Cu 1.2 

Al 0.7 

glass 0.6 

granite 0.3 

Pb 0.18 

concrete 0.17 

oak 0.1 

ice 0.1 

on the density: denser materials respond more slowly to the 
forces due to the stiffness, so sound travels more slowly in 
denser substances. From stiffness 𝑌 and density 𝜌, the only 
dimensionally correct way to make a speed is 𝑌/𝜌 . If this 
speed is the speed of sound, then 

𝑐s ∼ 
𝑌 
𝜌 
. (5.132) 

Based on a typical Young’s modulus of 0.5 × 1011 pascals and a typical den-
sity of 2.5 × 103 kilograms per cubic meter (for example, rock), a typical 
speed of sound is 5 kilometers per second: 

𝑐s ∼ 
0.5 × 1011 Pa 

2.5 × 103 kg m−3 
≈ 5 km s−1. (5.133) 

This prediction is reasonable for most solids and is exactly correct for steel! 
With this estimate, we end our dimensional-analysis tour of the properties 
of materials. Look what dimensional analysis, combined with analogy and 
proportional reasoning, has given us: the size of atoms, the energies of 
chemical bonds, the stiffness of materials, and the speed of sound. 
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5.6 Summary and further problems 
A quantity with dimensions has no meaning by itself. As Socrates might 
have put it, the uncompared quantity is not worth knowing. Using this 
principle, we learned to rewrite relations in dimensionless form: in terms of 
combinations of the quantities where the combination has no dimensions. 
Because the space of dimensionless relations is much smaller than the space 
of all possible relations, this rewriting simplifies many problems. Like the 
other two tools in Part II, dimensional analysis discards complexity without 
loss of information. 

Problem 5.46 Oblateness of the Earth 

Because the Earth spins on its axis, it is an oblate 
sphere. You can estimate the oblateness using di-
mensional analysis and some guessing. Our mea-
sure of oblateness will be Δ𝑅 = 𝑅eq − 𝑅polar (the 
difference between the polar and equatorial radii). 
Find two independent dimensionless groups built 
from Δ𝑅, 𝑔 , 𝑅 (the Earth’s mean radius), and 𝑣 (the 
Earth’s rotation speed at the equator). Guess a rea-
sonable relation between them in order to estimate Δ𝑅. Then compare your esti-
mate to the actual value, which is approximately 21.4 kilometers. 

Req

Rpolar

Problem 5.47 Huge waves on deep water 
One of the highest measured ocean waves was encountered in 1933 by a US Navy 
oiler, the USS Ramapo (a 147-meter-long ship) [34]. The wave period was 14.8 sec-
onds. Find its wavelength using the results of Problem 5.11. Would a wave of this 
wavelength be dangerous to the ship? 

Problem 5.48 Ice skating 
For world-record ice skating, estimate the power consumed by sliding friction. (Ice 
skates sliding on ice have a coefficient of sliding friction around 0.005.) Then make 
that power meaningful by estimating the ratio 

power consumed in sliding friction 
(5.134)power consumed by air resistance . 

Problem 5.49 Pressure melting during ice skating 
Water expands when it freezes. Thus, increasing the pressure on ice should, by Le 
Chatelier’s principle, push it toward becoming water—which lowers its freezing 
point. Based on the freezing point and the heat of vaporization of water, estimate 
the change in freezing point caused by ice-skate blades. Is this change large enough 
to explain why ice-skate blades slip with very low friction on a thin sheet of water? 
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Problem 5.50 Contact radius 

R

r r

A solid ball of radius 𝑅, density 𝜌, and elastic modulus 
𝑌 rests on the ground. Using dimensional analysis, how 
much can you deduce about the contact radius 𝑟? 

Problem 5.51 Contact time 
The ball of Problem 5.50 is dropped from a height, hits a 
hard table with speed 𝑣, and bounces off. Using dimen-
sional analysis, how much can you deduce about the con-
tact time? 

Problem 5.52 Floating on water 
Some insects can float on water thanks to the surface tension of water. In terms of 
the bug size 𝑙 (a length), find the scaling exponents 𝛼 and 𝛽 in 

𝐹𝛾 ∝ 𝑙𝛼, 
𝑊 ∝ 𝑙𝛽, 

(5.135) 

where 𝐹𝛾 is the surface-tension force and 𝑊 is the bug’s weight. (Surface tension 
itself has dimensions of force per length.) Thereby explain why a small-enough 
bug can float on water. 

Problem 5.53 Dimensionless measures of damping 
A damped spring–mass system has three parameters: the spring constant 𝑘 , the 
mass 𝑚, and the damping constant 𝛾 . The damping constant determines the damp-
ing force through 𝐹𝛾 = −𝛾𝑣, where 𝑣 is the velocity of the mass. 

a. Use these quantities to make the dimensionless group proportional to 𝛾 . Me-
chanical and structural engineers use this group to the define the dimensionless 
damping ratio 𝜁 : 

𝜁 ≡ 
1 
2 
× the dimensionless group proportional to 𝛾. (5.136) 

b. Find the dimensionless group proportional to 𝛾−1. Physicists and electrical 
engineers, following conventions from the early days of radio, call this group 
the quality factor 𝑄. 

Problem 5.54 Steel cable under its own weight 
The stiffness of a material should not be confused with its strength! Strength is the 
stress (a pressure) at which the substance breaks; it is denoted 𝜎y. Like stiffness, 
it is an energy density. The dimensionless ratio 𝜎y/𝜎 , called the yield strain 𝜖y, 
has a physical interpretation: the fractional length change at which the substance 
breaks. For most materials, it lies in the range 10−3…10−2—with brittle materials 
(such as rock) toward the lower end. Using the preceding information, estimate 
the maximum length of a steel cable before it breaks under its own weight. 
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Problem 5.55 Orbital dynamics 

Sun
rmin rmax

l

A planet orbits the Sun in an ellipse that can be described 
by the distance of closest approach 𝑟min and by the fur-
thest distance 𝑟max. The length 𝑙 is their harmonic mean: 

𝑙 = 2 
𝑟min𝑟max 

𝑟min + 𝑟max 
= 2 (𝑟min ∥ 𝑟max). (5.137) 

(You will meet the harmonic mean again in Problem 8.22, 
as an example of a more general kind of mean.) 

The table gives 𝑟min and 𝑟max for the planets, as well as the specific effective poten-
tial 𝑉 , which is the effective potential energy divided by the planet mass 𝑚 (the 
effective potential itself mixes the gravitational potential energy with one compo-
nent of the kinetic energy). The purpose of this problem is to see how universal 
functions organize this seemingly messy data set. 

𝑟min(m) 𝑟max (m) 𝑉 (m2 s−2) 

Mercury 4.6001 × 1010 6.9818 × 1010 −1.1462 × 109 

Venus 1.0748 × 1011 1.0894 × 1011 −6.1339 × 108 

Earth 1.4710 × 1011 1.5210 × 1011 −4.4369 × 108 

Mars 2.0666 × 1011 2.4923 × 1011 −2.9119 × 108 

Jupiter 7.4067 × 1011 8.1601 × 1011 −8.5277 × 107 

Saturn 1.3498 × 1012 1.5036 × 1012 −4.6523 × 107 

Uranus 2.7350 × 1012 3.0063 × 1012 −2.3122 × 107 

Neptune 4.4598 × 1012 4.5370 × 1012 −1.4755 × 107 

a. On a graph of 𝑉 versus 𝑟, plot all the data. Each planet provides two data 
points, one for 𝑟 = 𝑟min and one for 𝑟 = 𝑟max. The plot should be a mess. But 
you’ll straighten it out in the rest of the problem. 

b. Now write the relation between 𝑉 and 𝑟 in dimensionless form. The relevant 
quantities are 𝑉 , 𝑟, 𝐺𝑀Sun, and the length 𝑙. Choose your groups so that 𝑉 
appears only in one group and 𝑟 appears only in a separate group. 

c. Now use the dimensionless form to replot the data in dimensionless form. All 
the points should lie on one curve. You have found the universal function char-
acterizing all planetary orbits! 

Problem 5.56 Signal propagation speed in coaxial cable 
For the coaxial cable of Problem 2.25, estimate the signal propagation speed. 

Problem 5.57 Meter stick under pressure 
Estimate how much shorter a steel meter stick becomes due to being placed at the 
bottom of the ocean. What about a meter stick made of wood? 
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Problem 5.58 Speed of sound in water 
Using the heat of vaporization of water as a measure of the energy density in its 
weakest bonds, estimate the speed of sound in water. 

Problem 5.59 Delta-function potential 
A simple potential used as a model to understand molecules is the one-dimen-
sional delta-function potential 𝑉(𝑥) = −𝐸0𝐿𝛿(𝑥), where 𝐸0 is an energy and 𝐿 is a 
length (imagine a deep potential of depth 𝐸0 and small width 𝐿). Use dimensional 
analysis to estimate the ground-state energy. 

Problem 5.60 Tube flow 

l
flow

rIn this problem you study fluid flow through a narrow 
tube. The quantity to predict is 𝑄, the volume flow rate 
(volume per time). This rate depends on five quantities: 

𝑙 the length of the tube 
Δ𝑝 the pressure difference between the tube ends 
𝑟 the radius of the tube 
𝜌 the density of the fluid 

𝜈 the kinematic viscosity of the fluid 

a. Find three independent dimensionless groups 𝐺1, 𝐺2, and 𝐺3 from these six 
quantities—preparing to write the most general statement as 

group 1 = 𝑓 (group 2, group 3). (5.138) 

Hint: One physically reasonable group is 𝐺2 = 𝑟/𝑙; to make solving for 𝑄 pos-
sible, put 𝑄 only in group 1 and make this group proportional to 𝑄. 

b. Now imagine that the tube is long and thin (𝑙 ≫ 𝑟) and that the radius or flow 
speed is small enough to make the Reynolds number low. Then deduce the 
form of 𝑓 using proportional reasoning: First find the scaling exponent 𝛽 in 
𝑄 ∝ (Δ𝑝)𝛽; then find the scaling exponent 𝛾 in 𝑄 ∝ 𝑙𝛾. Hint: If you double Δ𝑝 
and 𝑙, what should happen to 𝑄? 

Determine the form of 𝑓 that satisfies all your proportionality requirements. 
If you get stuck, work backward from the correct result. Look up Poiseuille 
flow, and use the result to deduce the preceding proportionalities; and then 
give reasons for why they are that way. 

c. The analysis in the preceding parts does not give you the universal, dimension-
less constant. Use a syringe and needle to estimate the constant. Compare your 
estimate with the value that comes from solving the equations of fluid mechan-
ics honestly (by looking up this value). 
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Problem 5.61 Boiling versus boiling away 
Look up the specific heat of water in the table of constants (p. xvii) and estimate 
the ratio 

energy to bring a pot of water to boiling temperature 
energy to boil away the boiling water . (5.139) 

Problem 5.62 Kepler’s law for elliptical orbits 
Kepler’s third law connects the orbital period to the minimum and maximum or-
bital radii 𝑟min and 𝑟max and to the gravitational strength of the Sun: 

𝑇 = 2𝜋 
𝑎3/2 

𝐺𝑀Sun 
, (5.140) 

where the semimajor axis 𝑎 is defined as 𝑎 ≡ (𝑟min + 𝑟max)/2. Write Kepler’s third 
law in dimensionless form, making one independent dimensionless group propor-
tional to 𝑇 and the other group proportional to 𝑟min. 

Problem 5.63 Why Mars? 
Why did Kepler need data about Mars’s orbit to conclude that planets orbit the 
Sun in an ellipse rather than a circle? Hint: See the data in Problem 5.55. 

Problem 5.64 Froude number for a ship’s hull speed 

For a ship, the hull speed is defined as 

𝑣 ≡ 1.34 𝑙 , (5.141) 

where 𝑣 is measured in knots (nautical miles per hour), and 𝑙, the waterline length, 
is measured in feet. The waterline length is, as you might expect, the length of the 
boat measured at the waterline. The hull speed is a boat’s maximum speed before 
the water drag becomes very large. 

Convert this unit-specific formula to an approximate Froude number 𝖥𝗋, the di-
mensionless number introduced in Section 5.1.1 to estimate the maximum walking 
speed. For the hull speed, the Froude number is defined as 

𝖥𝗋 ≡ 
𝑣2 

𝑔𝑙 . (5.142) 

From the approximate Froude number, guess the exact value! 
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Part III 

Discarding complexity
 
with loss of information
 

You’ve organized (Part I); you’ve discarded complexity without losing infor-
mation (Part II); yet the phenomenon still resists understanding. When the 
going gets tough, the tough lower their standards: Approximate first, and 
worry later. Otherwise you never start, and you can never learn that the 
approximations would have been accurate enough—if only you had gath-
ered the courage to make them. Helping you make these approximations 
is purpose of our final set of tools. 

These four tools help us discard complexity while losing information. First, 
we round or lump complicated numbers and graphs (Chapter 6). Second, 
we accept that our knowledge is incomplete, and we quantify the uncer-
tainty with the tool of probability (Chapter 7). Third, we study simpler 
versions of hard problems—the tool of easy cases (Chapter 8). Fourth and 
finally, by making spring models (Chapter 9), we approximate and can un-
derstand many phenomena, including cooking times, sound speeds, and 
the color of the sky and the sunset. 

without losing information
Part II

losing information
Part III

43 5

to master complexity

lumping
6

probabilistic reasoning
7

easy cases
8

spring models
9

organize it
Part I discard it

21
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In 1982, thousands of students in the United States choice age 13 age 17 
had to estimate 3.04×5.3, choosing 1.6, 16, 160, 1600, or 

1.6 28% 21%“I don’t know.” Only 21 percent of 13-year-olds and 37 
𝟏𝟔 𝟐𝟏 𝟑𝟕percent of 17-year-olds chose 16. As Carpenter and 
160 18 17colleagues describe [7], the problem is not a lack of 
1600 23 11calculation skill. On questions testing exact multipli-

don′t know 9 12cation (“multiply 2.07 by 9.3”), the 13-year-olds scored 
57 percent, and the 17-year-olds scored 72 percent cor-
rect. The problem is a lack of understanding; if you earn roughly $5 per 
hour for roughly 3 hours, your net worth cannot grow by $1600. The stu-
dents needed our next tool: rounding or, more generally, lumping. 

6.1 Approximate! 
Fortunately, rounding is inherent in our perception of quantity: Beyond 
three items, our perception of “how many” comes with an inherent impre-
cision. This fuzziness is, for adults, 20 percent: If we briefly see two groups 
of dots whose totals are within 20 percent, we cannot easily judge which 
group has more dots. Try it by glancing at the following squares. 
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In the left pair, one square contains 10 percent more dots than the other 
square; in the right pair, one square contains 30 percent more dots than the 
other square. In the 10-percent pair, spotting the more numerous square 
is difficult. In the 30-percent pair, it is almost obvious at sight. Lump-
ing comes naturally; we just need the courage to do it. We’ll develop the 
courage first in rounding numbers, the most familiar kind of lumping. 

±10% ±30%

6.2 Rounding on a logarithmic scale 
Just as driving to visit a next-door neighbor atrophies our muscles and abil-
ity to move around the physical world, asking calculators to do simple arith-
metic dulls our ability to navigate the quantitative world. We never develop 
an innate sense of sizes and scales in the world. The antidote is to do the 
computations ourselves, but approximately—by placing quantities on a log-
arithmic scale and rounding them to the nearest convenient value. 

6.2.1 Rounding to the nearest power of ten 
The simplest method of rounding is to round every number to the nearest 
power of ten. That simplification turns most calculations into adding and 
subtracting integer exponents (the exceptions come from roots, which pro-
duce fractional exponents). Here, “nearest” is judged on a logarithmic scale, 
where distance is measured not with differences but with ratios or factors. 
For example, 50—although closer to 10 than to 100 on a linear scale—is a 
factor of 5 greater than 10 but only a factor of 2 smaller than 100. Therefore, 
50 is closer to 100 than to 10 and would get rounded to 100. 
As practice, let’s estimate the number of minutes in a day:
 

1 day × 
24 hours × 

60 minutes
 = 24 × 60 minutes. (6.1)day hour 

Now we round each factor to the nearest power of 10. Because 24 is only 
a factor of 2.4 away from 10, but more than a factor of 4 away from 100, it 
gets rounded to 10: 
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101 102

24

4.22.4

In contrast, 60 is closer to 100 than to 10:
 

101 102

60

1.76

With these approximations, 1 day is approximately 1000 minutes: 
from 24 from 60
 

⏞10 hours 100
⏞ minutes1 day × × = 1000 minutes. (6.2)day hour 

The exact value is 1440 minutes, so the estimate is only 30 percent too small. 
This error is a reasonable tradeoff to gain a method that requires almost no 
effort—who needs a calculator to multiply 10 by 100? Furthermore, the 
accuracy is enough for many calculations, where insight is needed more 
than accuracy. 

Problem 6.1 Rounding to the nearest power of ten 

Round these numbers to the nearest power of ten: 200, 0.53, 0.03, and 7.9. 

Problem 6.2 Boundary between rounding up or down 

We saw that 60 rounded up to 100 but that 24 rounded down to 10. What number 
is just at the boundary between rounding down to 10 and rounding up to 100? 

Problem 6.3 Using rounding to the nearest power of ten 

Round the numbers to the nearest power of ten and thereby estimate the products: 
(a) 27 × 50, (b) 432 × 12, and (c) 3.04 × 5.3. 

Problem 6.4 Calculating the bending of light 
In Section 5.3.1, we used dimensional analysis to show that the Earth could bend 
starlight by approximately the angle 

𝐺 𝑚Earth
 

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ × 
⏞⏞⏞⏞⏞
 6.7 × 10−11 kg−1 m3 s−2 6×1024 kg

𝜃 ∼ . (6.3)
6.4 × 106 m × 1017 m2 s−2⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 

𝑅Earth 𝑐2 

Round each factor to the nearest power of ten in order to estimate the bending 
angle mentally. How long did making the estimate take? 
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6.2.2 Rounding to the nearest half power of ten 
Rounding to the nearest power of ten gives a quick, preliminary estimate. 
When it is too approximate, we just round more precisely. The next increase 
in accuracy is to round to the nearest half power of ten. 

As an illustration, let’s estimate the number of seconds in a year. The nu-
merical calculation (without the units) is 365 × 24 × 3600. Now we round 
each factor by replacing it with a number of the form 10𝛽. In the previous 
method, where we rounded to the nearest power of ten, 𝛽 was an integer. 
Now 𝛽 can also be a half-integer (for example, 2.5). 

What is a half power of ten numerically? 

Two half powers of ten multiply to make 10, so each half power is 10 , or 
slightly more than 3 (as you found in Problem 6.2). When you need more 
precision, a half power of ten is 3.2 or 3.16, although that much precision is 
rarely needed. 

In rounding the calculation for the number of seconds, 365 becomes 102.5, 
and, as diagrammed below, 3600 becomes 103.5: 

103 104

3600

2.81.1

103.5

The remaining factor is 24. It is closer to 101.5 (roughly 30) than to 101: 

101 102

24

1.32.4

101.5

Thus, we replace 24 by 101.5. Then the calculation simplifies to 

102.5 × 101.5 × 103.5 . (6.4) 
365 24 3600 

⏟ ⏟ ⏟ 

Now just add the powers of ten: 

102.5 × 101.5 × 103.5 = 107.5. (6.5) 

Because the 0.5 in the exponent 7.5 contributes a factor of 3, there are about 
3×107 seconds in a year. I remember this value as 𝜋 ×107, which is accurate 
to 0.5 percent. 



In Section 2.3, I talked to my gut to estimate the US annual oil imports. That dis-
cussion resulted in the geometric-mean estimate 

10 million × 1 trillion 
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Problem 6.5 Earth’s orbital speed 

Using the estimate of 𝜋 ×107 seconds in a year, estimate the Earth’s orbital speed 
around the Sun. Don’t use a calculator! (The Earth–Sun distance, 1.5×1011 meters, 
is worth memorizing.) 

Problem 6.6 Where does the 𝝅 come from?
 
True or false: The 𝜋 in 𝜋 ×107 seconds per year arises because the Earth orbits the
 
Sun in a circle, and a circle has 𝜋 in its circumference.
 

Problem 6.7 Only approximately pi 
True or false: The 𝜋 in 𝜋×107 seconds per year is not exact because the Earth orbits 
in a slightly noncircular ellipse. 

Problem 6.8 Estimating geometric means 

barrels per year. (6.6) 

Estimate the square root by placing the two quantities 10 million and 1 trillion on 
a logarithmic scale and finding their midpoint. 

6.3 Typical or characteristic values 
Lumping not only simplifies numbers, where it is called rounding, it also 
simplifies complex quantities by creating an abstraction: the typical or char-
acteristic value. We’ve used this form of lumping implicitly many times; 
now it’s time to discuss it explicitly, in order to appreciate its scope and to 
develop skill in applying it. 

6.3.1 Estimating the population of the United States 
Our first explicit example of a typical or characteristic value occurs in the fol-
lowing population estimate. Knowing a population is essential in many es-
timates about the social world, such as a country’s oil imports (Section 1.4), 
energy consumption, or per-capita land area (Problem 1.14). Here we’ll es-
timate the population of the United States by dividing it into two factors. 
US population ∼ 𝑁states × population of a typical US state. (6.7) 

The first factor, 𝑁states, everyone in America learns in school: 𝑁states = 50. 
The second factor contains the lumping approximation. Rather than using 
all 50 different state populations, we replace each state with a typical state. 
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What is the population of a typical state? 

A large state is California or New York, each of which has a megacity with a 
population in the several millions. A tiny state is Delaware or Rhode Island. 
In between is Massachusetts. Because I live there, I know that it has 6 mil-
lion people. Taking Massachusetts as a typical state, the US population is 
roughly 50 × 6 million or 300 million. This estimate is more accurate than 
we deserve: The 2012 population is 314 million. 
From this example, you can also see how lumping enhances symmetry rea-
soning: When there is change, look for what does not change (Section 3.1). 
Here, each state has its own population, so there’s plenty of change among 
the list of states. Lumping helps us find, or create, a quantity that does not 
change. We imagine a typical state, one that may not even exist (just as no 
family has the average of 2.3 children), and replace every state with this 
state. We’ve lumped away all the change—throwing away information in 
exchange for insight into the population of the country. 

Problem 6.9 German federal states 
The Federal Republic of Germany has 16 federal states. Pick one at random, multi-
ply its population by 16, and compare that estimate with Germany’s population. 

6.3.2 Lumping varying physical quantities: How high can animals jump? 
Using typical or characteristic values allows us to reason out seemingly im-
possible questions while sitting in our armchairs. For practice, we’ll study 
how the jump height of an animal depends on its size. For example, should 
a person be able to jump higher than a locust? 
The jump could be a running or a standing high jump. Both types are inter-
esting, but the standing high jump teaches more about lumping. Therefore, 
imagine that the animal starts from rest and jumps directly upward. 
Even with this assumption, the problem looks underspecified. The jump 
height depends at least on the animal’s shape, on how much muscle the 
animal has, and on the muscle efficiency. It is the kind of problem where 
lumping, a tool for making assumptions, is most helpful. We’ll use lumping 
and proportional reasoning to find the scaling exponent 𝛽 in ℎ ∝ 𝑚𝛽, where 
ℎ is the jump height and 𝑚 is the animal’s mass (our measure of its size). 
Finding a scaling exponent usually requires a physical model. You can of-
ten build them by imagining an extreme, unrealistic situation, and then 
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asking yourself what physics prevents it from happening. Thus, why can’t 
we jump to the Moon? Because it demands a vast amount of energy, far be-
yond what our muscles can supply. The point to extract from this thought 
experiment is that jumping demands energy, which is supplied by muscles. 
The appearance of supply and demand suggests, as in the estimate of the 
number of taxis in Boston (Section 3.4.1), that we equate the demand to the 
supply. Then we estimate each piece separately—divide and conquer. 
The energy demanded is the gravitational potential energy 𝑚𝑔ℎ. Here, 
𝑔 is the gravitational acceleration, and the jump height ℎ is measured 
as the vertical change in the animal’s center of mass (CM). Because 
all animals feel the same gravity, 𝐸demanded = 𝑚𝑔ℎ simplifies to the 
proportionality 𝐸demanded ∝ 𝑚ℎ. 
For the supplied energy, we again divide and conquer: 

𝐸supplied ∼ muscle mass × muscle energy density, (6.8) 

animal

CM

animal

CM

h

where the muscle energy density is the energy per mass that muscle can 
supply. This product already contains a lumping assumption: that all the 
muscles in an animal provide the same energy density. This assumption is 
reflected in the single approximation sign (∼). 
Even so, the result is not simple enough. Each species, and each individ-
ual within a species, will have its own muscle mass and energy density. 
Therefore, let’s make the further lumping assumption that all animals, even 
though they vary in muscle mass, share the same muscle energy density. 
The assumption is plausible because all muscles use similar biological tech-
nology (actin and myosin filaments). Fortunately, making this assumption 
is an approximation: Lumping throws away actual information, which is 
how it reduces complexity. With the assumption of a common energy den-
sity, the supplied energy becomes the simpler proportionality 

𝐸supplied ∝ muscle mass. (6.9) 

The simplicity of this result reminds us that an approximate result can be 
more useful than an exact result. 
The muscle mass also varies from animal to animal. Introducing a dimen-
sionless prefactor and making another lumping approximation will man-
age that complexity. The dimensionless prefactor 𝛼 will be the fraction of 
an animal’s mass that is muscle: 

𝑚muscle = 𝛼𝑚. (6.10) 
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Alas, 𝛼 varies across species (compare a cheetah and a turtle), within a 
species, and within the lifetime of an individual—for example, my 𝛼 is 
dropping as I sit writing this book. If we account for all these variations, 
we will be overwhelmed by their complexity. Lumping rescues us: It gives 
us permission to assume that 𝛼 is the same for every animal. We replace the 
diversity of animals with a typical animal. This assumption is not as crazy 
as it might sound. It doesn’t mean that all animals have the same muscle 
mass. Rather, it means that all animals have the same fraction of muscle; as 
an example, for people, 𝛼 ∼ 0.4. 
With this lumping assumption, 𝑚muscle = 𝛼𝑚 becomes the simpler propor-
tionality 𝑚muscle ∝ 𝑚. Because the supplied energy is proportional to the 
muscle mass, it is proportional to the animal’s mass: 

𝐸supplied ∝ 𝑚muscle ∝ 𝑚. (6.11) 

This result is as simple as we can hope for, and it depends on the right 
quantity, the animal’s mass. Now let’s use it to predict how an animal’s 
jump height depend on this mass. 
Because the demanded energy and supplied energy are equal, and the de-
manded energy—the gravitational potential energy—is proportional to 𝑚ℎ, 

𝑚ℎ ∝ 𝑚. (6.12) 

The common factor of 𝑚1 cancels out, leaving ℎ independent of 𝑚: 
ℎ ∝ 𝑚0. (6.13) 

All (jumping) animals should be able to jump to the same height! 
The result always surprises me. My intuition, before doing the calculation, 
cannot decide how ℎ should behave. On the one hand, small animals seem 
strong: Ants can lift a mass many times their own body mass, whereas 
humans can lift only roughly their own body mass. However, my intuition 
also insists that people should be able to jump higher than locusts. 
The data, from Scaling: Why Animal Size Is So Important 𝑚 
[41, p. 178], contradict my intuition and confirm our 
lumping and scaling analysis. The mass spans more 
than eight orders of magnitude (eight decades, or a 
factor of 108), yet the jump height, as a change in the 
height of the center of mass, varies only by a factor of 3 

flea 
click beetle 
locust 
human 

0.5 mg 
40 mg 
3 g 

70 kg 

ℎ 

20 cm 

30 cm 

59 cm 

60 cm 

(half a decade). On a log–log graph, the height-ver-
sus-mass line would have a slope less than 1/16. Our predicted scaling 
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of constant jump height (ℎ ∝ 𝑚0), which corresponds to a slope of zero, is 
surprisingly accurate. The outliers, fleas and click beetles, are at the lighter 
end. (For an explanation, try Problem 6.10.) Furthermore, at the heavier 
end, locusts and humans, although differing by more than four orders of 
magnitude in mass, jump to almost exactly the same height. 
A moral of this example is that lumping augments proportional reasoning. 
Proportional reasoning reduces complexity by showing us a notation for 
ignoring quantities that do not vary. For example, when all animals face the 
same gravitational field, then 𝐸demanded = 𝑚𝑔ℎ simplifies to 𝐸demanded ∝ 𝑚ℎ. 
Alas, we live in the desert of the real, where “the same” is almost always 
only an approximation—for example, as with the energy density of muscle 
in different animals. Lumping rescues us. It gives us permission to replace 
these changing values with a single, constant, typical value—making the 
relations amenable to proportional reasoning. 

Problem 6.10 Jumping fleas 
The prediction of constant jump height seems to fail at small sizes: Larger animals 
jump about 60 centimeters, whereas fleas reach only 20 centimeters. In this prob-
lem, you evaluate whether air drag can explain the discrepancy. 

a.	 As a lumping approximation, pretend that an animal is a cube with side length
𝑙, and assume that it jumps to a height ℎ independent of its mass 𝑚. Then 
find the scaling exponent 𝛽 in 𝐸drag/𝐸demanded ∝ 𝑙𝛽, where 𝐸drag is the energy 
consumed by drag and 𝐸demanded is the energy needed in the absence of drag. 

b.	 Estimate 𝐸drag/𝐸demanded for a cubical human that can jump to 60 centimeters. 
Using the scaling relation, estimate it for a cubical flea. What is your judgment 
of drag as an explanation for the lower jump heights of fleas? 

6.3.3 Period of an ideal spring 
A surprising conclusion of dimensional analysis is that the
 
period of a spring, or a small-amplitude pendulum, does
 

k
m

not depend on its amplitude (Problem 5.14). However, the 
mathematical reasoning doesn’t give us the why; it doesn’t provide a phys-
ical insight. That insight comes from lumping, by using characteristic val-
ues. We’ll try it together by finding the period of a spring; you’ll practice 
by finding the period of a pendulum (Problem 6.11). 
This kind of lumping, in exchange for providing physical insight, requires 
that we make a physical model. Here, a stretched or compressed spring 
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exerts a force on and thereby accelerates the mass. If the spring is stretched 
to an amplitude 𝑥0, then the force is 𝑘𝑥0 and the acceleration is 𝑘𝑥0/𝑚. This 
acceleration varies as the mass moves, so analyzing the motion usually re-
quires differential equations. However, this acceleration is also a character-
istic acceleration. It sets the scale for the acceleration at all other times. If we 
replace the changing acceleration with this characteristic acceleration, the 
complexity vanishes. The problem becomes a constant-acceleration prob-
lem where 𝑎 ∼ 𝑘𝑥0/𝑚. 

With a constant acceleration 𝑎 for a time comparable to one period 𝑇 , the 
mass moves a distance comparable to 𝑎𝑇 2, which is 𝑘𝑥0𝑇 2/𝑚. When apply-
ing lumping and characteristic values, “comparable” is the verbal transla-
tion of the single approximation sign ∼. As an equation, we would write 

distance ∼ 𝑎𝑇 2. (6.14) 

Another useful translation is “of the order of”: The distance is of the order 
of 𝑎𝑇 2. Equivalently, the characteristic distance is 𝑎𝑇 2. 

This characteristic distance must be comparable to the amplitude 𝑥0. Thus, 

𝑥0 ∼ 
𝑘𝑥0𝑇 2 

.𝑚 

The amplitude 𝑥0 cancels out! Then the period is 𝑇 ∼ 

period unchanged. 

(6.15) 

𝑚/𝑘 . Lumping 
thus provides the following explanation for why the period is independent 
of amplitude: As the amplitude and therefore the travel distance increase, 
the force and acceleration increase just enough to compensate, leaving the 

Problem 6.11 Period of a small-amplitude pendulum using lumping 
Use characteristic values to explain why the period of a (small-amplitude) pendu-
lum is independent of the amplitude 𝜃0. 

Problem 6.12 Period of a nonlinear spring 
Imagine a nonlinear spring with force law 𝐹 ∝ 𝑥𝑛. Use lumping as follows to find 
how the period 𝑇 varies with amplitude 𝑥0. 

a. Estimate a typical or characteristic acceleration. 

b. At this acceleration, roughly how far does the mass travel in one period 𝑇 ? 

c. This distance must be comparable to the amplitude 𝑥0. Therefore, find the scal-
ing exponent 𝛼 in 𝑇 ∝ 𝑥𝛼

0 (where 𝛼 will be a function of the scaling exponent 𝑛 
in the force law). Then check your answer to Problem 5.17. 
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the 6s in 16/64: 
1 6 

6 4 
= 

1 
4 
. 

tion turns derivatives into algebra: 
𝑑 𝑣 

𝑑 𝑡 
∼ 

𝑣 

𝑡 
. 

What does 𝑣/𝑡 mean? 

6.3 Typical or characteristic values 

6.3.4 Lumping derivatives 
The preceding analysis of the period of a spring–mass system (Section 6.3.3) 
illustrates a general simplification: Using characteristic values, we can re-
place derivatives with algebra. The algebraic expression usually provides 
a physical model. As an example, let’s explain, physically, an acceleration 
that we derived by dimensional analysis in Section 5.1.1: the inward accel-
eration of an object moving in a circle. 
Acceleration is the derivative of velocity: 𝑎 = 𝑑𝑣/𝑑𝑡. Using the definition of 
derivative, 

𝑑𝑣 infinitesimal change in 𝑣 
(6.16)𝑑𝑡 ≡ (infinitesimal) time required to make this change in 𝑣 

. 

Infinitesimal changes and times are difficult to picture, so an analysis based
 
on calculus often does not help us see why a result is true.
 
A lumping approximation, by discarding complexity, can give this insight.
 
A way to remember the lumping approximation, first use 6 = 6 to cancel
 

(6.17) 

The result is exact! Although this particular cancellation is dubious, it sug-
gests the analogous lumping approximation 𝑑 = 𝑑. The resulting cancella-

(6.18) 

Lumping replaces “infinitesimal” with “characteristic”: 
𝑣 characteristic change in 𝑣 

(6.19)𝑡 ∼ time required to make this change in 𝑣 
. 

The numerator asks us to look at the changes in 𝑣 and to represent them by 
a characteristic or typical change. The denominator is, as an abbreviation, 
often called the characteristic time, or time constant, and denoted 𝜏 . 
In applying this approximation to circular motion, we have to distinguish 
the velocity vector 𝐯 from its magnitude 𝑣 (the speed). The speed, at least in 
constant-speed circular motion, never changes, so 𝑑𝑣/𝑑𝑡 itself is zero. We 
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are interested in |𝑑𝐯|/𝑑𝑡: the magnitude of the vector’s derivative, rather 
than the derivative of the vector’s magnitude. The lumped acceleration 𝑎 is 

∣ characteristic change in 𝐯 ∣
𝑎 ∼ (6.20)time required to make this change in 𝐯 

. 

The maximum change in 𝐯 is reversing direction, from +𝐯 to −𝐯. A charac-
teristic change in 𝐯 is 𝐯 itself, or any value comparable to it. This range of 
possibilities is captured by the single approximation sign, which stands for 
“is comparable to.” With that notation, 

characteristic change in 𝐯 ∼ 𝐯. (6.21) 

Here is an example of such a change, showing the velocity vectors before 
and after the particle has rotated partway around the circle. 

vold

vnew

voldvnew

∆v

When 𝐯 makes its significant change, from 𝐯old to 𝐯new, it produces a change 
in 𝐯 comparable in magnitude to 𝑣. The characteristic time 𝜏 —the time 
required to make this change—is a decent fraction of a period of revolution. 
Because a full period is 2𝜋𝑟/𝑣, the characteristic time is comparable to 𝑟/𝑣. 
Using 𝜏 to represent the characteristic time, and ∼ to hide dimensionless 
prefactors, we write 𝜏 ∼ 𝑟/𝑣. 

Here’s another way to arrive at 𝜏 ∼ 𝑟/𝑣. If the triangle of 𝐯old, 𝐯new, and 
Δ𝐯 is an equilateral triangle, then it corresponds to the particle rotating 60∘ 

around the circle, which is almost exactly 1 radian. Because 1 radian cre-
ates an arc of length 𝑟 (the same proportionality tells us that 2𝜋 radians 
produces the circumference 2𝜋𝑟), the travel time is 𝑟/𝑣, and 𝜏 ∼ 𝑟/𝑣. Then 
the acceleration is roughly 𝑣2/𝑟: 

𝑣 𝑣2
𝑎 ∼ 

𝑣 = (6.22)𝜏 ∼ 𝑟/𝑣 𝑟 . 

This equation encapsulates a physical, proportional-reasoning explanation 
of 𝑎 = 𝑣2/𝑟. Namely, in circular motion, the velocity vector changes di-
rection significantly in approximately 1 radian of rotation. This motion re-
quires a time 𝜏 ∼ 𝑟/𝑣. Therefore, the circular acceleration 𝑎 contains two 
factors of 𝑣—one factor from the 𝑣 itself and one factor from the time in the 
denominator—and it contains 1/𝑟, also from the time in the denominator. 
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6.3.5 Simplifying with characteristic values: Yield of the first atomic blast
 
In Section 5.2.2, we used dimensional analysis to estimate the 
yield of an atomic blast. We accurately predicted that the blast 
energy 𝐸 is related to the blast radius 𝑅 and the air density 𝜌: 

𝐸 ∼ 
𝜌𝑅5 

R

, (6.23)
𝑡2 

where 𝑡 is the time since the blast. However, dimensional analysis, as a 
mathematical argument, does not give a physical explanation for its results, 
which can often feel like magic. Lumping explains the magic by helping 
us analyze a physical model—a model whose analysis would otherwise be 
absurd in its complexity. 

The physical model is that the blast increases the thermal energy of the 
air molecules, thus increasing the speed of sound—which is the speed at 
which the blast expands. Using this model exactly requires setting up and 
solving differential equations, as Taylor did [44]. Lumping, by turning cal-
culus into algebra, simplifies the equations without discarding their physi-
cal meaning. 

The first step is to estimate the thermal energy. It comes almost entirely 
from the hot fireball—that is, from the blast energy. This energy is spread 
unevenly over the blast, with a higher energy density nearer the blast center 
and a lower density farther away. For the lumping approximation, smear 
the blast energy 𝐸 evenly throughout a sphere of radius 𝑅. This sphere’s 
volume is comparable to 𝑅3, so the typical or characteristic energy density 
is ℰ ∼ 𝐸/𝑅3. 

The next step is to use this energy density to estimate the speed of sound 𝑐s. 

To connect this speed to the energy density ℰ, let’s convert energy per mol-
ecule into energy per volume, by multiplying 𝑘B𝑇 by the number density 𝑛 
(the number of air molecules per volume). The result is 𝑛𝑘B𝑇 , which is the 
thermal and therefore roughly the blast energy density ℰ ∼ 𝐸/𝑅3. 

As we discussed in Section 5.4.1, the speed of sound is comparable to the 
thermal speed, so 

𝑐s ∼ 
𝑘B𝑇 
𝑚 

, (6.24) 

where 𝑘B𝑇 is the approximate thermal energy of one air molecule and 𝑚 is 
the mass of one air molecule. 
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To be fair, we also multiply the denominator 𝑚 by 𝑛. This step converts 
mass per molecule into mass per volume, which gives the density 𝜌: 

mass × 
molecules mass= 

Because the energy density and therefore the sound speed decreases as 𝑅 
increases, the blast radius is not simply the speed at time 𝑡 multiplied by the 
time. But we can make a further lumping approximation: that the typical 
or characteristic speed, for the entire time 𝑡, is 𝐸/𝜌𝑅3 . In evaluating this 
speed, we’ll use the radius 𝑅 at time 𝑡 as the characteristic radius. 

blast radius⏟⏟⏟⏟⏟⏟⏟ 
𝑅 

∼ characteristic speed⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝑐s∼ 𝐸/𝜌𝑅3 

× time. (6.27)⏟
𝑡 

The solution for the blast energy 𝐸 is 𝐸 ∼ 𝜌𝑅5/𝑡2, as we found using dimen-
sional analysis. Lumping complements that mathematical reasoning with 
a physical model. 

6.4 Applying lumping to shapes 
Lumping by replacing varying quantities with their typical, or characteris-
tic, values is close to the next form of lumping: lumping shapes. Our first 
illustration is explaining a curious fact about everyday materials. 

6.4.1 Densities of liquids and solids 
Among books teaching the art of approximation, a classic is Consider a Spher-
ical Cow [22], so named because a sphere is a much simpler shape than a cow. 
An even simpler shape is a cube. Thus, a powerful form of lumping is to 
replace complex shapes by a comparably sized cube. With this idea, we can 
explain why most solids and liquids have densities between 1 and 10 times 
the density of water. 

molecule⏟⏟⏟⏟⏟ 
𝑚 

volume⏟⏟⏟⏟⏟⏟⏟ 
𝑛 

volume .⏟⏟⏟⏟⏟ 
𝜌 

(6.25) 

Therefore, the speed of sound is comparable to 𝐸/𝜌𝑅3 : 

𝑐s ∼ 
𝑛𝑘B𝑇 
𝑛𝑚 

∼ 
𝐸/𝑅3 

𝜌 
= 

𝐸 
𝜌𝑅3 

. (6.26) 

This speed is the rate at which the blast expands. 

Based on this speed, how large should the blast be after time 𝑡? 
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Each atom is a complex, ill-defined shape, but pretend that it 
is cube. Because the atoms touch, the density of the substance 
is approximately the density of one approximating cube: 

mass of the atom 𝜌 ≈ (6.28)volume of the lumped cube . 

To evaluate the numerator, use 𝐴 as the atom’s atomic mass. 
Although 𝐴 is called a mass, it is dimensionless: It is almost 
exactly the total number of protons and neutrons in the nucleus. Because 
protons and neutrons have almost the same mass, the proton mass 𝑚p can 
represent the mass of either constituent. Then the mass of one cube is 𝐴𝑚p. 

3 Å

To find the denominator, the cube’s volume, make each cube’s side be a typ-
ical atomic diameter of 𝑎 ∼ 3 ångströms. This size is based on our calcula-
tion in Section 5.5.1 of the diameter of the smallest atom, hydrogen (whose 
diameter was roughly 1 ångström). Then the density becomes 

𝐴𝑚p𝜌 ∼ (6.29)
(3 Å)3 

. 

To avoid looking up the proton mass 𝑚p, let’s multiply this fraction by 
𝑁A/𝑁A, where 𝑁A is Avogadro’s number: 

𝐴 × 𝑚p𝑁A𝜌 ∼ . (6.30)
(3Å)3 × 𝑁A 

The numerator is 𝐴 grams per mole, because 1 mole of protons (roughly, of 
hydrogen) has a mass of 1 gram. 
The denominator is roughly 18 cubic centimeters per mole: 

18 cm3
3 × 10−23 cm3 × 6×1023 mol−1 = mol . (6.31)⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 

(3 Å)3 𝑁A 

A typical solid or liquid density is then related simply to the substance’s 
atomic mass 𝐴: 

𝐴 g mol−1 𝐴 g𝜌 ∼ = (6.32)
18 cm3 mol−1 18 cm3 . 

Problem 6.13 Rounding to estimate atomic volume 
Use rounding to the nearest half power of ten (Section 6.2.2) to show that a cube 
with side length 3 ångströms has a volume of approximately 3 × 10−23 cubic cen-
timeters. 
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Many common elements have atomic masses between

18 and 180, so the densities of many liquids and solids
 
should lie between 1 and 10 grams per cubic centimeter.
 
As shown in the table, the prediction is reasonable. The
 
table even includes a joker: water is not an element! Yet
 
the density estimate is exact.
 

The table also shows why centimeters and grams are, for 
materials physics, more convenient than are meters and 
kilograms. A typical solid has a density of a few grams 
per cubic centimeter. Such modest numbers are easy to 
remember and handle. In contrast, a density of 3000 kilo-
grams per cubic meter, although mathematically equivalent, is mentally un-
wieldy. On each use, you have to think, “How many powers of ten were 
there again?” Therefore, the table gives densities in the mentally friendly 
units of grams per cubic centimeter. 

Problem 6.14 Accounting for discrepancies in the density prediction 

In the table of densities, iron (Fe) shows the biggest discrepancy between the actual 
and predicted densities, by roughly a factor of 2.5. Use that factor to make an 
improved estimate for the interatomic spacing in iron. 

Problem 6.15 Number density of conduction electrons 
Estimate the number density of free (conduction) electrons in a copper wire. 

Problem 6.16 Typical drift speed in a wire 
a.	 Use your estimate of the number density of conduction electrons in a copper 
wire (Problem 6.15) to estimate the drift speed of electrons in the wire connect-
ing a typical lamp to the wall socket. 

b.	 Estimate the time required for electrons to travel at this drift speed from the 
wall socket to the light bulb. Then how does the light bulb turn on right after 
you flip the switch? 

6.4.2 Graph lumping: The number of undergraduate students 
A particularly important shape is a graph. When applied to graphs, the idea 
of lumping shapes simplifies many a problem, making evident its essential 
features. As an example of graph lumping, we’ll estimate the number of US 
undergraduate students. Such back-of-the-envelope market-size estimates 
are valuable for business planning and for making public policy. 

𝜌 (g cm−3) 

𝐴 est. actual 

Li 7 0.4 0.5 

H2O 18 1.0 1.0 

Si 28 1.6 2.4 

Fe 56 3.1 7.9 

Hg 201 11.2 13.5 

U 238 13.3 18.7 

Au 197 10.9 19.3 
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The first step is to estimate the number of people in the United States who 
are 18, 19, 20, or 21 years old. This total provides, at least in the United 
States, the pool from which most undergraduate students come. Because 
not all 18-to-21-year-olds go to college, at the end we will multiply the total 
by the fraction of adults who are college graduates. 
Finding the exact pool size requires the birth date 
of every person in the United States. Although 
these data are collected once every decade by the 
US Census Bureau, they would only overwhelm 
us. As an approximation to the voluminous data, 
the Census Bureau also publishes the number of 
people at each age. For example, the 1991 data 

nu
m
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ye
ar

age

are the wiggly line in the graph. The left side of the graph represents the 
number of infants and toddlers in 1991, and the right side represents the 
number of older people (also in 1991). The undergraduate pool size, rep-
resenting all 18-, 19-, 20-, and 21-year-olds, is the shaded area. (The peak 
around the ages 30–35 represents the baby boomers, born in the period after 
World War Two.) 
Unfortunately, even this graph depends on the 
huge resources of the Census Bureau, so it is not 
suited for back-of-the-envelope estimates. It also 
provides little insight or transfer value. Insight 
comes from lumping: from turning the complex, 
wiggly curve into a rectangle. The rectangle’s di-
mensions can be determined without any infor-
mation from the Census Bureau. 

What are the height and width of this rectangle? 
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m
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age

The rectangle’s width is a time, so it must be a 
characteristic time related to the population. A 
good guess is the life expectancy, because the age 
distribution varies significantly over that time. In 
the United States, the life expectancy is roughly
75 years, which will be the rectangle’s width. In 

nu
m
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ye
ar 4×106/year

75 years

area = 3×108

this lumping approximation, everyone lives hap-
pily until a sudden death at his or her 75th birthday. This all-or-nothing 
reasoning is the essential characteristic of lumping, making it such a useful 
approximation. 
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The rectangle’s height can be computed from its area, which is the US popu-
lation—approximately 300 million (as we estimated in Section 6.3.1). There-
fore, the height is 4 million per year: 

area ∼ 
300 million 4 million height = = . (6.33)width 75 years year 

Based on this estimate, there should be 16 million people (in the United 
States) with the four undergraduate ages of 18, 19, 20, or 21 years. 

Not everyone in this pool is an undergraduate. Therefore, the final step is to 
account for the fraction of adults who are college graduates. In the United 
States, where education has traditionally been widely spread throughout 
the population, this fraction (or adjustment factor) is high—say, 0.5. The 
number of US undergraduates should be about 8 million. 

For comparison, the 2010 US census data gives 5.361 million enrolled in 
four-year colleges, and 4.942 million in two-year colleges, for a combined 
total of almost exactly 10 million. Our estimate, which lies halfway between 
the four-year and the combined total, is quite good! 

Even had it been terrible, with a large discrep-
ancy between the estimate and the actual num-
ber, we would still have learned useful informa-
tion about a society. As an example, let’s use the 
same method to estimate how many university 
students graduated in 1950 in the United King-

nu
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ar 800 000/year

65 years

area = 50 million
(UK in 1950)

dom. (“College” in American English and “uni-
versity” in British English are roughly equivalent.) The UK population at 
the time was 50 million. With a life expectancy of, say, 65 years, the rectan-
gle’s height is roughly 800 000 per year. If, as in the United States of today, 
50 percent of the age-eligible population goes to university, 400 000 should 
graduate each year. However, in 1950, the actual number was roughly 
17 000—more than a factor of 20 smaller than the estimate. 

Such a huge error probably does not come from the population estimate. 
Instead, the fraction of 50 percent of university participation must be far 
too high. Indeed, rather than 50 percent, the actual figure for 1950 is 3.4 
percent. The difference between 50- and 3-percent university participation 
makes the United Kingdom of 1950 a very different society from the United 
States of 2010 or even from the United Kingdom of 2010, where the fraction 
going to university is roughly 40 percent. 
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6.4.3 Cone free-fall time and distance 
For our next illustration of graph lumping, let’s turn from the social to the 
physical world, to our falling cones. For the single cone of Section 3.5.2 and 
the cone race of Section 4.3.1, we assumed that the cones made their entire 
journey at their terminal speed. But this assumption cannot be exact: Just 
after the cones are released, their fall speed is zero. Graph lumping will 
help us evaluate and refine this assumption. 

How far does the cone fall before it reaches its terminal speed? 

Taken literally, the answer is infinity, because no object reaches its termi-
nal speed. As it approaches its terminal speed, the drag and weight more 
nearly balance, the force and acceleration get closer to zero, and the speed 
changes ever more slowly. So an object can approach its terminal speed 
only ever more closely. Let’s therefore rephrase the question to ask how 
far the cone falls before it has reached a significant fraction of its terminal 
speed. In the “significant,” you can see the door through which we will 
bring in lumping. 
Here is a sketch of the actual fall speed versus time. 
At first, the speed increases rapidly. As the speed in-
creases, so does the drag. The net force and the accel-
eration fall, so the speed increases more slowly. As 
a lumping approximation, we’ll replace the smooth 
curve by a slanted and a horizontal segment. 
A partly triangular lumping approximation might 
look different from the population lumping rectan-
gles we constructed in Section 6.4.2. However, it is 
merely the integral of a rectangle: It is equivalent to 
replacing the actual, complicated acceleration by a 
rectangle representing the period of free fall. Then 
the acceleration drops abruptly to zero. 
Just as we labeled the population rectangle with its 
height and width, here we label the velocity graph 
with speeds, times, and slopes. The graph has two 
segments. The second, horizontal segment shows 
the cone’s falling at its terminal speed 𝑣term. This 
speed, as we found experimentally in Section 3.5.2, 
is roughly 1 meter per second. 

t

v(t)

lumped
v(t)
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The first, slanted segment represents free fall, as if there were no air resis-
tance. The free-fall acceleration is 𝑔 , so the free-fall velocity has slope 𝑔 : In 
1 second, the speed increases by 10 meters per second. The slanted and hor-
izontal segments meet where 𝑔𝑡 = 𝑣term. Thus, they meet at approximately 
0.1 seconds. Based on the lumping approximation, we expect the cone to 
reach a significant fraction of its terminal speed by 0.1 seconds—which is 
only 5 percent of the total fall time of 2 seconds. 

Roughly how far does the cone fall in this time? 

Use lumping again! The distance is the area of the
 
shaded triangle. The triangle’s base is 0.1 seconds,
 
and its height is the terminal speed, approximately

1 meter per second. So its area is 5 centimeters:
 

1 
2 
× 0.1 s × 1 ms−1 = 5 cm. (6.34) 

v(t)

t
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pe 10

m
s−

2 vterm ≈ 1 m s−1

0.1 s

After only 2.5 percent of its 2-meter journey, the cone has reached a sig-
nificant fraction of the terminal speed. The “always at terminal speed” ap-
proximation is quite accurate. Thanks to the lumping, we could judge the 
approximation without setting up or solving differential equations. 

Problem 6.17 Raindrop terminal speed 

Sketch the fall speed of a large raindrop versus time. Roughly how long and how 
far does it fall before it reaches (a significant fraction of) its terminal speed? 

Problem 6.18 Actual cone fall speed 

Set up and solve the differential equations for the fall of a cone with drag propor-
tional to 𝑣2 and terminal speed of 1 meter per second. What is its speed as a fraction 
of 𝑣term after the cone (a) has fallen for 0.1 seconds, or (b) has fallen 5 centimeters? 

6.4.4 How viscosity burns up energy 
Lumping is particularly useful for gaining insight into fluid flow, a subject 
where the governing equations, the Navier–Stokes equations, are so com-
plex that almost no problem has an exact solution. These equations were 
introduced in Section 3.5 to encourage you to use conservation reasoning. 
Here their specter is invoked to encourage you to use lumping. 
In everyday life, an important feature of fluid flow is drag. As we discussed 
in Section 5.3.2, drag (in steady-state flow) results from viscosity: Without 
viscosity, there can be no drag. Somehow, viscosity dissipates energy. 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

6.4 Applying lumping to shapes 219 

Using graph lumping, we can understand the mechanism of energy dissi-
pation without having to understand the detailed physics of viscosity. The 
essential physical idea is that the viscous force, a force from a neighboring 
region of fluid, slows down fast pieces of fluid and speeds up slow pieces. 

As an example, the arrows in the velocity-profile diagram 
show a fluid’s horizontal speed above a flat boundary—for 
example, the air speed above a frozen lake. Farther above 
the boundary, the arrows are longer, indicating that the fluid 

z

v

moves faster. In a high-viscosity liquid, such as honey, the viscous forces 
are large, and they force nearby regions move at nearly the same speed: The 
flow oozes. 

Here is the lumped version of the velocity profile. The vary-
ing velocity has been replaced by two rectangles correspond-
ing to two chunks of fluid. The top chunk is moving faster 
than the bottom chunk; because of the velocity difference, 
each chunk exerts a viscous force on the other. 

z

v

Let’s see what consequence this pair of forces has for the total energy of 
the chunks. To avoid cluttering the essential idea in the analysis with unit 
algebra, let’s give the chunks concrete velocities and masses in a simple 
unit system. In this unit system, both chunks will have unit mass. The top 
chunk will move at speed 6 and the bottom chunk at speed 4. 

After a long time, how will viscosity have affected the velocities of the two slabs? 

Because momentum is conserved, the final speeds sum to 10, as they do at 
the start. Because of the viscous force between the chunks, the top chunk 
slows down, and the bottom chunk speeds up. The final speeds, once vis-
cosity has done its work, literally and figuratively, are 5 and 5. 

The total kinetic energy of the two chunks starts at 26: 

0.5 × 1 × (62 + 42) = 26. (6.35) 

However, their final kinetic energy is only 25: 

0.5 × 1 × (52 + 52) = 25. (6.36) 

Simply because the velocities equalized, the kinetic energy fell! This reduc-
tion happens no matter what the initial velocities are (Problem 6.19). The 
energy difference turns into heat. Our simple physical model, based on 
lumping, is that viscosity burns up energy by equalizing velocities. 
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Problem 6.19 Generalizing the argument to other initial velocities 
Let the initial velocities of the two chunks be 𝑣1 and 𝑣2, where 𝑣1 ≠ 𝑣2. Show that 
the initial kinetic energy is greater than the final kinetic energy. 

Problem 6.20 Shortest-time path 

The classic problem in the calculus of variations is to find the 
shortest-time path for a mass sliding without friction between 
two points. This path is called the brachistochrone. A surpris-
ing conclusion of the full analysis is that this path need not be straight. You can 
make this result plausible by using shape lumping: Rather than considering all 
possible paths, consider only paths with one corner. Under what conditions is 
such a path faster than the straight path (zero corners)? 

6.4.5 Mean free path 
Lumping smooths out variation. In the famous words of Isaiah 40:4, the 
crooked shall be made straight, and the rough places plain. We’ve used this idea 
in Section 6.4.2 to simplify a function of time (population versus age) and in 
Section 6.4.4 to simplify a function of space (a velocity profile). Now we’ll 
combine both kinds of lumping to understand and estimate a mean free 
path. The mean free path is the average distance that a gas molecule travels 
before colliding with another molecule. As we will find in Section 7.3.1 us-
ing probabilistic reasoning, mean free paths determine important material 
properties, including viscosity and thermal conductivity. 
Let’s first estimate the mean free path in the simplest model: a spherical 
molecule moving in a gas of point molecules. The sphere will have radius 𝑟 
and the gas molecules a number density 𝑛. After analyzing this simplified 
situation, we’ll replace the point molecules with more realistic spherical 
molecules. 
The moving molecule has a cross-sectional area 𝜎 = 𝜋𝑟2,
 
and it sweeps out a tube with the same cross-sectional area
 
(analogous to the tube in our analysis of drag via conserva-
tion of energy in Section 3.5.1).
 

σ

mean free path λ

How far does the spherical molecule travel down the tube before it hits a point 
molecule? 

This distance is the mean free path 𝜆. However, finding it is complicated 
because the point molecules, always in motion, keep exiting and entering 
the tube. Let’s simplify. First, lump in time: Freeze the motion, and pretend 
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that the point molecules hold those positions. Then lump in space: Rather 
than spreading the molecules throughout the tube, place them at the far 
end, at a distance 𝜆 from the near end. 
The tube, whose length is the mean free path 𝜆, should be just long enough 
so that the tube contained, before lumping, one point molecule. Then, in 
the lumped model with that one molecule sitting at the end of the tube, the 
spherical molecule will hit one molecule after traveling a distance 𝜆. 
The number of molecules in the tube is 𝑛𝜎𝜆: 
number = number density⏟⏟⏟⏟⏟⏟⏟⏟⏟ × volume⏟⏟⏟⏟⏟ = 𝑛𝜎𝜆. (6.37) 

𝑛 𝜎𝜆 

Therefore, 𝜆 is determined by the requirement that 
𝑛𝜎𝜆 ∼ 1. (6.38) 

For motion through the gas of point molecules, 𝜎 is 𝜋𝑟2, so 
1𝜆 ∼ (6.39)

𝑛𝜋𝑟2 
. 

To make the model more realistic, let’s replace the point 
molecules with spherical molecules. For simplicity, and 
to model the most frequent case, these molecules will also 
have radius 𝑟. A = π(2r)2

r

r

How does this change affect the mean free path? 

Now a collision happens if the centers of two molecules approach within a 
distance 𝑑 = 2𝑟, the diameter of the sphere. Thus, 𝜎 —called the scattering 
cross section—becomes 𝜋(2𝑟)2 or 𝜋𝑑2. The mean free path is then a factor 
of 4 smaller and is 

1𝜆 ∼ (6.40)
𝑛𝜋𝑑2 

. 

Let’s evaluate 𝜆 for an air molecule traveling in air. For the diameter 𝑑, 
use the typical atomic diameter of 3 ångströms or 3 × 10−10 meters, which 
also works for small molecules (like air and water). To estimate the number 
density 𝑛, use the ideal gas law in the form that, at standard temperature 
and pressure, 1 mole occupies 22 liters. Therefore, 

1 22 ℓ = , (6.41)𝑛 6×1023 molecules 
and the mean free path is 
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𝜆 ∼ 
2.2×10−2 m3 1×	 (6.42)

6 × 1023 𝜋 × (3 × 10−10 m)2 
. 

To evaluate this expression in your head, divide the calculation into three 
steps—doing the most important first. 

1.	 Units. The numerator contains cubic meters; the denominator contains 
square meters. Their quotient is meters to the first power—as it should 
be for a mean free path. 

2.	 Powers of ten. The numerator contains −2 powers of ten. The denom-
inator contains 3 powers of ten: 23 in Avogadro’s number and −20 in 
(10−10)2. The quotient is −5 powers of ten. Along with the units, the 
expression so far is 10−5 meters. 

3.	 Everything else. The remaining factors are 
2.2 

(6.43)6 × 𝜋 × 3 × 3 
. 

The 2.2/6 is roughly 10−0.5. The three factors of 3 (one contributed by 
𝜋 ) are 101.5. Therefore, the remaining factors contribute 10−2. 

Putting the pieces together, the mean free path becomes 10−7 meters, which 
is 100 nanometers—quite close to the true value of 68 nanometers. 

Problem 6.21 Electric field due to a uniform sheet of charge 
EIn this problem, you investigate a physical model to estimate 

the electric field above a uniform sheet of charge with areal 
charge density 𝜎 . 

a. Explain why the electric field must be vertical. 

b. At a height 𝑧 above the sheet, what region of the sheet con-
tributes significantly to this field? 

c. By lumping the sheet into a point charge with the same charge as the significant 
region, estimate the electric field at a height 𝑧, and give the scaling exponent 𝑛 
in 𝐸 ∝ 𝑧𝑛. 

Confirm your result by comparing it to the prediction from dimensional analysis 
(Problem 5.34). 

Problem 6.22 Electric field inside a spherical shell 
Another puzzling electrostatic phenomenon is that the electric field from a uni-
form shell of charge is zero everywhere inside the shell. At the center, the field must 
be zero by symmetry. However, even away from the center, the field is still zero. 
Explain this phenomenon using a physical model and lumping. 
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6.4.6 Lumping the path of light bent by gravity 
Lumping, as we have seen, replaces a complex, changing process with a 
simpler, constant process. In the next example, we’ll use that simplification 
to build and analyze a physical model for the bending of starlight by the 
Sun. In Section 5.3.1, using dimensional analysis and educated guessing, 
we concluded that the bending angle is roughly 𝐺𝑚/𝑟𝑐2, where 𝑚 is the 
mass of the Sun and 𝑟 is the distance of closest approach (for a ray grazing 
the Sun, it is just the radius of the Sun). Lumping provides a physical model 
for this result; this model will, in Section 8.2.2.2, allow us to predict the 
effect of extremely strong gravitational fields. 
Imagine again a beam (or photon) of light that leaves a distant star. In its 
journey, it grazes the surface of the Sun and reaches our eye. To estimate 
the deflection angle using lumping, first identify the changing process—the 
source of the complexity. Here, the light beam deflects from its original, 
straight path and the gravitational force from the Sun changes in magnitude 
and direction as the photon travels. Therefore, calculating the deflection an-
gle requires setting up and evaluating an integral—and carefully checking 
its trigonometric factors, such as the cosines and secants. 
The antidote to complicated integrals is lumping. The 
lumping approximation simply pretends that the beam 
bends only near the Sun. In this approximation, only 
near the Sun does gravity operate. We further assume 
that, while the photon is near the Sun, its downward acceleration (the accel-
eration perpendicular to the path) is constant, rather than varying rapidly 
with position. 
The problem then simplifies to estimating the de-
flection while the beam is near the Sun. As a fur-
ther lumping approximation, let’s define “near” 
to mean “within 𝑟 on either side of the location 
of closest approach.” The justification is dimen-

r r

near
zone

sional: The only length in the problem is the dis-
tance of closest approach, which is 𝑟; therefore, “near” and “far” are defined 
relative to the characteristic distance 𝑟. 
The geometry is simplest at the point of closest approach. Therefore, let’s 
make the further lumping approximation that, although the light beam 
tracks how much downward deflection should happen, the total deflection 
happens only at the point of closest approach. 
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kink c

v↓
velocity before deflection

velocity after deflection

θ

This lumped path, instead of changing direction smoothly, has a kink (a 
corner) at the point of closest approach. 
The deflection angle, in the small-angle approximation, is the ratio of veloc-
ity components: 

𝜃 ≈ 
𝑣
𝑐
↓ , (6.44) 

where 𝑐 is the speed of light, which is the forward velocity, and 𝑣↓ is the 
accumulated downward velocity. This downward velocity comes from the 
downward acceleration due to the Sun’s gravity. 

In the exact analysis, the downward acceleration 
varies along the path. As a function of time, it 
looks like a bell curve centered at the point of 
closest approach (labeled as 𝑡 = 0, for symmetry). 
The downward velocity is the integral of (the area 
under) the entire 𝑎↓(𝑡) curve. 

Our lumping analysis replaces the entire area by 
a rectangle centered around the peak. This rec-
tangle has height 𝐺𝑚/𝑟2: the characteristic (and 
peak) downward acceleration. It has width com-
parable to 𝑟/𝑐: the time that the beam spends near 
the Sun. Therefore, its area, which is the lumping 
approximation to 𝑣↓, is roughly 𝐺𝑚/𝑟𝑐: 

t

a↓(t)area = v↓

. . .. . .

−r/c 0 +r/c

t

lumped a↓

area ∼ v↓

∼ r/c

Gm
r2

𝑣↓ ∼ characteristic downward acceleration × deflection time. (6.45) ⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝐺𝑚/𝑟𝑐 𝐺𝑚/𝑟2 ∼𝑟/𝑐 

The deflection angle is therefore comparable to 𝐺𝑚/𝑟𝑐2: 
𝑣↓

⏞𝐺𝑚/𝑟𝑐 𝐺𝑚𝜃 ∼ = (6.46)𝑐 𝑟𝑐2 
. 

The lumping argument explains, with a physical model, the deflection an-
gle that we predicted using dimensional analysis and educated guessing 
(Section 5.3.1). Lumping once again complements dimensional analysis. 

http:time.(6.45
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Problem 6.23 Sketching the actual and lumped deflection angle 
On axes for cumulative deflection 𝜃 versus distance along the beam, sketch (a) the 
actual curve, (b) the lumped curve, assuming that the deflection happens only 
while the beam is near the Sun, and (c) the lumped curve, assuming, as in the 
text, that the deflection happens only at the point of closest approach. 

6.4.7 All-or-nothing reasoning: Solid mechanics by lumping 
For estimating the bending of light, the heart of the lumping analysis was 
all-or-nothing reasoning: replacing the complex, varying downward accel-
eration with a simpler curve that was either zero or a nonzero constant. To 
practice this idea, we’ll apply it to an example from solid mechanics, also a 
subject fraught with differential equations. In particular, we’ll estimate the 
contact radius of a solid ball resting on the ground. 

We know a bit about the contact radius: In Problem 5.50, you 
used dimensional analysis to find that the contact radius 𝑟 is 
given by 

𝑟 𝑓 ( 
𝜌𝑔𝑅 

= 𝑌 
) , (6.47)𝑅 

where 𝑅 is the ball’s radius, 𝜌 is its density, 𝑌 is its Young’s 
modulus, and 𝑓 is a dimensionless function. The function 𝑓 

R

r r

is not determined by dimensional analysis, which is purely mathematical 
reasoning. Finding 𝑓 requires a physical model; the easiest way to make 
and analyze such a model is by making lumping approximations. 

Physically, the ground compresses the tip of the ball by a 
small distance 𝛿, making a flat circle of radius 𝑟 in contact 
with the ground. The ball fights back, trying to restore its 
natural, spherical shape. When the ball rests on the table, 
the restoring force equals its weight. This constraint will 
give us enough information to find the dimensionless func-
tion 𝑓 . 

The restoring force comes from the stress (or pressure) over 
δ

R

r r

the contact surface. To estimate this stress, let’s make the lumping approx-
imation that it is constant over the contact surface and equal to a typical 
or characteristic stress. This approximation is analogous to replacing the 
varying population curve with a constant value (and making a rectangle). 
With that approximation, the restoring force is 
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force ∼ typical stress × contact area. (6.48) 

We can estimate the stress based on the strain (the fractional compression). 
The stress and strain are related by the Young’s modulus 𝑌 : 

typical stress ∼ 𝑌 × typical strain. (6.49) 

The strain, like the stress, varies throughout the ball. In the lumping or 
all-or-nothing approximation, the strain becomes a characteristic or typical 
strain in a region around the contact surface, and zero outside this region. 
The typical strain is a fractional length change: 

length change 
strain = . (6.50)length 

The numerator is 𝛿: the amount by which the tip of the ball is compressed. 
The denominator is the size of the mysterious compressed region. 

How large is the compressed region? 

Because the ball’s radius or diameter changes, the compressed region might 
be the whole ball. This tempting reasoning turns out to be incorrect. To 
see why, imagine an extreme case: compressing a huge, 10-meter cube of 
rubber (rubber, because one can imagine compressing it). By pressing your 
finger onto the center of one face, you’ll indent the face by, say, 1 millimeter 
over an area of 1 square centimeter. In the notation that we use for the ball, 
𝛿 ∼ 1 millimeter, 𝑟 ∼ 1 centimeter, and 𝑅 ∼ 10 meters. 

The strained region is not the whole cube, nor any significant fraction of 
it! Rather, its radius is comparable to the radius of the contact region—a 
fingertip (𝑟 ∼ 1 centimeter). From this thought experiment, we learn that 
when the object is large enough (𝑅 ≫ 𝑟), the strained volume is related not 
to the size of the object, but rather to the size of contact region (𝑟). 

Therefore, in the estimate for the typical strain, the length in the denomina-
tor is 𝑟. The typical strain 𝜖 is then 𝛿/𝑟. 

Because the compression 𝛿, in contrast to the contact radius 𝑟 and the ball’s 
radius 𝑅, is not easily visible, let’s rewrite 𝛿 in terms of 𝑟 and 𝑅. Amazingly, 
they are related by a geometric mean, because their geometry reproduces 
the geometry of the horizon distance (Section 2.3). The compression 𝛿 is 
analogous to one’s height above sea level. The contact radius 𝑟 is analogous 
to the horizon distance. And the ball’s radius 𝑅 is analogous to the Earth’s 
radius. 
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Just as the horizon distance is roughly the geometric mean of the two sur-
rounding lengths, so should the contact radius be roughly the geometric 
mean of the compression length and the ball’s radius. On a logarithmic 
scale, 𝑟 is roughly halfway between 𝛿 and 𝑅. (Like the horizon distance, 𝑟 is 
actually halfway between 𝛿 and the diameter 2𝑅. However, the factor of 2 
does not matter to this lumping analysis.) 

δ r R

tip compression contact radius ball’s radius

Therefore, 𝛿/𝑟, which is the typical strain, is also roughly 𝑟/𝑅. 
The restoring force is therefore comparable to 𝑌𝑟3/𝑅: 

typical stress 

restoring force ∼ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ × contact area.𝑌 × typical strain (6.51) ⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 
𝑌𝑟3/𝑅 𝑟/𝑅 𝑟2 

This force balances the weight, which is comparable to 𝜌𝑔𝑅3: 
𝑌𝑟3 

∼ 𝜌𝑔𝑅3. (6.52)𝑅 

Therefore, in dimensionless form, the contact radius is given by 
1/3 

𝑅
𝑟 ∼ ( 

𝜌𝑔𝑅 
, (6.53)𝑌 

)

and the dimensionless function 𝑓 in 

𝑟 𝑓 ( 
𝜌𝑔𝑅 

= (6.54)𝑅 𝑌 ) 

is a cube root (multiplied by a dimensionless constant). 

How large is the contact radius 𝑟 in practice? 

Let’s plug in numbers for a superball (a small, highly elastic rubber ball) 
resting on the ground. The density of rubber is roughly the density of water. 
A superball is small—say, 𝑅 ∼ 1 centimeter. Its elastic modulus is roughly 
𝑌 ∼ 3 × 107 pascals. (This elastic modulus is a factor of 300 smaller than 
oak’s and almost a factor of 104 smaller than steel’s.) Then 

𝜌 𝑔 𝑅
 

⏞⏞⏞⏞⏞ × 
⏞⏞⏞⏞⏞ × 

⏞⏞⏞⏞⏞ 1/3

𝑟 103 kg/m3 10 ms−2 10−2 m⎜ ⎟ . (6.55)𝑅 

∼ ⎛
⎝ ⏟⏟⏟⏟⏟ 

⎞
⎠3 × 107 Pa

𝑌 

http:strain(6.51
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The quotient inside the parentheses is 10−5.5. Its cube root is roughly 10−2, 
so 𝑟/𝑅 is roughly 10−2, and 𝑟 is roughly 0.1 millimeters (a sheet of paper). 

From this example, we see how lumping builds on dimensional analysis. 
Dimensional analysis gave the form of the relation between 𝑟/𝑅 and 𝜌𝑔𝑅/𝑌 . 
Lumping provided a physical model that specified the particular form. 

Problem 6.24 Compression of the tip 

For the superball, estimate 𝛿, the compression of its tip when it is resting on the 
ground. 

Problem 6.25 Contact radius of a marble 
Estimate the contact radius of a small glass marble sitting on a (very) hard table. 

Problem 6.26 Energy argument 
The potential-energy density due to deforming a solid is comparable to 𝑌𝜖2. Using 
this relation, find a second explanation for why 𝑟/𝑅 is comparable to (𝜌𝑔𝑅/𝑌)1/3. 

Problem 6.27 Mountain heights 
On Earth, the tallest mountain (Everest) is 9 kilometers high. On Mars, the tallest 
mountain (Olympus) is 27 kilometers high. Make a lumped model of a mountain 
to explain the factor-of-3 difference. If the same reasoning applied to the Moon, 
how high would its tallest mountain be? Why is it so much shorter? 

Problem 6.28 Asteroid shapes 
The tallest mountain on Earth is much smaller than the Earth. Using the moun-
tain-height data of Problem 6.27, estimate the maximum radius of a planetary body 
made of rock (like the Earth or Mars) that has mountains comparable in size to the 
body. What consequence does this size have for the shapes of asteroids? 

Problem 6.29 Contact time 
Imagine a ball dropped from a height, hitting a hard table with impact speed 𝑣. 
Find the scaling exponent 𝛽 in 

𝜏𝑐s 
𝛽 

𝑅 
∼ ( 𝑐

𝑣 

s 
) , (6.56) 

where 𝜏 is the contact time and 𝑐s is the speed of sound in the ball. Then write 
𝜏 in the form 𝜏 ∼ 𝑅/𝑣effective, where 𝑣effective is a weighted geometric mean of the 
impact speed 𝑣 and the sound speed 𝑐s. 

Problem 6.30 Contact force 
For a small steel ball bouncing from a steel table with impact speed 1 meter per 
second (Problem 6.29), how large is the contact force compared to the ball’s weight? 
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6.5 Quantum mechanics 
When we introduced quantum mechanics to estimate the size of hydrogen 
(Section 5.5.1), it was an actor in dimensional analysis. There, quantum 
mechanics merely contributed a new constant of nature ℏ. This contribution 
was mathematical. By using lumping to introduce quantum mechanics, we 
will gain a physical intuition for the effect of quantum mechanics. 

6.5.1 Particle in a box: Size of neutron stars 
In mechanics, the simplest useful model is motion in a straight line at 
constant acceleration (which includes constant velocity). This model 
underlies numerous analyses—for example, the lumping analysis of a 
pendulum period (Section 6.3.3). In quantum mechanics, the simplest 
useful model is a particle confined to a box. Let’s give the particle a 
mass 𝑚 and the box a width 𝑎. 

What is the lowest possible energy of the particle—that is, its ground-state 
energy? 

box

width a

m

Because this box can be a lumping model for more complex problems, this 
energy will help us explain the binding energy of hydrogen. A lumping 
analysis starts with Heisenberg’s uncertainty principle: 

Δ𝑝Δ𝑥 ∼ ℏ. (6.57) 

Here, Δ𝑝 is the spread (the uncertainty) in the particle’s momentum, Δ𝑥 is 
the spread in its position, and ℏ is the quantum constant. If we know the po-
sition precisely (that is, if the uncertainty Δ𝑥 is tiny), then the momentum 
uncertainty Δ𝑝 must be large in order to make the product Δ𝑝Δ𝑥 compa-
rable to ℏ. In contrast, if we hardly know the position (Δ𝑥 is large), then 
the momentum uncertainty Δ𝑝 can be small. This relation is the physical 
contribution of quantum mechanics. 
Let’s apply it to the particle in the box. The particle could be anywhere in 
the box, so its position uncertainty Δ𝑥 is comparable to the box width 𝑎: 

Δ𝑥 ∼ 𝑎. (6.58) 

Because of the uncertainty principle, the consequence of confining the par-
ticle to the box implies a momentum uncertainty ℏ/𝑎: 

Δ𝑝 ∼ 
ℏ 

(6.59)Δ𝑥 
∼ 

ℏ
𝑎 . 
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This momentum corresponds to a kinetic energy 𝐸 ∼ (Δ𝑝)2/𝑚. As a conse-
quence, the particle acquires an energy, called the confinement energy: 

𝐸 ∼ 
ℏ2 

(6.60)
𝑚𝑎2 

. 

This simple result enables us to estimate the radius of a neutron star: a 
star without any nuclear fusion (which normally resists gravity) and heavy 
enough that gravity has collapsed the protons and electrons into neutrons. 
The atomic structure is gone, and the star is one giant, neutral nucleus (ex-
cept in the crust, where gravity is not strong enough to make neutrons). 

Problem 6.31 Dimensional analysis for the size of a neutron star 
Use dimensional analysis to find the radius 𝑅 of a neutron star of mass 𝑀 . 

Two physical effects compete: Gravity tries to crush the star; and quantum 
mechanics, armed with the uncertainty principle, resists by penalizing con-
finement. To begin quantifying these effects, let the star have radius 𝑅 and 
contain 𝑁 neutrons, so it has mass 𝑀 = 𝑁𝑚n. 
Gravity’s contribution to crushing the star is reflected in the star’s gravita-
tional potential energy 

. (6.61)𝐸potential ∼ 
𝐺𝑀2 

𝑅 

This energy is negative: Gravity is happier (the energy is lower) when 𝑅 is 
smaller. Here, the minus sign is incorporated into the single approximation 
sign ∼. 
For the other side of the competition, we confine each neutron to a box. To 
find the box width 𝑎, imagine the star as a three-dimensional cubic lattice of 
neutrons. Because the star contains 𝑁 neutrons, the lattice is 𝑁1/3 × 𝑁1/3 × 
𝑁1/3. Each side has length comparable to 𝑅, so 𝑎𝑁1/3 ∼ 𝑅 and 𝑎 ∼ 𝑅/𝑁1/3. 
Each neutron gets a confinement (kinetic) energy ℏ2/𝑚n𝑎2. For all the 𝑁 
neutrons together, and using 𝑎 ∼ 𝑅/𝑁1/3, 

ℏ2𝐸kinetic ∼ 𝑁 
ℏ2
𝑎2 

∼ 𝑁5/3 (6.62)
𝑚n 𝑚n𝑅2 

. 

In terms of the known masses 𝑀 and 𝑚n (instead of 𝑁 ), the total confine-
ment energy is 

(6.63)𝐸kinetic ∼ 
𝑀5/3 ℏ2 

𝑚8/3 𝑅2 . 
n 
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The kinetic energy is proportional to 𝑅−2, whereas the poten-
tial energy is proportional to 𝑅−1. On log–log axes of energy 
versus radius, the kinetic energy is a straight line with a −2 
slope, and the potential energy is a straight line with a −1 
slope. Because the slopes differ, the lines cross. The radius 
where they cross, which is roughly the radius that minimizes 
the total energy, is also roughly the radius of the neutron 
star. (We used the same reasoning in Section 4.6.1, to find 
the speed that minimized the energy required to fly.) 

KE ∝ R−2

PE ∝ R−1

Rstar

With all the constants included, the crossing happens when 𝑅 satisfies 
𝐺𝑀2 

∼ 
𝑀5/3 ℏ2 

(6.64)𝑅 𝑚8/3 𝑅2 . 
n 

The radius of the neutron star is then 

ℏ2𝑅 ∼ . (6.65)
𝐺𝑀1/3𝑚8/3 

n 

If the Sun, with a mass of 2×1030 kilograms, became a neutron star, it would 
have a radius of roughly 3 kilometers: 

(10−34 kg m2 s−1)2 

𝑅 ∼ 
7×10−11 kg−1 m3 s−2 × (2×1030 kg)1/3 × (1.6 × 10−27 kg)8/3 (6.66) 

∼ 3 km. 

The true neutron-star radius for the Sun, after including the complicated 
physics of a varying density and pressure, is approximately 10 kilometers. 
(In reality, the Sun’s gravity wouldn’t be strong enough to crush the elec-
trons and protons into neutrons, and it would end up as a white dwarf 
rather than a neutron star. However, Sirius, the subject of Problem 6.32, is 
massive enough.) 
Here is a friendly numerical form that incorporates the 10-kilometer infor-
mation. It makes explicit the scaling relation between the radius and the 
mass, and it measures mass in the convenient units of the solar mass. 

1/3
𝑅 ≈ 10 km × ( 

𝑀Sun . (6.67)𝑀 
)

Our analysis, which used several lumping approximations and neglected 
many dimensionless constants throughout, predicted a prefactor of 3 kilo-
meters instead of 10 kilometers. An error of a factor of 3 is a worthwhile 
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tradeoff. We avoid the complicated analysis of a quantum fluid of electrons, 
protons, and neutrons, and still gain insight into the essential physical idea: 
The size of a neutron star results from a competition between gravity and 
quantum mechanics. (You will find many insightful astrophysical scalings 
in an article on the “Astronomical reach of fundamental physics” [5].) 

Problem 6.32 Sirius as a neutron star 
Sirius, the brightest star in the night sky, has a mass of 4 × 1030 kilograms. What 
would be its radius as a neutron star? 

6.5.2 Hydrogen by lumping 
Having practiced quantum mechanics and lumping in the large (a neutron 
star), let’s go to the small: We’ll use lumping to complement the dimen-
sional-analysis estimate of the size of hydrogen in Section 5.5.1. 

Its size is the radius of the orbit with the lowest energy. Because the energy 
is a sum of the potential energy from the electrostatic attraction and the 
kinetic energy from quantum mechanics, hydrogen is analogous to a neu-
tron star, where quantum mechanics competes instead against gravitation. 
Partly because electrostatics is much stronger than gravity (Problem 6.34), 
hydrogen is very tiny. 

For now, let the hydrogen atom have an unknown radius 𝑟.
 
As a lumping approximation, the complicated electrostatic
 
potential becomes a box of width 𝑟. Then the electron’s
 
momentum uncertainty is Δ𝑝 ∼ ℏ/𝑟 and its confinement
 
energy is ℏ2/𝑚e𝑟2:
 

(6.68)𝐸kinetic ∼ 
(Δ𝑝)2 

∼ 
𝑚
ℏ
e

2

𝑟2 
.𝑚e 

V(r) ∝ 1
r

V lumped

r

This energy competes against the electrostatic energy, whose estimate also 
requires a lumping approximation. For in quantum mechanics, an electron 
is not at any definite location. Depending on your interpretation of quan-
tum mechanics, and speaking roughly, it is either smeared over the box, 
or it has a probability of being anywhere in the box. On either interpreta-
tion, calculating the potential energy requires an integral. However, we can 
approximate it by using lumping: The electron’s typical, or characteristic, 
distance from the proton is simply 𝑟, the radius of hydrogen (which is the 
size of the lumping box). 
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Then the potential energy is the electrostatic energy of a proton and electron 
separated by 𝑟: 

𝑒2𝐸potential ∼ − (6.69)4𝜋𝜖0𝑟 
. 

The total energy is their sum 

𝑒2 ℏ2𝐸 = 𝐸potential + 𝐸kinetic ∼ − (6.70)4𝜋𝜖0𝑟 
+ 

𝑚e𝑟2 
. 

The electron adjusts 𝑟 to minimize this energy. As we 
learned in the analysis of lift (Section 4.6.1), when two 
terms with different scaling exponents compete, the min-
imum occurs where the terms are comparable. (In Sec-
tion 8.3.2.2, we’ll return to this example with the addi-
tional tool of easy cases and also sketch the energies on 
log–log axes.) Using the Bohr radius 𝑎0 as the separation 
of minimum energy, comparability means 

E

r

mostly KE

mostly PE

a0

𝑒2 ℏ2∼ . (6.71)
4𝜋𝜖0𝑎0 𝑚e𝑎2⏟⏟⏟⏟⏟ 0⏟
 
𝐸potential 𝐸kinetic
 

The Bohr radius is therefore 
ℏ2𝑎0 ∼ (6.72)

𝑚e(𝑒2/4𝜋𝜖0)
, 

as we found in Section 5.5.1 using dimensional analysis. Now we also get 
a physical model: The size of hydrogen results from competition between 
electrostatics and quantum mechanics. 

Problem 6.33 Minimizing the energy in hydrogen using symmetry 
Use symmetry to find the minimum-energy separation in hydrogen, where the 
total energy has the form 

𝐴 

𝑟2 
− 𝐵 

(6.73)𝑟 . 

(See Section 3.2.3 for related examples.) 

Problem 6.34 Electrostatics versus gravitation 

Estimate the ratio of the gravitational to the electrostatic force in hydrogen. What 
are the similarities and differences between this estimate and the estimate that you 
made in Problem 2.15? 
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6.6 Summary and further problems 
Lumping is our first tool for discarding complexity with loss of information. 
By doing so, it simplifies complicated problems where our previous set of 
tools could not. Curves become straight lines, calculus becomes algebra, 
and even quantum mechanics becomes comprehensible. 

Problem 6.35 Precession of the equinoxes 

F2

F1

Because the Earth is oblate (Problem 5.46), and thus 
has a bit of fat near the equator, and because its rota-
tion axis is tilted relative to the Earth’s orbital plane, 
the Sun and the Moon each exert a slight torque on 
the Earth. This torque slowly rotates (precesses) the 
Earth’s axis of rotation (so the north star will not al-
ways be the north star). 
a. Explain why 𝐹1 and 𝐹2, the gravitational forces 
on the two bulges, are almost exactly equal in di-
rection but not equal in magnitude. 

b. Use lumping to find the scaling exponents 𝑥 and 𝑦 in 

torque ∝ 𝑚𝑥𝑙𝑦, (6.74) 

where 𝑚 is the mass of the object (either the Sun or Moon) and 𝑙 is its distance 
from the Earth. Then estimate the ratio 

torque from the Sun 
torque from the Moon 

. (6.75) 

c. By including the constants of proportionality, estimate the total torque and the 
precession rate. 

Problem 6.36 Graph lumping in reverse 
In a constant-temperature (isothermal) atmosphere, which isn’t a terrible approxi-
mation to the actual atmosphere, the air density falls exponentially with height: 

𝜌 = 𝜌0𝑒−𝑧/𝐻, (6.76) 

where 𝑧 is the height above sea level, 𝜌0 is the density at sea level, and 𝐻 is the 
scale height of the atmosphere. We estimated 𝐻 in Section 5.4.1 using dimensional 
analysis; in this problem, you’ll estimate it by using lumping in reverse. 
a. Sketch 𝜌(𝑧) versus 𝑧 as given above. On the same graph, sketch a lumped 𝜌(𝑧) 
that represents a sea-level-density atmosphere for 𝑧 < 𝐻 and zero density for 
𝑧 ≥ 𝐻 . Ensure that your lumping rectangle has the same area as the exponen-
tially decaying 𝜌(𝑧) curve. 

b. Use your lumping rectangle and the sea-level pressure 𝑝0 to estimate 𝐻 . Then 
estimate the relative density at the top of Mount Everest (roughly 9 kilometers). 
Check your estimate by looking up the actual air density on Mount Everest. 
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Our previous tool, lumping, helps us simplify by discarding less important 
information. Our next tool, probabilistic reasoning, helps us when our in-
formation is already incomplete—when we’ve discarded even the chance 
or the wish to collect the missing information. 

7.1 Probability as degree of belief: Bayesian probability 
The essential concept in using probability to simplify the world is that prob-
ability is a degree of belief. Therefore, a probability is based on our knowl-
edge, and it changes when our knowledge changes. 

7.1.1 Is it my telephone number? 
Here is an example from soon after I had moved to England. I was talking 
to a friend on the phone, of the old-fashioned variety with wires connecting 
it to the wall. David needed to call me back. However, having just moved 
to the apartment, I was unsure of my phone number; plus, for anyone used 
to American phone numbers, British phone numbers have a strange and 
hard-to-remember format. I had a reasonably likely guess, which I gave 
David so that he could call me back. After I hung up, I tested my guess by 
picking up my phone and dialing my guess—and got a busy signal. 
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Given this experimental evidence, how sure am I that the candidate number is my 
phone number? Quantitatively, what odds should I give? 

This question makes no sense if probability is seen as long-run frequency. 
In that view, the probability of a coin turning up heads is 1/2 because 1/2 
is the limiting proportion of heads in an ever-longer series of tosses. How-
ever, for evaluating the plausibility of the phone number, this interpreta-
tion—called the frequentist interpretation—cannot apply, because there is 
no repeated experiment. 

The frequentist interpretation gets stuck because it places probability in 
the physical system itself. The alternative—that probability reflects the in-
completeness of our knowledge—is known as the Bayesian interpretation 
of probability. It is the interpretation suited for mastering complexity. A 
book-length discussion and application of this fundamental point is Edwin 
Jaynes’s Probability Theory: The Logic of Science [26]. 

The Bayesian interpretation is based on one simple idea: A probability re-
flects our degree of belief in a hypothesis. Probabilities are therefore sub-
jective: Someone with different knowledge will have different probabili-
ties. Thus, by collecting evidence, our degrees of belief change. Evidence 
changes probabilities. 

In the phone-number problem, what is the hypothesis and what is the evidence? 

The hypothesis—often denoted 𝐻—is the statement about the world whose 
credibility we would like to judge. Here, 

𝐻 ≡ My phone-number guess is correct. (7.1) 

The evidence—often denoted 𝐸 or 𝐷 (for data)—is the information that we 
collect, obtain, or learn and then use to judge the hypothesis. It augments 
our knowledge. Here, 𝐸 is the result of the experiment: 

𝐸 ≡ Dialing my guess gave a busy signal. (7.2) 

Any hypothesis has an initial probability Pr (𝐻). This probability is called 
the prior probability, because it is the probability prior to, or before, incor-
porating the evidence. After learning the evidence 𝐸, the hypothesis has a 
new probability Pr (𝐻 ∣ 𝐸): the probability of the hypothesis 𝐻 given—that 
is, upon assuming—the evidence 𝐸. This probability is called the posterior 
probability, because it is the probability, or degree of belief, after including 
the evidence. 
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The recipe for using evidence to update probabilities is Bayes’ theorem: 

Pr (𝐻 ∣ 𝐸) ∝ Pr (𝐻) × Pr (𝐸 ∣ 𝐻). (7.3) 

The new factor, the probability Pr (𝐸 ∣ 𝐻)—the probability of the evidence 
given the hypothesis—is called the likelihood. It measures how well the 
candidate theory (the hypothesis) explains the evidence. Bayes’ theorem 
then says that 

posterior probability ∝ prior probability × ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟explanatory power. (7.4)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
Pr(𝐻 | 𝐸) Pr(𝐻) Pr(𝐸 | 𝐻) 

(The constant of proportionality is chosen so that the posterior probabilities 
for all the competing hypotheses add to 1.) Both probabilities on the right 
are necessary. Without the likelihood, we could not change our probabili-
ties. Without the prior probability, we would always prefer the hypothesis 
with the maximum likelihood, no matter how contrived or post hoc. 

In a frequent use of Bayes’ theorem, there are only two hypotheses, 𝐻 and 
its negation 𝐻 . In this problem, 𝐻 is the statement that my guess is wrong. 
With only two hypotheses, a compact form of Bayes’ theorem uses odds 
instead of probabilities, thereby avoiding the constant of proportionality: 

Pr (𝐸 ∣ 𝐻)
posterior odds = prior odds × (7.5)⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ Pr (𝐸 ∣ 𝐻) 

. 
O(𝐻 | 𝐸) O(𝐻) 

The odds 𝑂 are related to the probability 𝑝 by 𝑂 = 𝑝/(1 − 𝑝). For example, 
a probability of 𝑝 = 2/3 corresponds to an odds of 2—often written as 2:1 
and read as “2-to-1 odds.” 

Problem 7.1 Converting probabilities to odds 
Convert the following probabilities to odds: (a) 0.01, (b) 0.9, (c) 0.75, and (d) 0.3. 

Problem 7.2 Converting odds to probabilities 
Convert the following odds to probabilities: (a) 3, (b) 1/3, (c) 1:9, and (d) 4-to-1. 

The ratio Pr (𝐸 ∣ 𝐻)/Pr (𝐸 ∣ 𝐻) is called the likelihood ratio. Its numerator 
measures how well the hypothesis 𝐻 explains the evidence 𝐸; its denomi-
nator measures how well the contrary hypothesis 𝐻 explains the same ev-
idence. So their ratio measures the relative explanatory power of the two 
hypotheses. Bayes’ theorem, in the odds form, is simple: 

updated odds = initial odds × relative explanatory power. (7.6) 
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Let’s use Bayes’ theorem to judge my phone-number guess. Before the ex-
periment, I was not too sure of the phone number; Pr (𝐻) is perhaps 1/2, 
making O(𝐻) = 1. In the likelihood ratio, the numerator Pr (𝐸 ∣ 𝐻) is the 
probability of getting a busy signal assuming (“given”) that my guess is cor-
rect. Because I would be dialing my own phone using my phone, I would 
definitely get a busy signal. Thus, Pr (𝐸 ∣ 𝐻) = 1: The hypothesis of a cor-
rect guess (𝐻 ) explains the data as well as possible. 

The trickier estimate is the denominator Pr (𝐸 ∣ 𝐻): the probability of get-
ting a busy signal assuming that my guess is incorrect. I’ll assume that my 
guess is still a valid phone number (I nowadays rarely get the recorded mes-
sage saying that I have dialed an invalid number). Then I would be dialing 
a random person’s phone. Thus, Pr (𝐸 ∣ 𝐻) is the probability that a random 
valid phone is busy. It is probably similar to the fraction of the day that my 
own phone is busy. In my household, the phone is in use for 0.5 hours in a 
24-hour day, and the busy fraction could be 0.5/24. 

However, that estimate uses an overly long time, 24 hours, for the denomi-
nator. If I do the experiment at 3 am and my guess is wrong, I would wake 
up an innocent bystander. Furthermore, I am not often on the phone at 
3 am. A more reasonable denominator is 10 hours (9 am to 7 pm), making 
the busy fraction and the likelihood Pr (𝐸 ∣ 𝐻) roughly 0.05. An incorrect 
guess (𝐻 ) is a lousy explanation for the data. 

The relative explanatory power of 𝐻 and 𝐻 , which is measured by the like-
lihood ratio, is roughly 20: 

Pr (𝐸 ∣ 𝐻) 1∼ 0.05 
= 20. (7.7)

Pr (𝐸 ∣ 𝐻) 

Because the prior odds were 1 to 1, the updated, posterior odds are 20 to 1: 

posterior odds = prior odds × likelihood ratio ∼ 20. (7.8)⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟
 
O(𝐻|𝐸)∼20 O(𝐻)∼1 Pr(𝐸 | 𝐻) / Pr(𝐸 | 𝐻) ∼ 20
 

My guess has become very likely—and it turned out to be correct. 

Problem 7.3 PKU testing 
In most American states and many countries, newborn babies are tested for the 
metabolic defect phenylketonuria (PKU). The prior odds of having PKU are about 
1 in 10 000. The test gives a false-positive result 0.23 percent of the time; it gives a 
false-negative result 0.3 percent of the time. What are Pr (PKU ∣ positive test) and 
Pr (PKU ∣ negative test)? 
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7.2 Plausible ranges: Why divide and conquer works 
The Bayesian understanding of probability as degree of belief will show 
us why divide-and-conquer reasoning (Chapter 1) works. We’ll see how it 
increases our confidence in an estimate and decreases our uncertainty as 
we analyze a divide-and-conquer estimate in slow motion. 

7.2.1 Land area of the United Kingdom 
The estimate will be the land area of the United Kingdom, which is where 
I was born and later spent many years. So I have some implicit knowledge 
of the area, but I don’t know it explicitly. The estimate therefore serves as 
a model for the common situation where we know more than we think we 
do and need to bring out and use that knowledge. 
To make the initial estimate, the baseline against which to compare the di-
vide-and-conquer estimate, I talk to my gut using the rubric of Section 1.6. 
For the lower end of my range, 104 square kilometers feels right: I would 
be fairly surprised if the area were smaller. For the upper end, 107 square 
kilometers feels right: I would be fairly surprised if the area were larger. 
Combining the endpoints, I would be mildly surprised if the area were 
smaller than 104 square kilometers or greater than 107 square kilometers. 
The wide range, spanning three orders of magnitude, reflects the difficulty 
of estimating an area without using divide-and-conquer reasoning. 
My confidence in the gut estimate is my probability for the hypothesis 𝐻 : 

𝐻 ≡ The UK’s land area lies in the range 104…107 km2 . (7.9) 

This probability assumes, or is based on, my background knowledge 𝐾 : 
𝐾 ≡ what I know about the area before using divide and conquer. (7.10) 

My confidence or degree of belief in the guess is the conditional probability
Pr (𝐻 ∣ 𝐾): the probability that the area lies in the range, based on my knowl-
edge before applying divide-and-conquer reasoning. Alas, no algorithm is 
known for computing a probability based on such complicated background 
information. The best that we can do is to introspect: to hold a further gut 
discussion. This discussion concerns not the area itself, but rather the de-
gree of belief about the range 104…107 square kilometers. 
My gut chose the range for which I would feel mild surprise, but not shock, 
to learn that the area lies outside it. The surprise implies that the probability
Pr (𝐻 ∣ 𝐾) is larger than 1/2: If Pr (𝐻 ∣ 𝐾) were less than 1/2, I would be 
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surprised to find the
suggests that
like . The corresponding

Pr (𝐻 ∣ 𝐾)
area inside the range. The mildness of
is not much larger than 1/2

the surprise

2/3 2
. The

1
probability feels

odds are 2:1; I’d give -to- odds that the area
lies within the plausible range. With a further assumption of symmetry,
so that the area’s falling below and above the range are equally likely, the
plausible range represents the following probabilities:

104 km2

p ≈ 1/6

107 km2

p ≈ 2/3 p ≈ 1/6
plausible range

where the wavy lines at the ends indicate that the left and right ranges ex-
tend down to zero and up to infinity, respectively.
Now let’s see how a divide-and-conquer estimate changes
the plausible range. To make this estimate, lump the area
into a rectangle with the same area and aspect ratio as the
United Kingdom. My own best-guess rectangle is super-
imposed on the map outline of the United Kingdom. Its
area is the product of its width and height. Then the area
estimate divides into two simpler estimates.
1. Lumped width. Before I ask my gut for the plausible
range for the width, I prepare by reviewing my knowl-
edge of the width. Crossing the United Kingdom in
t
4
he south, say from London to Cornwall, takes maybe
hours by car. But much of the United Kingdom is
thinner, so the average, or lumped, width corresponds
to maybe hours of driving. My gut is content with
the range miles or kilometers:

3
150…250 240…400

UK

Ireland

width

he
ig

ht
240 km

p ≈ 1/6

400 km

p ≈ 2/3 p ≈ 1/6

plausible range

On a logarithmic scale, which is the correct scale for positive quantities
such as the width and height, the midpoint of the range is
or 310 kilometers. It is my best estimate of the width.

2. Lumped height. The train journey from London in the south of England
to Edinburgh

5
in Scotland, in

80
the northern part of the United Kingdom,

takes about hours at, say, miles per hour. In addition to these
miles, there’s more latitude in Scotland north of Edinburgh and some

400

in England south of London. Thus, my gut estimate for the height of

240 × 400
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the lumping rectangle is 500 miles. This distance is the midpoint of my 
plausible range for the height. 

The estimate feels accurate to plus or minus 20 percent (roughly ±100 
miles). On a logarithmic (or multiplicative) scale, the range would be 
roughly a factor of 1.2 on either side of midpoint: 

420 … 600 miles. (7.11) 
500/1.2 500×1.2 
⏟ ⏟ 

(A more accurate value for 500/1.2 is 417, but there’s little reason to 
strive for such accuracy when these endpoints are rough estimates any-
way.) In metric units, the range is 670…960 kilometers, with a midpoint 
of 800 kilometers. Here is its probability interpretation: 

670 km

p ≈ 1/6

960 km

p ≈ 2/3 p ≈ 1/6

plausible range

The next step is to combine the plausible ranges for the height and 
the width in order to make the plausible range for the area. A first 
approach, because the area is the product of the width and height, 
is simply to multiply the endpoints of the width and height ranges: 

𝐴min ≈ 240 km × 670 km ≈ 160 000 km2; 
(7.12)

𝐴max ≈ 400 km × 960 km ≈ 380 000 km2. 

The geometric mean (the midpoint) of these endpoints is 250 000 
square kilometers. 

Although reasonable, this approach overestimates the width of 
the plausible range—a mistake that we’ll correct shortly. How-
ever, even this overestimated range spans only a factor of 2.4, whereas my 
starting range of 104…107 square kilometers spans a factor of 1000. Di-
vide-and-conquer reasoning has significantly narrowed my plausible range 
by replacing a quantity about which I have vague knowledge, namely the 
area, with quantities about which I have more precise knowledge. 

240 km

67
0

km

Amin

400 km

96
0

km

Amax

The second bonus is that subdividing into many quantities carries only a 
small penalty, smaller than suggested by simply multiplying the endpoints. 
Multiplying the endpoints produces a range whose width is the product of 
the two widths. But this width assumes the worst. To see how, imagine an 
extreme case: estimating a quantity that is the product of ten independent 
factors, each of which you know to within a factor of 2 (in other words, each 
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plausible range spans a factor of 4). Does the plausible range for the final 
quantity span a factor of 410 (approximately 106)? That conclusion is terribly 
pessimistic. More likely, several of the ten estimates will be too large and 
several will be too small, allowing many errors to cancel. 
Correctly computing the plausible range for the area requires a complete 
probabilistic description of the plausible ranges for the width and height. 
With it we could compute the probability of each possible product. That 
description is, somewhere, available to the person giving the range. But 
no one knows how to deduce such a complete set of probabilities based on 
the complex, diffuse, and seemingly contradictory information lodged in a 
human mind. 
A simple solution is to specify a reasonable probability distribution. We’ll 
use the log-normal distribution. This choice means that, on a logarithmic 
scale, the probability distribution is a normal distribution, also known as a 
Gaussian distribution. 
Here’s the log-normal distribution for my gut estimate 
of the height of the UK lumping rectangle. The horizon-
tal axis is logarithmic: Distances correspond to ratios 
rather than differences. Therefore, 800 rather than 815 
kilometers lies halfway between 670 and 960 kilometers. 
These endpoints are a factor of 1.2 smaller or larger than 

670 800 960

p ≈ 2
3

h (km)

the midpoint. The peak at 800 kilometers reflects my belief that 800 kilome-
ters is the best guess. The shaded area of 2/3 quantifies my confidence that 
the true height lies in the range 670…960 kilometers. 
We use the log-normal distribution for several reasons. First, our mental 
hardware compares quantities using ratio rather than absolute difference. 
(By “quantity,” I mean inherently positive values, such as distance, rather 
than signed values such as position.) In short, our hardware places quan-
tities on a logarithmic scale. To represent our thinking, we therefore place 
the distribution on a logarithmic scale. 
Second, the normal distribution, which has only two parameters (midpoint 
and width), is simple to describe. This simplicity helps us when we trans-
late our internal gut knowledge into the distribution’s parameters. From 
our gut estimates of the lower and upper endpoints, we just find the cor-
responding midpoint and width (on a logarithmic scale!): The midpoint is 
the geometric mean of the two endpoints, and the width is the square root 
of the ratio between the upper and lower endpoints. 
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Third, normal distributions combine simply. When we add two quantities 
represented by a normal distribution, their sum is also represented by a 
normal distribution. 
On the other hand, the normal distribution does not represent all aspects 
of our gut knowledge. In particular, the tails of the normal distribution 
are too thin, reflecting an unrealistically high confidence that our estimate 
does not contain a huge error. Fortunately, for our analyses, this problem is 
not so significant, because we will concern ourselves with the location and 
width of the central region, and not take the thin tails too seriously. With 
that caveat, we’ll represent our plausible range as a normal distribution on 
a logarithmic scale: a log-normal distribution. 
Here is the other log-normal distribution, for the width 
of the UK lumping rectangle. The shaded range is the 
so-called one-sigma range 𝜇−𝜎 to 𝜇+𝜎 , where 𝜇 is the 
midpoint (here, 310 kilometers) and 𝜎 is the width, mea-
sured as a distance on a logarithmic scale. In a normal 
distribution, the one-sigma range contains 68 percent 240 310 400

p ≈ 2
3

w (km)

of the probability—conveniently close to 2/3. When we ask our plausible 
ranges to contain a 2/3 probability, we are estimating a one-sigma range. 
The two log-normal distributions supply the probabilistic description re-
quired to combine the plausible ranges. The rules of probability theory 
(Problem 7.5) produce the following two-part recipe. 
1.	 The midpoint of the plausible range for the area 𝐴 is the product of the 
midpoint of the plausible ranges for ℎ and 𝑤. Here, the height midpoint 
is 800 kilometers and the width midpoint is 310 kilometers, so the area 
midpoint is roughly 250 000 square kilometers: 

800 km × 310 km ≈ 250 000 km2. (7.13) 
ℎ 𝑤 

⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ 

2.	 To compute the plausible range’s width or half width, first express the 
individual half widths (the 𝜎 values) in logarithmic units. Convenient 
units include factors of 10, also known as bels, or the even-more-conve-
nient decibels. A decibel, whose abbreviation is dB, is one-tenth of a 
factor of 10. Here is the conversion between a factor 𝑓 and decibels: 
number of decibels = 10 log10 𝑓 .	 (7.14) 

For example, a factor of 3 is close to 5 decibels (because 3 is almost 
one-half of a power of ten), and a factor of 2 is almost exactly 3 decibels. 
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(These decibels are slightly more general than the acoustic decibels intro-
duced in Problem 3.10: Acoustic decibels measure energy flux relative 
to a reference value, usually 10−12 watts per square meter. Both kinds 
of decibels measure factors of 10, but the decibels here have no implicit 
reference value.) 

In decibels, bels, or any logarithmic unit, the half width
 
(the 𝜎 ) of the product’s range is the Pythagorean sum
 
of the individual half widths (the 𝜎 values). Using 𝜎𝑥
 

to represent the half width of the plausible range for
 
the quantity 𝑥, the recipe is
 

𝜎𝐴 = 𝜎ℎ
2 + 𝜎 𝑤

2 . (7.15) width of w’s range

w
id

th
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h’
s
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ng

e

width
of A’s range

Let’s apply this recipe to our example. The plausible range for the height 
(ℎ) was 800 kilometers give or take a factor of 1.2. On a logarithmic scale, 
distances are measured by ratios or factors, so think of a range as “give or 
take a factor of” rather than as “plus or minus” (a description that would 
be appropriate on a linear scale). A factor of 1.2 is about ±0.8 decibels: 

10 log10 1.2 ≈ 0.8. (7.16) 

Therefore, 𝜎ℎ ≈ 0.8 decibels. 

The plausible range for the width (𝑤) was roughly 310 kilometers give or 
take a factor of 1.3. A factor of 1.3 is ±1.1 decibels: 

10 log10 1.3 ≈ 1.1. (7.17) 

0.82 + 1.12 ≈ 1.4. (7.18) 

Therefore, 

The Pythagorean sum of 

decibels.
≈ 1.1 𝑤𝜎

𝜎ℎ and 𝜎𝑤 is approximately 1.4 decibels:
 

As a factor, 1.4 decibels is, coincidentally, approximately a factor of 1.4: 

101.4/10 ≈ 1.4. (7.19) 

Because the midpoint of the plausible range is 250 000 kilometers, the UK 
land area should be 250 000 square kilometers give or take a factor of 1.4. 
Retaining a bit more accuracy, it is a factor of 1.37. 

180 000 … 250 000 … 340 000 km2 (7.20)⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ . 
/1.37 midpoint ×1.37 

As a probability bar, the range is 
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180 000 km2

p ≈ 1/6

340 000 km2

p ≈ 2/3 p ≈ 1/6

250 000 km2

The true area is 243 610 square kilometers. This area is comfortably in my 
predicted range and surprisingly close to the midpoint. 

How surprising is the accuracy of the estimate? 

The surprise can be quantified with a probability: the probability that the 
true value would be closer to the midpoint (the best estimate) than 243 610 
square kilometers is. Here, 243 610 is 2.6 percent or a factor of 1.026 smaller 
than 250 000. The probability that the true value would be within a factor 
of 1.026 (on either side) of the midpoint is the tiny shaded region of the 
log-normal distribution. 

180 250 340 A (103 km2)

The region is almost exactly a rectangle, so its area is approximately its 

1/ 2𝜋 units (in dimensionless form), this height is 
height multiplied by its width. The height is the peak height of a normal 
distribution. In 𝜎 = 1 . 
The width of the shaded region, also in 𝜎 = 1 units, is the ratio 

2 × 
dB equivalent for a factor of 1.026 

(7.21)dB equivalent for a factor of 1.37 
, 

which is approximately 

0.16/ 2𝜋 ity is approximately 
tends equally on both sides of the peak.) Therefore, the shaded probabil-

. (The factor of 0.16 2 arises because the region ex-

or only 0.07. I am surprised, but encour-
aged, by the high accuracy of my estimate for the UK’s land area. Once 
again, many individual errors—for example, in estimating journey times 
and speeds—have canceled out. 

Problem 7.4 Volume of a room 

Estimate the volume of your favorite room, comparing your plausible ranges be-
fore and after using divide-and-conquer reasoning. 

Problem 7.5 Justifying the recipe for combining ranges 
Use Bayes’ theorem to justify the recipe for combining plausible ranges. 
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Problem 7.6 Practice combining plausible ranges 
You are trying to estimate the area of a rectangular field. Your plausible ranges for 
its width and length are 1…10 meters 10…100 meters, respectively. 

a. What are the midpoints of the two plausible ranges? 

b. What is the midpoint of the plausible range for the area? 

c.	 What is the too-pessimistic range for the area, obtained by multiplying the cor-
responding endpoints? 

d. What is the actual plausible range for the area, based on combining log-normal 
distributions? This range should be narrower than the pessimistic range in 
part (c)! 

e.	 How do the results change if the ranges are instead 2…20 meters for the width 
and 20…200 meters for the length? 

Problem 7.7 Area of A4 paper 
If you have a sheet of standard European (A4) paper handy, either in reality or 
mentally, find your plausible range for its area 𝐴 by gut estimating its length and 
width (without using a ruler). Then compare your best estimate (the midpoint of 
your range) to the official area of A𝑛 paper, which is 2−𝑛 square meters. 

Problem 7.8 Estimating a mass 
In trying to estimate the mass of an object, your plausible range for its density is
1…5 grams per cubic centimeter and for its volume is 10…50 cubic centimeters. 
What is (roughly) your plausible range for its mass? 

Problem 7.9 Which is the wider range? 
Suppose that your knowledge of the quantities 𝑎, 𝑏, and 𝑐 is given by these plausi-
ble ranges: 

𝑎 = 1…10
 

𝑏 = 1…10 (7.22)
 

𝑐 = 1…10.
 

Which quantity—𝑎𝑏𝑐 or 𝑎2𝑏—has the wider plausible range? 

Problem 7.10 Handling division 

If a quantity 𝑎 has the plausible range 1…4, and the quantity 𝑏 has the plausible 
range 10…40, what are the plausible ranges for 𝑎𝑏 and for 𝑎/𝑏? 

7.2.2 Finding one-sigma endpoints before the midpoint 
With our understanding of probability, we can explain two curious and 
seemingly arbitrary features of how we make gut estimates (Section 1.6). 
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First, we learned not to ask our gut about its best estimate. Rather, we ask 
about its lower and upper endpoints, from which we find the best estimate 
as their midpoint. Second, in finding the endpoints, the standard we use 
is “mildly surprised”: We should be mildly surprised if the true value lies 
outside the endpoints. Quantitatively, “mild surprise” now means that the 
probability should 2/3 that the true value lies between the endpoints. 

The first feature, that we estimate the endpoints 
rather than the midpoint directly, is explained by 
the shape of the log-normal distribution. Imag-
ine trying to locate its midpoint by offering your 
gut candidate midpoints. The distribution is flat 
at the midpoint, so the probability hardly varies 

µ − σ µ + σµ

p ≈ 2
3

zero slope

as the candidates change. Thus, your gut will answer with almost identical 
sensations of ease over a wide range around the midpoint. As a result, you 
cannot easily extract a decent midpoint estimate. 

The solution to this problem explains the second curious feature: why the 
plausible range should enclose a probability of 2/3. The solution is to esti-
mate the location of the steepest places on the curve. Those spots are the 
points of maximum slope (in absolute value). Around these values, the 
probability changes most rapidly and so does the sensation of ease. 

1𝑝(𝑥) = 
2𝜋 

𝑒−𝑥2/2, (7.23) 

If we use the most convenient logarithmic units, 
where the midpoint 𝜇 is 0 and the half width 𝜎 is 
1, then the log-normal distribution becomes the 
reasonably simple form 

µ − σ µ + σµ

p ≈ 2
3

max. slopemax. slope

where 𝑥 measures half widths away from the peak. Its slope 𝑝′(𝑥) is a maxi-
mum where the derivative of 𝑝′(𝑥), namely 𝑝″(𝑥), is zero. These points are 
also called the inflection or zero-curvature points. (Where the curvature is 
zero, the curve is straight, so the dashed tangent lines pass through it.) 

Ignoring dimensionless prefactors, 

𝑝′(𝑥) ∼ −𝑥𝑒−𝑥2/2; 
(7.24)

𝑝″(𝑥) ∼ (𝑥2 − 1)𝑒−𝑥2/2. 

p′(x)

p′′(x)

−1 +10

The second derivative is zero when 𝑥 = ±1. This
 
value is expressed in the 𝜇 = 0, 𝜎 = 1 system of units. In the usual system,
 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

248 7	 Probabilistic reasoning 

𝑥 = ±1 means the one-sigma points 𝜇 ± 𝜎 . So the points of maximum 
(absolute) slope—the points that our gut can most accurately estimate—are 
the one-sigma points! We find them first and then find their midpoint. 

When we estimate a 2/3-probability range, we are finding a one-sigma 
range almost exactly: In a normal or log-normal distribution, the one-sigma 
range contains approximately 68 percent of the probability, which is almost 
exactly 2/3. For comparison, the two-sigma range contains approximately 
95 percent of the probability, which is a popular number in statistical analy-
sis. Therefore, you may also want to find your two-sigma range (Prob-
lem 7.11). However, the slope at the two-sigma points is approximately 
a factor of 2.2 smaller than the slope at the one-sigma endpoints, so the 
two-sigma range is somewhat harder to estimate than is the one-sigma 
range. To find the two-sigma range, first estimate the one-sigma range, and 
then double its width (on a log scale). 

This analysis of plausible ranges concludes our introduction to probabil-
ity and the probabilistic basis of divide-and-conquer reasoning. We have 
learned that probabilities result from the incompleteness of our knowledge, 
and how acquiring knowledge changes our probabilities. In the next sec-
tions, we will use probability to master the complexity of systems with vast 
numbers of atoms and molecules, where complete knowledge would be 
impossible. The analysis begins with a special walk, the random walk. 

Problem 7.11 Two-sigma range 
My one-sigma range for the UK’s land area is 180 000…340 000 square kilometers. 
What is the two-sigma range? 

Problem 7.12 Gold or banknotes? 
Having broken into a bank vault, do you take the banknotes or the gold? Assume 
that your capacity to carry loot is limited by mass rather than by volume. 

a.	 Estimate gold’s value density (monetary value per mass)—for example, in dol-
lars per gram. Give plausible ranges for your subestimates and find the result-
ing plausible range for the value density. 

b.	 For your favorite banknote, give your plausible range for its value density and 
for the ratio
 

value density of gold
 
(7.25)value density of the banknote . 

c.	 Should you take the gold or the banknotes? Use a table of the normal distribu-
tion to evaluate the probability that your choice is correct. 
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7.3 Random walks: Viscosity and heat flow 

The great mathematician George Pólya, later to become author of How to 
Solve It [38], was staying at a bed and breakfast in his adopted country of 
Switzerland and walking daily in the garden between its tall hedge rows. 
He kept running into a newlywed couple taking their walk. Were they fol-
lowing him, or was it a mathematical necessity? From this question was 
born the study of random walks. 

Random walks are everywhere. In the card game War, 
cards wander between two players, until one player 
gets the whole deck. How long does the game last, on 
average? A molecule of neurotransmitter is released 
from a synaptic vesicle. It wanders in the 20-nanome-
ter gap, the synaptic cleft, until it binds to a muscle 

ve
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cl
e

m
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e

synaptic cleft

20 nm

cell; then your leg muscle twitches. How long does the molecule’s jour-
ney take? On a winter day, you stand outside wearing only a thin layer of 
clothing, and your body heat wanders through the clothing. How much 
heat do you lose? And why do large organisms have circulatory systems? 
Answering these questions requires understanding random walks. 

7.3.1 Behavior of random walks: Lumping and probabilistic reasoning 
For our first random walk, imagine a perfume molecule wandering in a 
room, moving in a straight line until collisions with air molecules deflect it 
in a random direction. This randomness reflects our incomplete knowledge: 
Knowing the complete state of the colliding molecules, we could calculate 
their paths after the collision (at least, in classical physics). However, we do 
not have that knowledge and do not want it! 

Even without that information, the random motion of one molecule is still 
complicated. The complexity arises from the generality—that the direction 
of travel and the distance between collisions can have any value. To simplify, 
we’ll lump in several ways. 

Distance. Let’s assume that the molecule travels a typical, fixed distance 
between collisions. This distance is the mean free path 𝜆. 

Direction. Let’s assume that the molecule travels only along coordinate axes. 
Let’s also study only one-dimensional motion; thus, the molecule moves 
either left or right (with equal probability). 
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Time. Let’s assume that the molecule travels at a typical, fixed speed 𝑣 and 
that every collision happens at regularly spaced clock ticks. These ticks are 
therefore separated by a characteristic time 𝜏 = 𝜆/𝑣. This time is called the 
mean free time. 
In this heavily lumped, one-dimensional model, a molecule starts at an ori-
gin (𝑥 = 0) and wanders along a line. At each tick it moves left or right with 
probability 1/2 for each direction. 
As time passes, the molecule spreads out. Actually, the molecule itself 
does not spread out! It has a particular position, but we just don’t know 
it. What spreads out is our belief about the position. In the notation of 
probability theory, this belief is a set of probabilities—a probability distrib-
ution—based upon our knowledge of the molecule’s starting position: 

Pr (molecule is at position 𝑥 at time 𝑡 ∣ it was at 𝑥 = 0 at 𝑡 = 0). (7.26) 

The changing beliefs are represented by a sequence of probability distribu-
tions, one for each time step. For example, at 2𝜏 (after two ticks), the mole-
cule has probability 1/2 of being at the origin, by either going right then left 
or left then right. At 3𝜏 , it has probability 0 of being at the origin (why?), 
but probability 3/8 of being at 𝑥 = +𝜆. To quantify the spread, which is 
shown in the following figure, we need an abstraction and a notation. 
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At 𝑡 = 0 At 𝑡 = 𝜏 At 𝑡 = 2𝜏 At 𝑡 = 3𝜏 

The position of the molecule will be 𝑥. Its expected position will be ⟨𝑥⟩. 
The expected position is the weighted average of the possible positions, 
weighted by their probabilities. Both 𝑥 and ⟨𝑥⟩ are functions of time or, 
equivalently, of the number of ticks. However, because motion in each direc-
tion is equally likely, the expected position does not change (by symmetry). 
So ⟨𝑥⟩, which starts at zero, remains zero. 
A useful measure is the squared position 𝑥2—more useful because it is 
never negative, making moot the symmetry argument that made ⟨𝑥⟩ = 0. 
Analogous to ⟨𝑥⟩, the expected or mean squared position ⟨𝑥2⟩ is the average 
of the possible values of 𝑥2, weighted by their probabilities. 
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Let’s see how ⟨𝑥2⟩ changes with time. At 𝑡 = 0, the only possibility is 𝑥 = 0, 
so ⟨𝑥2⟩𝑡=0 = 0. After one clock tick, at 𝑡 = 𝜏 , the possibilities are also 
limited: 𝑥 = +𝜆 or −𝜆. In either case, 𝑥2 = 𝜆2. Therefore, ⟨𝑥2⟩𝑡=𝜏 = 𝜆2. 

It may be the mark of a savage, in Pólya’s phrase [37], to generalize a pattern 
from only two data points. So let’s find 𝑡 = 2𝜏 and then guess a pattern. At 
𝑡 = 2𝜏 , the position 𝑥 could be −2𝜆, 0, or 𝜆, with probabilities 1/4, 1/2, and 
1/4, respectively. The weighted average ⟨𝑥2⟩ is 2𝜆2: 

⟨𝑥2⟩ = 
1
4 
× (−2𝜆)2 + 

1
2 
× (0𝜆)2 + 4

1 × (+2𝜆)2 = 2𝜆2. (7.27) 

The pattern seems to be 

⟨𝑥2⟩𝑡=𝑛𝜏 = 𝑛𝜆2. (7.28) 

This conjecture is correct. (You can test it at 𝑡 = 3𝜏 and 4𝜏 in Problem 7.13.) 
Each step contributes the squared step size 𝜆2 to the squared spread ⟨𝑥2⟩. 
We saw this pattern in Section 7.2.1, when we combined plausible ranges. 
The half width of the plausible range for an area 𝐴 = ℎ𝑤 was given by 

𝜎𝐴
2 = 𝜎 ℎ

2 + 𝜎 𝑤
2, (7.29) 

where 𝜎𝑥 is the half width of the plausible range for the quantity 𝑥. The 
half widths are step sizes in a random walk—random because the estimate 
is equally like to be an underestimate or an overestimate (representing step-
ping left or right, respectively). Therefore, the half widths, like the step 
sizes in a random walk, add via their squares (“adding in quadrature”). 

The number of ticks is 𝑛 = 𝑡/𝜏 , so ⟨𝑥2⟩, which is 𝑛𝜆2, is also 𝑡𝜆2/𝜏 . Thus, 
⟨𝑥2⟩ 𝜆2 

= (7.30)𝑡 𝜏 . 

As time marches on, ⟨𝑥2⟩/𝑡 remains 𝜆2/𝜏 ! The invariant 𝜆2/𝜏 is all that we 
need to know about the details of a random walk. 

This abstraction is known as the diffusion con-
stant. It is usually denoted 𝐷 and has dimen-
sions of L2T−1. The table gives useful approxi-
mate diffusion constants for a particle wander-
ing in three dimensions. In 𝑑 dimensions, the 
diffusion constant is defined with a dimension-
less prefactor: 

𝐷 (m2 s−1) 

air molecules in air 1.5 × 10−5 

perfume molecules in air 10−6 

small molecules in water 10−9 

10−10large molecules in water 

𝐷 = 
1 𝜆2 

(7.31)𝑑 𝜏 . 
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Because 𝜆/𝜏 is the speed 𝑣 of the molecule between its randomizing colli-
sions, a useful alternative form for estimating 𝐷 is 

𝐷 = 
1
𝑑 
𝜆𝑣. (7.32) 

Problem 7.13 Testing the random-walk dispersion conjecture 
Make the probability distribution for the particle at 𝑡 = 3𝜏 and 𝑡 = 4𝜏 , and com-
pute each ⟨𝑥2⟩. Do your results confirm that ⟨𝑥2⟩𝑡=𝑛𝜏 = 𝑛𝜆2? 

Problem 7.14 Higher dimensions 
For a molecule starting at the origin and wandering in two dimensions, ⟨𝑟2⟩ = 𝑛𝜆2, 
where 𝑟2 = 𝑥2 + 𝑦2. Confirm this statement for 𝑡 = 0…3𝜏 . 

𝑥rms ≡ ⟨𝑥2⟩ (7.33) 

A random and a regular walk are analogous in having an invariant. For 
a regular walk, it is ⟨𝑥⟩/𝑡: the speed. For a random walk, it is ⟨𝑥2⟩/𝑡: the 
diffusion constant. (The diffusion constant is to a random walk as the speed 
is to a regular walk.) However, the two walks differ in a scaling exponent. 
For a regular walk, 

. For a random walk, we’ll use the rms (root-mean-square) position 1time is 
⟨𝑥⟩ ∝ 𝑡: The scaling exponent connecting position and 

as a measure analogous to ⟨𝑥⟩ for a regular walk. Because ⟨𝑥2⟩ ∝ 𝑡, the 
rms position 𝑥rms is proportional to 𝑡1/2: In a random walk, the scaling ex-
ponent connecting position and time is only 1/2. This scaling exponent has 
profound effects on heat, drag, and diffusion. 
As an example of the effect, let’s apply our knowl-
edge of diffusion and random walks to a familiar sit-
uation. Across a room someone opens a bottle of per-
fume or, if your taste in problems is pessimistic, a 
lunch of leftover fish. 

bottle nose

room size (L)

How long until odor molecules reach your nose? 

As time passes, the molecule wanders farther afield, with its rms position 
growing proportional to 𝑡1/2. As a lumping approximation, imagine that 
the molecule is equally likely to be anywhere within a distance 𝑥rms of the 
source (the perfume bottle or leftover fish). For the molecule to have a sig-
nificant probability to be at your nose, 𝑥rms should be comparable to the 
room size 𝐿. Because ⟨𝑥2⟩ = 𝐷𝑡, the condition is 𝐿2 ∼ 𝐷𝑡, and the required 
diffusion time is 𝑡 ∼ 𝐿2/𝐷. (For another derivation, see Problem 7.16.) 
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For perfume molecules diffusing in air, 𝐷 is roughly 10−6 square meters per 
second. For a 3-meter room, the diffusion time is roughly 4 months: 

(3 m)2𝑡 ∼ 
𝐿2 

10−6 m2 s−1 
≈ 107 s ≈ 4 months. (7.34)𝐷 

∼ 

This estimate does not agree with experiment! After perhaps a minute, 
you’ll notice the aroma, whether perfume or fish. Diffusion is too slow to ex-
plain why the odor molecules arrive so quickly. In reality, they make most 
of the journey using a regular walk: The small, unavoidable air currents 
in the room transport the molecules much farther and faster than diffusion 
can. The speedup is a consequence of the change in scaling exponent, from
1/2 (for random walks) to 1 (for regular walks). 

Problem 7.15 Diffusion constant of air 
Estimate the diffusion constant for air molecules diffusing in air by using 

𝐷 ∼ 
1
3 × mean free path × travel speed (7.35) 

and the mean free path of air molecules (Section 6.4.5). This value is also its ther-
mal diffusivity 𝜅air and its kinematic viscosity 𝜈air! 

Problem 7.16 Dimensional analysis for the diffusion time 
Use dimensional analysis to estimate the diffusion time 𝑡 based on 𝐿 (the relevant 
characteristic of the room) and 𝐷 (the characteristic of the random walk). 

A similar estimate explains the existence of circulatory systems. Imagine 
an oxygen molecule diffusing through our body to a muscle cell, where 
its services are needed to burn glucose and produce energy. The diffusion 
distance (our body size) is 𝐿 ∼ 1 meter. The diffusion constant for an oxygen 
molecule in water (a small molecule in water) is roughly 10−9 square meters 
per second. The diffusion time is roughly 109 seconds or 30 years: 

(1 m)2𝑡 ∼ 
𝐿2 

10−9 m2 s−1 
= 109 s ≈ 30 years. (7.36)𝐷 

∼ 

Over long distances—long compared to the mean free path 𝜆—diffusion 
is a slow method of transport! Large organisms, especially warm-blooded 
organisms with high metabolic rates, need another solution: a circulatory 
system. It transports oxygen much more efficiently than diffusion can, just 
as air currents do for perfume. The circulatory system, a branching network 
of ever-smaller capillaries, ends once the typical distance between the small-
est capillaries and a cell is small enough for diffusion to be efficient. 
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Another biological example of short-distance diffusion is the gap between 
two neighboring neurons, called the synaptic cleft. Its width is only 𝐿 ∼ 
20 nanometers. Signals between neighboring nerve cells, or between a neu-
ron and a muscle cell, travel chemically, as neurotransmitter molecules. 
Let’s estimate the diffusion time for a neurotransmitter molecule. A neuro-
transmitter is a large molecule, and it is diffusing in water, so 𝐷 ∼ 10−10 

square meters per second. Its diffusion time is 4 microseconds: 

𝐷 
∼ 

(2×10−8 m)2𝑡 ∼ 
𝐿2 

10−10 m2 s−1 
= 4×10−6 s. (7.37) 

Without a comparison, this time means little: We cannot say right away 
whether the time is long or short. However, because it is much smaller than 
the spike-timing accuracy of neurons (about 100 microseconds), the time to 
cross the synaptic cleft is small enough not to affect nerve-signal propaga-
tion. For transmitting signals between neighboring neurons, diffusion is an 
efficient and simple solution. 

Problem 7.17 Probability of being at the origin 

Pólya’s analysis of his encounters with the newlywed couple required first finding 
the probability 𝑝𝑛 that a random walker is at the origin after 𝑛 clock ticks (𝑝0 = 1). 
For a 𝑑-dimensional random walk, find the scaling exponent 𝛽(𝑑) in 𝑝𝑛 ∝ 𝑛𝛽(𝑑). 

Problem 7.18 Expected number of visits to the origin 

Using your result from Problem 7.17, estimate the expected number of visits a 
random walker in one and two dimensions makes to the origin (summed over all 
ticks 𝑛 ≥ 0). Thereby explain Pólya’s theorem [36], that a random walker in one 
or two dimensions always returns to the origin. What makes a three-dimensional 
random walk different from one or two dimensions? 

7.3.2 Types of diffusion constants 
Because random walks are everywhere, there are several kinds of diffusion 
constants. They are named differently depending on what is diffusing, but 
they share the mathematics of the random walk. Therefore, they all have 
dimensions of length squared per time (L2T−1). 

what is diffusing name of diffusion constant symbol 

particles diffusion constant 𝐷 

energy (heat) thermal diffusivity 𝜅 

momentum kinematic viscosity 𝜈 
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A handful of useful diffusion constants (for particles) were tabulated on 
page 251. To complement that table, here are a few useful, approximate 
thermal diffusivities and kinematic viscosities. 

𝜅air heat diffusing in air 1.5 × 10−5 m2 s−1 

𝜈air momentum diffusing in air 1.5 × 10−5 

𝜅water heat diffusing in water 1.5 × 10−7 

𝜈water momentum diffusing in water 1.0 × 10−6 

In air, all three diffusion constants—𝐷 for molecules, 𝜅 for energy, and 𝜈 for 
momentum—are roughly 1.5 × 10−5 square meters per second. Their simi-
larity is no coincidence. The same mechanism (diffusion of air molecules) 
transports molecules, energy, and momentum. 
In water, however, the molecular diffusion constant 𝐷 is several orders of 
magnitude smaller than the heat- and momentum-diffusion constants (𝜅 
and 𝜈 , respectively). Even the momentum- and heat-diffusion constants 
differ roughly by a factor of 7. This dimensionless ratio, 𝜈/𝜅 , is the Prandtl 
number 𝖯𝗋. For water, I usually remember 𝜈 , because it is just a power of ten 
in SI units, and remember the Prandtl number—the lucky number 7—and 
use these values to reconstruct 𝜅 . 

7.3.3 Thermal diffusivities of liquids and solids 
The large discrepancy between the molecular and thermal diffusion con-
stants in water indicates that our model for diffusion in water is not com-
plete. The problem is not limited to water. If we had made a similar com-
parison for any solid, comparing the molecular and thermal diffusion con-
stants (𝐷 and 𝜅), the discrepancy would have been even larger. 
Indeed, in liquids and solids, in contrast to gases, heat is not transported 
by molecular motion. In a solid, the molecules sit at their sites in the lattice. 
They vibrate but scarcely wander. In a liquid, molecules wander but only 
slowly. Their tight packing keeps the mean free path short and the diffusion 
constant small. Yet, as everyday experience and the large 𝜅/𝐷 ratio suggest, 
heat can travel quickly in liquids and solids. The reason is that heat is trans-
ported by miniature sound waves rather than by molecular motion. The 
sound waves are called phonons. 
By analogy to photons, which represent the vibrations of the electromag-
netic field, phonons represent the vibrations of the lattice entities (the atoms 
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or molecules of the liquid or solid). One molecule vibrates, shaking the 
next molecule, which shakes the next molecule. This chain is the motion of 
a phonon. Phonons act like particles: They travel through the lattice, bounc-
ing off impurities and other phonons. Like ordinary particles, they have a 
mean free path and a propagation speed. These properties of their random 
walk determine the thermal diffusivity: 

𝜅 ≈ 
1
3 × phonon mean free path × propagation speed. (7.38) 

The propagation speed is the speed of sound 𝑐s, because phonons are tiny 
sound waves (familiar sound waves contain many phonons, just as light 
beams contain many photons). Sound speeds in liquids and solids are 
much higher than the thermal speeds, so we already see one reason why 𝜅 , 
the diffusion constant for heat, is larger than 𝐷, the diffusion constant for 
particles. 
The mean free path 𝜆 measures how far a phonon travels before bouncing 
(or scattering) and heading off in a random direction. Let’s write 𝜆 = 𝛽𝑎, 
where 𝑎 is the typical lattice spacing (3 ångströms) and 𝛽 is the number of 
lattice spacings that the phonon survives. 
Then the thermal diffusivity becomes 

𝜅 = 
1
3𝑐s𝛽𝑎. (7.39) 

For water, our favorite substance, 𝑐s ∼ 1.5 kilometers per second (as you 
estimated in Problem 5.58). Then the predicted thermal diffusivity becomes 

𝜅water ∼ 𝛽 × 1.5 × 10−7 m2 s−1. (7.40) 

Because the actual thermal diffusivity of water is 1.5 × 10−7 square meters 
per second, our estimate is exact if we use 𝛽 = 1. This choice is easy to 
interpret and remember: In water, the phonons travel roughly one lattice 
spacing before scattering in a random direction. This distance is so short 
because water molecules do not sit in an ordered lattice. Their disorder 
provides irregularities that scatter the phonons. (At the same time, this 
mean free path is much larger than the mean free path of tightly packed 
atoms or molecules, which move a fraction of an ångström before getting 
significantly deflected. Therefore, even in a liquid, 𝜅 is much larger than 
the molecular diffusion constant 𝐷.) 
To estimate 𝜅 for a solid, let’s use 𝜅water along with the scaling relation 

𝜅 ∝ 𝜆𝑐s. (7.41) 
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In a typical solid, the sound speed 𝑐s is 5 kilometers per second—roughly a 
factor of 3 faster than in water. The mean free path 𝜆 is also longer than in 
the totally disordered lattice of a liquid. In a solid without too many lattice 
defects, and at room temperature, a phonon travels a few lattice spacings 
before scattering—compared to just one lattice spacing in water. 
These two differences, each contributing a factor of 3, make the typical ther-
mal diffusivity of a solid a factor of 10 larger than that of water: 

𝜅solid ∼ 𝜅water × 10 ≈ 1.5 × 10−6 m2 s−1. (7.42) 

Rounded to 10−6 square meters per second, this value is our 𝜅 (m2 s−1)
canonical thermal diffusivity of a solid—for example, sand-

Au 1.3 × 10−4stone or brick. The table also shows a new phenomenon: 
For metals, 𝜅 is much larger than our canonical value. Al- Cu 1.1 × 10−4 

Fe 2.3 × 10−5though a small discrepancy could be explained by a few 
air 1.9 × 10−5missing numerical factors, this significant discrepancy indi-
sandstone 1.1 × 10−6cates a missing piece in our model. 
brick 0.5 × 10−6 

Indeed, in metals, heat can also be carried by electron waves, glass 3.4 × 10−7 

not just phonons (lattice waves). Electron waves travel much water 1.5 × 10−7 

faster and farther than phonons. Their speed, known as pine 0.9 × 10−7 

the Fermi velocity, is comparable to the orbital speed of an
 
atom’s outer-shell electron. As you found in Problem 5.36,
 
for hydrogen this speed is 𝛼𝑐, where 𝛼 is the fine-structure constant (∼ 10−2)
 
and 𝑐 is the speed of light. This speed, roughly 1000 kilometers per second,
 
is much faster than any sound speed! As a result, the thermal diffusivity in
 
metals is large. As you can see in the table, for a good conductor, such as
 
copper or gold, 𝜅 ∼ 10−4 square meters per second.
 

7.3.3.1 Heating a skillet 
To feel a thermal diffusivity, place a thin cast-iron skillet on a hot stove. 

How long does it take for the top surface to feel hot? 

The hot stove supplies blobs of heat (of energy) that wander back and forth: 

𝐷𝑡𝑧 ∼ reaches a distance 
The heat blobs perform a random walk. In a random walk, a particle with 

; 

𝜅𝑡 𝑧 ∼ . Thus, the hot front reaches a distance 
across a synaptic cleft. Here, the particle is a blob of heat, so the diffusion 
we used this lumping model in Section 7.3.1 to estimate the diffusion time 

into the skillet. 

diffusion constant 𝐷 wandering for a time 𝑡 

constant is 𝜅
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In this lumping picture, the temperature profile 
is a rectangle with a moving right edge—repre-
senting the heat wave moving upward and into 
the skillet. For my 1-centimeter-thick cast-iron 
skillet, the hot front should reach the top of the 
skillet in roughly 4 seconds: 

(10−2 m)2𝑡 ∼ 
𝐿2 

≈ (7.43)

hot zone

Tstove

sk
ill

et
to

p

sk
ill

et
bo

tt
om

Troom

z = 0
√

κt z = L

𝜅Fe 2.3 × 10−5 m2 s−1 
≈ 4 s. 

Don’t try the following experiment at home. But for the sake of lumping 
and probabilistic reasoning, I set our flattest cast-iron skillet on a hot electric 
stove while touching the top surface. After 2 seconds, my finger involuntar-
ily jumped off the skillet. 
The discrepancy of a factor of 2 between the predicted 
and actual times is not bad considering the simplic-
ity, or crudity, of the lumping approximations that it 
incorporates. However, there is a bigger discrepancy. 
The model predicts that, for the first 4 seconds, the top 
of the skillet remains at room temperature. One feels 
nothing until, wham, the full temperature of the stove hits at 4 seconds. 

Tstove

Troom

Thot

feels very hot
T(t)

place
on stove

However, experience suggests that the skillet’s tem-
perature starts rising before the skillet becomes too 
hot to touch, and then it monotonically approaches 
the stove temperature—as sketched in the figure. 
One reason for this discrepancy could be the skillet’s 
top surface. In our model, the skillet has only a bot-

Tstove

Troom

Thot

feels hot

T(t)

place
on stove

tom surface and is infinitely thick. The top surface might alter the heat 
flow. However, the infinite-slab assumption isn’t the fundamental problem 
(correcting the assumption turns out to speed up the heating process by a 
factor of 2). Even if we fix it, the model would still make the bogus predic-
tion of a sudden jump to the stove temperature. It’s hard to believe after 
the exhortations on the power of lumping, but we have lumped too much. 
To improve the model, let’s incorporate a more realistic temperature pro-
file. Beyond the canonical lumping shape of a rectangle, the next simplest 
shape is a triangle (the integral of a rectangle). We will therefore replace 
the rectangular temperature profile with a triangle having the same area as 
the rectangle. Because of the factor of 1/2 in the area of a triangle, the hot 
zone now extends to 2 𝜅𝑡 instead of to 𝜅𝑡 . 
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The area of the triangle is proportional to the heat 
transferred to the skillet. By matching the trian-
gle’s area to the rectangle’s area, we preserve this 
integral quantity. When making lumping mod-
els, preserving integral quantities is usually more 
robust than is preserving differential quantities 
(such as slope). 

hot zone

z = 0 2
√

κt

Tstove

Troom

sk
ill

et
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p
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ill
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tt
om

In the triangular-lumping model, you feel 
nothing until the tip of the triangle reaches 

lar hot front extends a factor of 2 farther 
than the rectangular hot front (2 𝜅𝑡 ver-

the top of the skillet. Because the triangu-

sus 𝜅𝑡 ), and because diffusion times are 
proportional to distance squared, the re-
quired time falls by a factor of 4. Thus, it 
falls from 4 seconds to 1 second. At 1 sec-

Tstove

Troom

Tskillet(t)

L2

4κ

L2

κ
0

(Tstove + Troom)/2

ond, the hot front arrives at the top of the skillet, which starts to feel warm. 
Then the temperature slowly increases toward the stove temperature. This 
next-simplest model makes quite realistic predictions! 

Problem 7.19 Cooling the Moon 

How long does it take for the Moon, with a radius of 1.7 × 106 meters to cool sig-
nificantly by heat diffusion through rock? Given that the Moon is now cold, what 
do you conclude about the mechanism of cooling? 

Problem 7.20 Diffusion with a bit of drift: Breaking the bank at Monte Carlo 
You can play the card game blackjack such that your probability of winning a hand 
is 𝑝 = 0.51 and of losing is 1 − 𝑝 = 0.49. You start with 𝑁 betting units, the 
stake; and you bet 1 unit on each hand. The goal of this problem is to estimate the 
threshold 𝑁 such that you are more likely to break the bank than to lose the stake. 

Let 𝑥𝑛 be your balance after the 𝑛th hand. Thus, 𝑥0 = 𝑁 . Losing your stake (the 
𝑁 units) corresponds to 𝑥 = 0. To estimate 𝑁 , extend the random-walk model to 
account for drift: that the probabilities of moving left and right are not equal. 

a. What is the symbolic expression for breaking the bank? 

b. Sketch your expected balance ⟨𝑥⟩ versus the number of hands 𝑛 (on linear axes). 

c. Sketch, on the same axes, the dispersion 𝑥rms versus 𝑛. 

d. Explain graphically “a significant probability of breaking the bank.” 

e. Thus, estimate the required stake 𝑁 . 
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7.3.3.2 Baking 
A skillet on a stove gets heated from one side. An equally important kind of 
cooking, and one that helps us practice and extend our lumping model of 
random walks, is heating from two sides: baking. As an example, imagine 
baking a slab of fish that is 𝐿 = 1 inch (2.5 centimeters) thick. 

How long should it bake in the oven? 

A first, and quick, analysis predicts 𝐿2/𝜅 , the characteristic time for heat 
diffusion, where 𝜅 is the thermal diffusivity of water (organisms are mostly 
water). However, this simple model predicts an absurd time: 

𝐿2 (2.5 cm)2𝑡 ∼ ≈ (7.44)𝜅water 1.5 × 10−3 cm2 s−1 
∼ 70 minutes. 

After more than an hour in the oven, the fish will be so dry that it might 
catch fire, never mind not being edible. The model also ignores an impor-
tant quantity: the oven temperature. Fixing this hole in the model will also 
improve the time estimate. 

Why does the oven temperature matter? 

The inside of the fish must get cooked, which means that the proteins dena-
ture (lose their folded shape) and the fats and carbohydrates change their 
chemistry enough to become digestible. This process happens only if the 
food gets hot enough. Thus, a cold oven could not cook the fish, even after 
the fish reached oven temperature. What temperature is hot enough? From 
experience, a thin piece of meat on a hot skillet (at, say, 200 ∘C) cooks in less 
than a minute. At the other extreme, if the skillet is at 50 ∘C, unpleasantly 
hot to the touch but not much hotter than body temperature, the meat never 
cooks. A round, intermediate temperature of 100 ∘C, enough to boil water, 
should be enough to cook meat thoroughly. 

If we set the oven to, say, 180 ∘C, the fish will then be 
cooked once its center reaches the midpoint of the room 
(20 ∘C) and oven temperatures, which is 100 ∘C. In this 
improved model of cooking, the interior of the fish starts 
at 𝑇room ≈ 20 ∘C, and the oven holds the top and bottom surfaces of the fish 
at 𝑇oven = 180 ∘C (360 ∘F). With this model, and using triangular tempera-
ture profiles, we will estimate the time required for the center of the fish to 
reach the midpoint temperature of 100 ∘C. 

fish starts at 20 ◦C

oven at 180 ◦C

oven at 180 ◦C
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Two triangular hot zones, one from each surface, move 
toward the center of the fish. Before the zones meet, the 
center of the fish, at 𝑧 = 𝐿/2, is cold (room temperature). 
The fish, unless it is very fresh, is not ready to eat. But 

Each triangle extends a distance 2 𝜅𝑡 . 
𝐿/2) when 2 𝜅𝑡 

soon the triangles will meet. 

= 𝐿/2. Thus, 𝑡meet
From that moment, the center warms up as the triangle 

They first meet 
(at 𝑥 = ∼ 𝐿2/16𝜅. 

fronts overlap ever more. The fish is cooked when the cen-
ter reaches the mean of the room and oven temperatures 
(which is 100 ∘C). 

In dimensionless temperature units, where 𝑇room corre-
sponds to 𝑇 = 0 and 𝑇oven to 𝑇 = 1, the cooking crite-
rion is 𝑇 = 1/2. Each triangle wave therefore contributes 
𝑇 = 1/4. The left triangle, representing the hot front in-
vading from the bottom surface, then passes through the 

2 𝜅𝑡 
𝑧 = 2𝐿/3when 
(𝑧 = 0, points 

𝑡cooked ∼ 
𝐿2 

𝑇 = 1) and (𝑧 = 𝐿/2, 𝑇 = 1/4). It reaches the 𝑧 axis (𝑇 = 0) 
. The corresponding triangle-zone diffusion time is given by 

= 2𝐿/3, whose solution is 
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.
 

For our 2.5-centimeter-thick fish, the time is roughly 7 minutes:
 
(2.5 cm)2𝑡 ∼ 

1
9 × (7.46)

1.5 × 10−3 cm2 s−1 
∼ 7 minutes. 

This estimate is reasonable. My experience is that a fish fillet of this thick-
ness requires about 10 minutes in a hot oven to cook all the way through 
(and further baking only dries it out). 

Problem 7.21 Baking too long 
In the model of two approaching triangle hot fronts, the central temperature starts 
to rise at 𝑡 ∼ 𝐿2/16𝜅 , and it reaches the halfway temperature at 𝑡cooked ∼ 𝐿2/9𝜅 . 
When does it reach the oven temperature? Sketch the central temperature versus 
time, labeling interesting values. 

Problem 7.22 Cooking an egg 
Baking a 6-kilogram turkey requires, from experience, 3 to 4 hours (you get to 
predict this time in Problem 7.34). Use proportional reasoning to estimate the time 
required to boil an egg. 
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7.3.4 Boundary layers 
In cooking, the hot zone diffuses inward from the hot surface. For the most 
tangible example of this random walk, rub your finger on the blade of a (sta-
tionary!) window fan. Your finger comes away dusty and leaves a dust-free 
streak on the blade. But why is any dust on the blade at all? When the fan 
was turning, why didn’t the air streaming by the blade blow off the dust? 
The answer lies in the concept of the boundary layer. For the cooking ex-
amples (Sections 7.3.3.1 and 7.3.3.2), this layer is the expanding hot zone. It 
arises from the boundary constraint (the temperature), which diffuses into 
the skillet or the fish. For the fan blade, the analogous constraint is that, next 
to the blade, the fluid has zero velocity with respect to the blade. The con-
dition, called the no-slip boundary condition, has the justification that the 
fluid molecules next the surface get caught by the inevitable roughness at 
the surface. (For a historical and philosophical discussion of the subtleties 
of this boundary condition, see Michael Day’s article on “The no-slip con-
dition of fluid dynamics” [8].) 
Starting at the blade surface, a zero-speed or, equivalently, zero-momentum 
zone diffuses into the fluid—just as the stove temperature diffuses into the 
skillet or the oven temperature into the fish fillet. After a growth time 𝑡, 
the zero-momentum front has diffused a distance 𝛿 ∼ 
diffusion constant for momentum (the kinematic viscosity). The distance 𝛿 
is the boundary-layer thickness. Within the boundary layer, the fluid moves 
more slowly than the fluid in the free stream. Using a rectangular lumping 
picture, the fluid speed is zero within the layer and full speed outside it. 
Therefore, dust particles entirely in the layer remain on the blade. 
To estimate the boundary-layer thickness, imagine a window fan with 
a blade width 𝑙 and rotation speed 𝑣 at the widest part of the blade. 
The growth time is 𝑡 ∼ 𝑙/𝑣. For a generic window fan sweeping out a 
diameter of 0.5 meters, the blade width 𝑙 may be roughly 0.15 meters. 
If the fan rotates at roughly 15 revolutions per second or 𝜔 ∼ 100 ra-
dians per second, the blade speed 𝑣 is 10 meters per second: 

l

0.5 m

𝑣 ∼ 0.1 m × 100 rad s−1 = 10 ms−1. (7.47) 
arc radius 𝜔 

At this speed, the growth time 𝑡 is 0.015 seconds. In that time, the zero-mo-
mentum constraint diffuses roughly 0.5 millimeters from the fan blade: 

𝛿 ∼ ( 0.15 cm2 s−1 × 0.015 s )1/2 ≈ 0.05 cm. (7.48) 

⏟ ⏟⏟⏟⏟⏟⏟⏟ 

⏟⏟⏟⏟⏟⏟⏟ ⏟ 
𝜈air 𝑡 
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Dust particles that are significantly smaller than 0.5 millimeters feel no air 
flow (in this simplest lumping picture) and thus remain on the fan blade un-
til your finger rubs them off. For the same reason (boundary layers), simply 
rinsing dirty dishes in water will not remove the thin layer of food next to 
the surface. Proper cleaning requires scrubbing (a sponge) or soap (which 
gets underneath the food oils). 

Problem 7.23 Reynolds number in the boundary layer 
Based on the boundary-layer thickness 𝛿 ∼ 𝜈𝑡 , estimate the Reynolds number in 
a boundary layer on an object of size 𝐿 (a length) moving in a fluid at speed 𝑣. 

Problem 7.24 Turbulence in the boundary layer 
At Reynolds numbers comparable to 1000, flows usually become turbulent. Use 
Problem 7.23 to estimate the main-flow Reynolds number at which the boundary 
layer becomes turbulent. For a smooth ball similar in size to a golf ball, what flow 
speed is required? Suggest an explanation for the dimples on golf balls. 

7.4 Transport by random walks 
When a hot-oven temperature front diffuses into a slab of fish or the no-slip, 
zero-momentum front diffuses into a fluid, it comes with a heat or momen-
tum flow. With our random-walk model, we can estimate the magnitude 
of these flows, and thereby understand the drag forces on fog droplets and 
bacteria (Problem 7.26) and why we feel cold on a winter day without thick 
clothing (Section 7.4.4). 

7.4.1 Diffusion speed 
The essential property of a random walk is that the distance traveled is not 
proportional to the time, as it would be in a regular walk, but rather to 
the square root of the time. This change in scaling exponent means that 
the speed at which heat, momentum, or particles diffuse depends on the 
diffusion distance. When the distance is 𝐿, the diffusion time is 𝑡 ∼ 𝐿2/𝐷, 
where 𝐷 is the appropriate diffusion constant. Thus, the transport speed is 
comparable to 𝐷/𝐿: 

𝐿 𝐷𝑣 ∼ 
𝐿 = (7.49)𝑡 ∼ 

𝐿2/𝐷 𝐿 
. 

This speed depends inversely on the distance. This scaling is consistent 
with our calculations showing that diffusion is a terribly slow means of 
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transport over long distances (for example, for perfume molecules diffusing 
across a room) but fast over short distances (for example, for neurotransmit-
ter molecules diffusing across a synaptic cleft). 
When the diffusing quantity is momentum, the appropriate diffusion con-
stant is 𝜈 , and the diffusion speed is 𝜈/𝐿. Thus, the Reynolds number, 
𝑣flow𝐿/𝜈 , is the ratio 𝑣flow/𝑣diffusion—for the same reason that it is the ratio 
of times 𝑡diffusion/𝑡flow (as you will find in Problem 7.32). Using the diffusion 
speed, we can estimate fluxes and flows. 

7.4.2 Flux 
Transport is measured by the flux:
 

amount of stuff
 flux of stuff = . (7.50)area × time 
As we found in Section 3.4.2, the flux is also given by
 

stuff
 flux of stuff = × transport speed. (7.51)volume 
When the stuff travels by diffusion, the transport speed is the diffusion 
speed 𝐷/𝐿 (from Section 7.4.1). The resulting flux is 

stuff × 
diffusion constant flux of stuff ∼ . (7.52)volume distance
 

In symbols,
 

𝐹 ∼ 𝑛 
𝐷
𝐿 
, (7.53) 

where 𝑛 is the concentration (stuff per volume), 𝐷 is the appropriate diffu-
sion constant (depending on what is diffusing), and 𝐿 is the distance. 
An important application is diffusion across a gap. The gap could 
be a synaptic cleft, with a gap width 𝐿 ∼ 20 nanometers and 
with different neurotransmitter concentrations on its two sides. 
Or it could be a shirt (𝐿 ∼ 2 millimeters) with different tempera-
tures—concentrations of energy—on the inside and outside. On 
one side, the density of stuff is 𝑛1; on the other side it is 𝑛2. Then 
there are two fluxes in the gap, left to right and right to left: 

n2n1

L

gap

F1→2

F2→1

𝐷𝐹1→2 ∼ 𝑛1 𝐿 (7.54)𝐷𝐹2→1 ∼ 𝑛2 𝐿 
. 
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The net flux 𝐹 is their difference: 

𝐹 ∼ (𝑛2 − 𝑛1)
𝐷
𝐿 

= 𝐷 
𝑛2 − 𝑛1 . (7.55)𝐿 

The concentration difference 𝑛2 − 𝑛1 divided by the gap size 𝐿 is an impor-
tant abstraction: the concentration gradient. It measures how rapidly the 
concentration varies with distance. Using it, the flux becomes 
flux = diffusion constant × concentration gradient. (7.56) 

This result, called Fick’s law, is exact (hence the equals sign instead of ∼). 
In calculus form, the concentration gradient is Δ𝑛/Δ𝑥, so 

𝐹 = 𝐷 
Δ𝑛 

(7.57)Δ𝑥 
. 

If the diffusing stuff is particles, then the appropriate diffusion constant is 
just 𝐷, and the result can be used as is. If the diffusing stuff is momen-
tum, then the diffusion constant is the kinematic viscosity 𝜈 , and the flux 
is closely connected to a drag force (Problem 7.25). 

Problem 7.25 Momentum flux produces drag 
If the diffusing stuff is momentum, then the diffusion constant is the kinematic 
viscosity 𝜈 , and the concentration gradient is the gradient of momentum density. 
Thus, explain why Fick’s law becomes 

viscous stress = 𝜌𝜈 × velocity gradient, (7.58) 

where viscous stress is viscous force per area (𝜌𝜈 is the dynamic viscosity 𝜂). 

Problem 7.26 Stokes drag 
In this problem, you use momentum flux (Problem 7.25) to estimate the drag force 
on a sphere of radius 𝑟 in a flow at low Reynolds number (𝖱𝖾 ≪ 1). If 𝖱𝖾 ≪ 1, the 
boundary layer (Section 7.3.4)—the region over which the fluid velocity changes 
from zero to the free-stream velocity 𝑣—is comparable in thickness to 𝑟. Using that 
information, estimate the viscous drag force on the sphere. 

If the diffusing stuff is heat (energy), the diffusion constant is the thermal 
diffusivity 𝜅 , and the concentration gradient is the gradient of energy den-
sity. Thus, heat flux is 
heat flux = thermal diffusivity × energy-density gradient. (7.59) 

To figure out the meaning of energy-density gradient, let’s start with energy 
density itself, which is energy per volume. We usually measure it using tem-
perature. Therefore, to make the eventual formula applicable, let’s rewrite 
energy density in terms of temperature: 
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energy energy 
= × temperature. (7.60)volume volume × temperature 

The complicated quotient on the right splits into two simpler factors: 
energy mass energy 

= × . (7.61)volume × temperature volume mass × temperature 

The first factor, mass per volume, is just the substance’s density 𝜌. The 
second factor is called the specific heat 𝑐p. The most familiar specific heat is 
water’s: 1 calorie per gram per ∘C. That is, raising 1 gram of water by 1 ∘C 
requires 1 calorie (≈ 4 joules). 
Using these abstractions, 

energy 
= 𝜌𝑐p, (7.62)volume × temperature 

To get energy density, or energy per volume, we multiply by temperature 
energy 

= 𝜌𝑐p𝑇. (7.63)volume 
Now that we have energy density, we can find the energy-density gradient. 
Because 𝜌 and 𝑐p are constants (at least for small temperature and position 
changes), any gradient of energy density is due to the temperature gradient
Δ𝑇/Δ𝑥: 
energy-density gradient = 𝜌𝑐p × temperature gradient. (7.64) 

Fick’s law, when energy is the diffusing stuff, tells us that 
energy flux = thermal diffusivity × energy-density gradient, (7.65) 

so 
heat (energy) flux = 𝜅 × 𝜌𝑐p × temperature gradient. (7.66) 

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
energy-density gradient 

The shaded combination 𝜌𝑐p𝜅 occurs in any heat flow driven by a temper-
ature gradient. It is a powerful abstraction called the thermal conductivity
𝐾 : 

× ( 
specific thermal thermal conductivity = density )×( ) . (7.67)heat diffusivity⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 

𝐾 𝜌 𝑐p 
𝜅 

Thermal conductivity has dimensions of power per length per temperature, 
and is often quoted in units of watts per meter kelvin (W m−1 K−1). Using 𝐾 , 
Fick’s law for energy flux in terms of temperature gradient Δ𝑇/Δ𝑥 becomes 

http:gradient.(7.66


2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

267 7.4 Transport by random walks 

𝐹 = 𝐾 
Δ𝑇 

(7.68)Δ𝑥 
, 

where Δ𝑇 is the temperature difference, and Δ𝑥 is the gap size. 
Now let’s estimate a few important thermal conductivities in order to un-
derstand heat flow around us. 

7.4.3 Thermal conductivity of air 
To estimate our heat loss standing outside on a cold winter’s day, we need 
to estimate the thermal conductivity of air. 

Why do we estimate the thermal conductivity of air rather than of clothing? 

The purpose of clothing is to trap air so that heat flows via conduction—that 
is, by diffusion—rather than via the faster process of convection. (If the 
perfume molecules of Section 7.3.1 could be similarly limited to diffusion, 
the perfume aromas would travel very slowly.) 
Because 𝐾 ≡ 𝜌𝑐p𝜅 , estimating 𝐾 splits into three subproblems, one for each 
factor. The density of air 𝜌air is just 1.2 kilograms per cubic meter (slightly 
more accurate than 1 kilogram per cubic meter). The thermal diffusivity 
𝜅air is 1.5 × 10−5 square meters per second. 
The specific heat 𝑐p is not as familiar, but we can estimate it. As for water, 
it measures the thermal energy per mass per temperature: 

thermal energy 
𝑐p = . (7.69)mass × temperature 

The thermal energy per particle is comparable to 𝑘B𝑇 , where 𝑘B is Boltz-
mann’s constant, so the energy per temperature is comparable to 𝑘B. Thus, 

𝑘B𝑐p ∼ . (7.70)mass 
Our thermal energy, which is comparable to 𝑘B𝑇 , is for one particle. The 
corresponding mass in the denominator is the mass of one particle, which 
is an air molecule. 
To convert 𝑘B and the mass to human-sized values, we multiply each by Avo-
gadro’s number 𝑁A. Then we replace 𝑘B𝑁A with the universal gas constant 
𝑅, and mass × 𝑁A with the molar mass 𝑚molar. The result is 

𝑘B𝑁A 𝑅𝑐p ∼ = , (7.71)molecular mass × 𝑁A 𝑚molar 
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where 𝑚molar is the molar mass of air. 

This expression is correct except for a dimensionless prefactor. Air is mostly 
nitrogen, for which the prefactor is 7/2. This magic number can be made 
slightly less magical as follows: 

7 spatial dimensions 
+ 
rotational directions = + 1. (7.72)2 2 2 

Each spatial dimension contributes one 1/2 through a term in the transla-
tional kinetic energy of a nitrogen molecule; thus, the translational piece 
contributes 3/2 to the prefactor. Each rotational direction contributes a 1/2 
through a term in the rotational energy of a nitrogen molecule. Because ni-
trogen is a linear molecule, there are only two rotational directions, so the 
rotational directions contribute 2/2 to the prefactor. If we stop here, at 5/2, 
we would have the prefactor to find 𝑐v, the specific heat while holding the 
volume constant. The final term, +1, accounts for the energy required to ex-
pand a gas as it is heated and held at constant pressure. Therefore, 𝑐p gets 
a prefactor of 7/2. (For a more detailed discussion of the reasoning behind 
this calculation, see the classic Gases, Liquids and Solids and Other States of 
Matter [43, pp. 106].) 

Air is mostly diatomic nitrogen, so 𝑚molar is roughly 30 grams per mole. 
Then 𝑐p is roughly 103 joules per kilogram kelvin: 

𝑐p =
7
2 × 

𝑅 ≈ 7
2 × 

8 J × 1 mol ≈ 
103 J 

(7.73)
mol K 3 × 10−2 kg kgK 

.𝑚molar ⏟ ⏟⏟⏟⏟⏟ 
𝑅 𝑚−1 

molar 

Putting together the three pieces, 

𝐾air ≈ 1.2 kg m−3 × 103 J kg−1 × 1.5 × 10−5 m2 s−1 ≈ 0.02 
W 

(7.74)⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ mK 
. 

𝜌air 𝑐p 𝜅air 

Before using the thermal conductivity, let’s try out the specific heat of air on 
an old method of air conditioning. One summer I lived in a tiny Manhattan 
apartment (30 square meters). Summers are hot in New York City, and the 
beautiful people flee for the cooler beach areas—cooler thanks partly to the 
high specific heat of water (Problem 7.27). Because of global warming and 
the old electrical wiring in the apartment building, too old to handle an 
air-conditioning unit, the apartment reached 30 ∘C at night. A friend who 
grew up before air conditioning suggested taking a wet sheet and using a 
fan to blow air past it. 
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How much does this system cool the apartment? 

As heat from the room air evaporates the water from the sheet, the room 
air cools, as if the room were sweating. The energy required to evaporate 
the water is 

𝐸 = 𝑚water𝐿vap, (7.75) 

where 𝑚water is the mass of water held by the wet sheet and 𝐿vap is the heat 
of vaporization of water. This energy is the demand. 
To lower the room’s temperature by Δ𝑇 requires using up a thermal energy 

𝐸 ∼ 𝜌air𝑉𝑐pΔ𝑇, (7.76) 

where 𝑉 is the volume of the room and 𝑐p is the specific heat of air. This 
energy is the supply. 
Equating supply and demand gives an equation for Δ𝑇 : 

𝜌air𝑉𝑐pΔ𝑇 ∼ 𝑚water𝐿vap. (7.77) 

Its solution is 
𝑚water𝐿vap Δ𝑇 ∼ . (7.78)𝜌air𝑉𝑐p 

Now we estimate and plug in the needed values. A typical room is roughly
3 meters high, so the apartment’s volume was roughly 100 cubic meters: 

𝑉 ∼ 30 ⏟m2 × 3 m ≈ 100 m3.⏟ (7.79) 
area height 

To estimate 𝑚water, I imagined that the sheet was about as wet as it would be 
after coming out of the washing machine with its fast spin cycle. That mass 
feels like slightly more than 1 kilogram, so 𝑚water ∼ 1 kilogram. Finally, 
the heat of vaporization of water is about 2×106 joules per kilogram (as we 
estimated in Section 1.7.3 using a home experiment). 
Putting in all the numbers, Δ𝑇 is about 20 ∘C (or 20 K): 

𝑚water 𝐿vap 

⏞ × 
⏞⏞⏞⏞⏞⏞⏞ 1 kg 2 × 106 J kg−1

Δ𝑇 ∼ = 20 K. (7.80)
1 kg m−3 × 100 m3 × 103 J kg−1 K−1
⏟⏟⏟⏟⏟ ⏟ ⏟⏟⏟⏟⏟⏟⏟
 

𝜌air 𝑉 𝑐p
 

This change would have turned the hot 30 ∘C room into a cold 10 ∘C room, if 
the cooling had been 100-percent efficient. Because some heat comes from 
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the walls (and from the fan motor), Δ𝑇 will be less than 20 ∘C—perhaps 
10 ∘C, leaving the room at a pleasant and sleepable temperature of 20 ∘C. 
This calculation shows not only that evaporative cooling is a reasonable 
method of air conditioning, but also that our estimate for the specific heat 
of air is reasonable. 

Problem 7.27 Dimensionless specific heat of water 
The specific heat per air molecule is 3.5𝑘B, so the dimensionless specific heat of air, 
measured relative to 𝑘B, is 3.5. What is the dimensionless specific heat of water? 

7.4.4 Keeping warm on a cold day 
Now we have assembled the pieces to understand why 
we dress warmly on a cold day. Our starting point is the 
heat flux: 

𝐹 = 𝐾 
Δ𝑇 

(7.81)Δ𝑥 
, 

30 ◦C
skin

0 ◦C
winter

air∆x

trapped air
(shirt)

where Δ𝑇 = 𝑇2 − 𝑇1 is the temperature difference across a gap, Δ𝑥 is the 
gap size, and 𝐾 is the thermal conductivity of the gap material. Here, the 
gap material is air—the clothing serves to trap the air. 
Let’s say that the air outside is at 𝑇1 = 0 ∘C and that skin is at 𝑇2 = 30 ∘C 
(slightly lower than the internal body temperature of 37 ∘C). Then Δ𝑇 = 
30 K. Against the advice of your elders, you dress in a thin T-shirt—for 
decency, a very long one. A thin T-shirt has thickness Δ𝑥 of roughly 2 mil-
limeters. With these parameters, the heat flux through the shirt becomes
300 watts per square meter: 

Δ𝑇
⏞

𝐹 ≈ 0.02 
W × 

30 K = 300 Wm−2. (7.82)
mK 2 × 10−3 m⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟
 

𝐾air Δ𝑥
 

Flux is power per area, so the energy flow—the power—is the flux times 
a person’s surface area. A person is roughly 2 meters tall and 0.5 meters 
wide, with a front and a back, so the surface area is about 2 square meters. 
Thus, the power (the energy outflow) is 600 watts. 

Is this heat loss worrisome? 

Even though 600 might seem like a large number, we cannot therefore con-
clude that 600 watts is a large heat loss: As we learned in Chapter 5, a 
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quantity with dimensions, such as heat flux, cannot be large or small on 
its own. It needs to be compared to a relevant quantity with the same di-
mensions. A relevant quantity is a normal human power output. When 
sitting around, a person produces 100 watts of heat; that’s our basal meta-
bolic rate. If 600 watts is escaping through your clothing, you are losing 
heat much faster than the basal metabolism is producing it. No wonder 
you feel so cold on a winter day wearing only a thin shirt and pants. Even-
tually, your core body temperature falls. Then essential chemical reactions 
in your body slow down, because the enzymes lose their shape optimized 
for body temperature and thereby become less efficient catalysts. Eventu-
ally you get hypothermia and, if it goes on too long, die. 

One solution is to generate heat to make up the difference: by shivering 
or exercising. Cycling hard, which generates, say, 200 watts of mechanical 
power and another 600 watts of heat (thanks to the one-fourth metabolic 
efficiency), should be vigorous-enough exercise to keep you warm, even 
on a winter day in thin clothing. 

Another simple solution is to dress warmly by putting on thick layers. Let’s 
recalculate the power loss if you put on a jacket and thick pants, each 2 cen-
timeters thick. We could redo the power calculation from scratch, but that 
approach is brute force. It is simpler to notice that the gap thickness Δ𝑥 
has increased by a factor of 10, yet nothing else changed. Because flux is 
inversely proportional to the gap size, the flux and the power drop by the 
same factor of 10. Therefore, wearing thick clothing reduces the energy out-
flow to a manageable 60 watts—comparable to the basal metabolism. As a 
result, your body heat can keep you warm. Indeed, when wearing thick 
clothing, only areas exposed directly to cold air, such as your hands and 
face, feel cold. Those regions are protected by only a thin layer of still air 
(the boundary layer analyzed in Section 7.3.4). 

A thick gap means a small heat flux: When it is cold, bundle up! 

Problem 7.28 Thermal conductivity of helium gas 
Estimate the thermal conductivity of helium at standard temperature and pressure. 
The following fact will help you estimate the mean free path: The density of liquid 
helium is 125 grams per liter. 

Problem 7.29 Comfortable outdoor temperature 
You wear only that long thin T-shirt in which the winter temperature of 0 ∘C felt 
too cold. Estimate the outside temperature that would feel most comfortable. 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

272 7 Probabilistic reasoning 

7.4.5 Getting your clothes wet: More thermal conductivities 
If your thick warm coat gets wet, you feel very cold. Let’s use our knowl-
edge of heat flow to explain why the coat becomes so useless. As we know 
from Section 7.4.4, you feel cold when the dimensionless ratio 

energy flow through your coat 
(7.83)rate at which your body generates heat 

is significantly larger than 1. The dry coat kept the energy flow (a power) 
comparable to the rate at which your body generated heat. Wetting the coat 
must increase the energy flow significantly. To see how, let’s look again at 
the terms in the energy flow and apply proportional reasoning. 

energy flow = area × 𝐾 
Δ𝑇 

(7.84)
⏟Δ𝑥 

. 

flux 

In comparing the wet to the dry coat, the area is unchanged. The tempera-
ture difference Δ𝑇 is also unchanged: It is still the 30 ∘C between skin tem-
perature and winter-air temperature. The gap Δ𝑥, which is the thickness of 
the coat, is also unchanged. 

The remaining possibility is that the thermal conductivity 𝐾 of the gap ma-
terial has increased significantly. If so, the thermal conductivity of water 
must be much higher than the thermal conductivity of air. Rather than 
studying water directly, let’s first estimate the thermal conductivity of non-
metallic solids. (Metals have an even higher thermal conductivity, as we 
will discuss after studying water.) Using that estimate, we will estimate 
the thermal conductivity of water. 

The problem is again comparative (proportional reasoning):
 
thermal conductivity of nonmetallic solids
 

. (7.85)thermal conductivity of air 

The ratio breaks into three ratios, corresponding to the three factors in the 
thermal conductivity (divide-and-conquer reasoning): 

𝐾 = density × specific heat × thermal diffusivity. (7.86) ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝜌 𝑐p 𝜅 

Rather than using these factors directly, let’s remix the first two ( 𝜌𝑐p) into 
a more insightful combination. The specific heat itself is 

energy 
𝑐p = (7.87)mass × Δ𝑇 

, 

http:diffusivity.(7.86
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where Δ𝑇 is the temperature change.
 
Multiplying by the density 𝜌 points us toward an interpretation of 𝜌𝑐p:
 

mass energy energy 
𝜌𝑐p = × =	 (7.88)volume mass × Δ𝑇 volume × Δ𝑇 

.
⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟
 

𝜌 𝑐p
 

On the right side, the ratio of energy to volume can be subdivided as 
−1energy energy 

× ( 
volume = ) .	 (7.89)volume mole mole 

After all these reinterpretations, our remix of 𝜌𝑐p becomes 
−1energy 

mole × Δ𝑇 
× ( 
volume 𝜌𝑐p = mole ) .	 (7.90) 

The first factor is the molar specific heat; it is usually denoted 𝐶p (with a 
capital “𝐶” to distinguish it from the usual, per-mass specific heat 𝑐p). The 
volume per mole is also called the molar volume; it is usually denoted 𝑉m. 
Therefore, 𝜌𝑐p = 𝐶p/𝑉m. Then the thermal conductivity becomes 

𝐶p𝐾 = 𝜌𝑐p𝜅 = 𝜅.	 (7.91)𝑉m 

In words, the thermal conductivity 𝐾 is 
molar specific heat 𝐶p × thermal diffusivity 𝜅.	 (7.92)molar volume 𝑉m 

This remix is more insightful than simply 𝜌𝑐p𝜅 because 𝐶p varies less be-
tween substances than 𝑐p does, and 𝑉m varies less between substances than 
𝜌 does. The remixed form produces less quantity whiplash, in which the 
product swings wildly up and down as we include each factor. Another 
way to express the same advantage is that 𝐶p and 𝑉m are less correlated 
than are 𝜌 and 𝑐p; therefore, the remixed abstractions 𝐶p and 𝑉m offer more 
insight into the thermal properties of materials than do 𝑐p and 𝜌. 
Using the remixed form, let’s apply divide-and-conquer reasoning and es-
timate the ratio corresponding to each factor. 
1.	 Ratio of molar specific heats 𝐶p. For air, 𝐶p was 3.5𝑅. For most solids, 
whether metallic or nonmetallic, it is similar: 3𝑅 (where the 3 reflects 
the three spatial dimensions). Thus, this ratio is close to 1. 

2.	 Ratio of molar volumes 𝑉m. For any substance, 1 mole has a mass of 
𝐴 grams, where 𝐴 is the dimensionless atomic mass (roughly, the num-
ber of protons and neutrons in the nucleus). Because a typical solid 
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density is 𝐴 grams per 18 cubic centimeters (Section 6.4.1), the molar 
volume of the solid is 18 cubic centimeters per mole. In contrast, for air 
or any ideal gas (at standard temperature and pressure), 1 mole occupies 
22 liters or 22 000 cubic centimeters. Thus, the ratio of molar volumes 
(solid to air) is 18/22 000 or roughly 10−3. 

3.	 Ratio of thermal diffusivities 𝜅 . From Section 7.3.3, this ratio is roughly 0.1: 
thermal diffusivity of nonmetallic solids 

≈ 
10−6 m2 s−1 

thermal diffusivity of air	 10−5 m2 s−1 (7.93) 

= 0.1. 

The ratio of thermal conductivities is the product of the three ratios. As 
long as we remember that the molar volume appears in the denominator 
(the thermal conductivity is inversely proportional to the molar volume), 
we get a ratio of 100: 

𝐾nonmetallic solid ∼ 1	 × 103 × 10−1 = 102. (7.94)⏟ ⏟ ⏟
𝐾air 𝐶p ratio (𝑉m ratio)−1 𝜅 ratio
 

Thus, in contrast to the thermal conductivity of 0.02 watts per meter kelvin 
for air, the typical (nonmetallic) solid has a thermal conductivity of about
2 watts per meter kelvin. 

Now let’s use proportional reasoning to compare this thermal conductivity 
to the thermal conductivity of water, which is the gap material in your wet 
coat. We’ll estimate 𝐾water/𝐾nonmetallic solid. The comparison has the same 
three ratios: molar specific heat, molar volume, and thermal diffusivity. 

1.	 Ratio of molar specific heats 𝐶p. We can find the specific heat of water from 
the definition of a calorie, as the energy required to raise 1 gram of water 
by 1 degree (celsius or kelvin). Thus, the regular specific heat is simple 
to state: 

𝑐p
water = 1 cal	 

(7.95)gK 
. 

The resulting molar specific heat is 72 joules per mole kelvin:
 

𝐶water ≈ 1 cal 4 J 18 g 72 J
 
p × × = .	 (7.96)gK	 1 cal mol mol K ⏟ ⏟ ⏟
 

𝑐p 1 𝑚molar
 

The dimensionless specific heat 𝐶water /𝑅 is therefore approximately 9p
(as you found in Problem 7.27): 
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𝐶water
 p ≈ 
72 J mol−1 K−1
 

(7.97)𝑅 8 J mol−1 K−1 
= 9. 

For a nonmetallic solid, the dimensionless specific heat was only 3; it is 
a factor of 3 smaller than for water. Water stores heat very efficiently, 
which is why it is used as coolant fluid and why coastal weather is 
milder than inland weather. The ratio of molar specific heats is 3. 

2.	 Ratio of molar volumes 𝑉m. The molar volume of water, 18 cubic centime-
ters per mole, is identical to the canonical molar volume of a solid. Thus, 
the molar-volume ratio is 1. 

3.	 Ratio of thermal diffusivities 𝜅 . As we found in Section 7.3.3 by comparing 
phonon mean free paths and propagation speeds, the thermal diffusiv-
ity 𝜅water is roughly a factor of 10 smaller than the thermal diffusivity of 
a typical solid (10−7 compared to 10−6 square meters per second). Thus, 
the thermal-diffusivity ratio contributes a factor of 0.1. 

These three ratios result in the following comparison: 
𝐾water ≈ 3 × ⏟ ⏟ ≈ 0.3.	 (7.98)⏟ 1 × 0.1
𝐾nonmetallic solid 𝐶p ratio (𝑉m ratio)−1 𝜅 ratio
 

In absolute terms, 
0.6 W𝐾water ≈ 0.3 × 

2 W =	 (7.99)mK mK 
.

⏟ 
𝐾nonmetallic solid 

This conductivity is a factor of 30 larger than 𝐾air. As a result, wearing wet 
clothes on a cold day is so unpleasant and can even be dangerous. Thick 
clothing (a coat) allowed a comfortable 60 watts of heat flow—a factor of 10 
lower than the T-shirt allowed. Wetting the thick coat increases the thermal 
conductivity by a factor of 30. The heat loss therefore increases by a factor 
of 30—making it higher even than the heat loss through the dry T-shirt. 
When you hike in the hills and mountains, bring waterproof clothing! 
The table gives thermal conductivities for everyday substances (at room 
temperature). Our predictions for nonmetals match the data quite well. 
Having examined gases (in particular, air) and nonmetallic solids and liq-
uids (water), let’s turn to the remaining category of material. As the ta-
ble shows, metals have an even higher thermal conductivity than a typical 
nonconducting solid. (For the unusually high thermal conductivity of dia-
mond, try Problem 7.33.) 
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Metals, similarly, have a higher thermal diffusivity than
 
most other substances. The reason, as we discussed in
 
Section 7.3.3, is that, in a metal, heat is conducted not
 
only by phonons but also by electrons. The electrons
 
move much faster than the speed of sound, and the elec-
tron mean free path is much greater than the phonon
 
mean free path.
 
Countering these increases, which increase the diffusiv-
ity, only a small fraction of the free electrons participate 
in heat conduction. However, this effect is not enough to 
overcome the greater speed and mean free path. Thus, 
metals will have a higher thermal conductivity than non-
metallic liquids or solids. As a rule of thumb, the typical
𝐾metal is 200 watts per meter kelvin: a factor of 100 higher 
than that of nonmetallic solid. 
For this reason, a hot piece of metal, such as a seat-belt
 
clip in a car outside on a hot day, feels much hotter than
 
the plastic button on the same seat-belt clip, even though
 
the plastic and metal are at the same temperature. The
 
large heat flow from the metal into your finger pulls the
 
surface temperature of your finger close to the tempera-
ture of the hot metal. Ouch!
 

Problem 7.30 Stone versus wood floors 
Why, on a winter morning, do wood floors feel more comfortable than stone floors? 

Problem 7.31 Mercury is special 
Why does mercury (Hg) have such a low thermal conductivity for a metal? 

7.5 Summary and further problems 
In large, complex systems, the information is either overwhelming or not 
available. Then we have to reason with incomplete information. The tool 
for this purpose is probabilistic reasoning—in particular, Bayesian probabil-
ity. Probabilistic reasoning helps us manage incomplete information. Us-
ing it, we can estimate the uncertainty in our divide-and-conquer estimates 
and understand the physics of random walks and thereby viscosity, bound-
ary layers, and heat flow. 

𝐾 ( 
W )mK 

diamond 2000 

Cu 400 

Ag 350 

Al 240 

cast iron 55 

Hg 8.3 

ice 2.2 

sandstone 1.7 

glass 1 

asphalt 0.8 

brick 0.8 

concrete 0.6 

water 0.6 

soil (dry) 0.5 

wood 0.15 

He (gas) 0.14 

methane (gas) 0.03 

air 0.02 
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Problem 7.32 Reynolds number as a ratio of two times 
For an object moving through a fluid, the Reynolds number is defined as 𝑣𝐿/𝜈 , 
where 𝑣 is the object’s speed, 𝐿 is its size (a length), and 𝜈 is the fluid’s kinematic 
viscosity. Show that the Reynolds number has the physical interpretation 

momentum-diffusion time over a distance comparable to the size 𝐿 
fluid-transport time over a distance comparable to the size 𝐿 

. (7.100) 

Problem 7.33 Diamond is special 
Diamond has a high thermal conductivity, much higher even than many metals. 
The speed of sound in diamond is 12 kilometers per second, and diamond’s spe-
cific heat 𝑐p is 0.63 kilojoules per kilogram kelvin. Use those values to estimate 
the mean free path of phonons in diamond, as an absolute length and in units of 
typical interatomic spacings. How does the mean free path in diamond compare 
to a typical phonon mean free path of a few lattice spacings? 

Problem 7.34 Baking in three dimensions 
Extend the fish-cooking argument of Section 7.3.3.2 to three dimensions to predict 
the baking time of a 6-kilogram turkey (assumed to be a sphere). How well does 
the time agree with experience (for example, with the data given in Problem 7.22)? 

Problem 7.35 Resistive networks to analyze random walks 
Random walks are closely connected to infinite resistive networks (this connection 
is explored deeply in Random Walks and Electric Networks [11]). In particular, the 
probability of escape 𝑝esc—the probability that an 𝑛-dimensional random walker 
escapes to infinity and never returns to the origin—is related to the resistance 𝑅 
to infinity of a 𝑛-dimensional electrical network of unit resistors: 𝑝esc = 1/2𝑛𝑅. 
Use this connection, along with lumping arguments, to estimate 𝑅 and thereby 
show that the two-dimensional random walk is recurrent (𝑝esc = 0) but that the 
three-dimensional walk is transient (𝑝esc > 0)—consistent with Pólya’s theorem 
(Problem 7.17). 

Problem 7.36 Turning differential equations into algebraic equations 

ice

water (0 ◦C)

cold air (< 0 ◦C)

heat

The cold days of winter arrive, and the ice on a lake 
starts thickening as heat flows upward through the 
ice, turning ever more water into ice. Find the scal-
ing exponent 𝛽 in 

ice thickness ∝ (time)𝛽. (7.101) 

Problem 7.37 Thermal and electrical conductivities 
Among the metals, the better thermal conductors, such as copper and gold in com-
parison to aluminum, iron, or mercury, are also the better electrical conductors. 
(This connection is quantified in the Wiedemann-–Franz law.) What is the reason 
for this connection? 
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Problem 7.38 Teacup spindown 

tea l

l

You stir your afternoon tea to mix the milk (and sugar, if 
you have a sweet tooth). Once you remove the stirring 
spoon, the rotation begins to slow. In this problem you’ll 
estimate the spindown time 𝜏 : the time for the angular 
velocity of the tea to fall by a significant fraction. To esti-
mate 𝜏 , consider a lumped teacup: a cylinder with height 𝑙 
and diameter 𝑙, filled with liquid. Tea near the edge of the 
teacup—and near the base, but for simplicity neglect the 
effect of the base—is slowed by the presence of the edge (a 
result of the no-slip boundary condition). 

a. In terms of the viscous torque 𝑇 , the initial angular velocity 𝜔, and 𝜌 and 𝑙, 
estimate the spindown time 𝜏 . Hint: Consider angular momentum, and drop 
all dimensionless constants, such as 𝜋 and 2. 

b. To estimate the viscous torque 𝑇 , use the result of Problem 7.25: 

viscous force = 𝜌𝜈 × velocity gradient × surface area. (7.102) 

The velocity gradient is determined by the boundary-layer thickness 𝛿. In terms 
of 𝛿, estimate the velocity gradient near the edge and then the torque 𝑇 . 

c. Put your expression for 𝑇 into your earlier estimate for 𝜏 , which should now 
contain only one quantity that you have not yet estimated (the boundary-layer 
thickness 𝛿). 

d. Estimate 𝛿 in terms of a growth time 𝑡, which is the time to rotate 1 radian. 
After 1 radian, the fluid is moving in a significantly different direction, so the 
momentum fluxes from different regions no longer add constructively to the 
growth of the boundary layer. 

e. Put the preceding results together to estimate the spindown time 𝜏 : symboli-
cally in terms of 𝜈 , 𝜌, 𝑙, and 𝜔; and then numerically. 

f. Stir your tea and estimate 𝜏 experimentally, and compare with your prediction. 
Then enjoy a well-deserved cup. 
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A correct analysis works in all cases—including the simplest ones. This 
principle is the basis of our next tool for discarding complexity: the method 
of easy cases. We will meet the transferable ideas in an everyday example 
(Section 8.1.1). Then we will use them to simplify and understand complex 
phenomena, including black holes (Section 8.2.2.2), the temperature of the 
Sun (Section 8.3.2.3), and the diversity of water waves (Section 8.4.1). 

8.1 Warming up 
Let’s start with an everyday example, so that we do not have to handle 
mathematical or physical complexity along with learning the new tool. 

8.1.1 Everyday example of easy cases 
One August, upon becoming eligible for one of the tax benefits at work, I 
chose to put $500 in an account for the calendar year’s health costs (a feature 
of America’s bureaucratic health system). The payroll office advised me 
that they would deduct $125 each month for the rest of the year—namely, 
for August through December. As August is the eighth month and Decem-
ber the twelfth month, the amount looked correct: 
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$500 $500 $125= = (8.1)12th month − 8th month 4 months month 
. 

However, in January, the payroll office advised me that they should have 
deducted only $100 per month. 

Which amount was correct? 

The simplest way to decide is the method of easy cases. Don’t directly solve 
the hard problem of computing the correct deduction in general. Instead, 
imagine a simpler world in which I started deducting for the year in Decem-
ber. In this easy case, with only one month providing the year’s deduction, 
the answer requires no calculation: Deduct $500 per month. 

Then use the easy case and this result to check the proposed recipe, which 
predicted $125 per month when deductions started in August. In the easy 
case, when deductions start in December, the starting and ending months 
are both the twelfth month, so the recipe predicts an infinite deduction: 

$500 $500 $ infinity 
= = . (8.2)12th month − 12th month 0 months month 

They do not pay me enough to survive that recipe. It needs an adjustment: 
$500 $500 $500= = (8.3)

12th month − 12th month +1 month 1 month month 
. 

Applying this modified recipe to an August instead of a December start, the 
denominator is 5 months rather than 4 months, and the deduction is $100 
per month. The revised advice from the payroll office was correct. 

This analysis contains several features that we can abstract away and use to 
simplify difficult problems. First, the easy cases are specified by values of a 
dimensionless quantity. Here, it is the difference 𝑚2 − 𝑚1 between the first 
and last month numbers. Second, for particular values of the dimensionless 
quantity—for the easy cases—the problem has an obvious answer. Here, 
the easy case is 𝑚2 −𝑚1 = 0. Third, understanding the easy cases transfers 
to the hard cases. Here, our understanding of the case 𝑚2 − 𝑚1 = 0 shows 
that the denominator should be 𝑚2 −𝑚1 + 1 rather than 𝑚2 − 𝑚1. 

8.1.2 Easy cases of the shared-birthday probability 
The same easy-cases reasoning helps us check more abstruse formulas. As 
an example, cast your mind back to the birthday paradox of Section 4.4. 
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There, we used proportional reasoning to explain why we need only 23 
people, rather than 183 people, in a room before two people are likely to 
share a birthday. Checking the prediction required the exact probability of 
a shared birthday: 

1 2 (𝑛 − 1) 
𝑝shared = 1 − (1 − 365)(1 − ⎜1 − ⎟ . (8.4)365)⋯ ⎛

⎝ 365 
⎞
⎠ 

The last part of Problem 4.23 asked why, with 𝑛 people in the room, the last 
factor in this probability contains (𝑛 − 1)/365 rather than 𝑛/365. 
The simplest answer comes from the easy case 𝑛 = 1. With one person in 
the room, the probability of sharing a birthday is zero. In this easy case, the 
prediction of the candidate formula with 𝑛 in the numerator is easy to test. 
Its last factor would be 1 − 1/365: 

1𝑝candidate with 𝑛 = 1 − (1 − 365) . (8.5) 

This probability is 1/365, which is incorrect. Thus, with 𝑛 people in the 
room, the last factor in the probability of a shared birthday cannot contain
𝑛/365. In contrast, the candidate formula with (𝑛 − 1)/365 in the last factor 
correctly predicts zero probability when 𝑛 = 1: 

0𝑝candidate with 𝑛 − 1 = 1 − (1 − 365) = 0. (8.6) 

This candidate must be correct. 

Problem 8.1 Sine or cosine by easy cases 
For a mass sliding down an inclined plane, is its acceleration along the plane 𝑔 sin 𝜃 
or g cos 𝜃 , where 𝜃 is the angle the plane makes with horizontal? Use an easy case 
to decide. Assume (the easy case of!) zero friction. 

Problem 8.2 Friction by easy cases 
For the mass of Problem 8.1, relax the assumption of zero friction. If the coeffi-
cient of sliding friction is 𝜇, choose the block’s correct acceleration along the plane: 
(a) 𝑔(sin 𝜃 + 𝜇 cos 𝜃), (b) 𝑔(1 + 𝜇) sin 𝜃 , (c) 𝑔(sin 𝜃 − 𝜇 cos 𝜃), or (d) 𝑔(1 − 𝜇) sin 𝜃 . 

8.2 Two regimes 
After warming up with the examples in Section 8.1, let’s now look system-
atically at how to use the method of easy cases. The first step is to identify 
the dimensionless quantity. Once you know it—let’s call it 𝛽—the behavior 
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of the system almost always divides into three regimes: 𝛽 ≪ 1, 𝛽 ∼ 1 (or
𝛽 = 1), and 𝛽 ≫ 1. In a common simplification, which is the subject of this 
section, one regime is impossible, so two regimes remain. (In Section 8.3, 
we will discuss what to do when all three regimes remain.) This simplifi-
cation can happen because symmetry makes the bookend regimes 𝛽 ≪ 1 
and 𝛽 ≫ 1 equivalent (Section 8.2.1) or because a geometric or physical 
constraint excludes one regime (Section 8.2.2). 

8.2.1 Only two regimes because of symmetry 
The bookend regimes 𝛽 ≪ 1 and 𝛽 ≫ 1 are often connected by a symmetry. 
Then the analysis at one bookend can be used as the analysis for the other 
bookend, and there are really two regimes: the symmetric bookends and 
the middle regime. 

8.2.1.1 Why multiplication is more important than addition 
As an example, here’s an easy-cases explanation of why, when estimating, 
multiplication is a more important operation than addition. Let’s say that 
we are estimating a cost, a force, or an energy consumption that splits into 
two pieces 𝐴 and 𝐵 to add together—for example, energy for heating and 
for transportation. Estimating 𝐴 + 𝐵 seems to require addition. 
The need disappears after we examine the easy-cases regimes. The regimes 
are determined by a dimensionless quantity. Because 𝐴 and 𝐵 have the 
same dimensions, their ratio 𝐴/𝐵 is dimensionless, and it categorizes the 
three easy-cases regimes. 

Regime 1 Regime 2 Regime 3 

𝐴 ≪ 𝐵 𝐴 ∼ 𝐵 𝐴 ≫ 𝐵
 

𝐴/𝐵 ≪ 1 𝐴/𝐵 ∼ 1 𝐴/𝐵 ≫ 1
 

In the first regime, the sum 𝐴 + 𝐵 is approximately 𝐵. In the symmetric 
third regime, the sum is approximately 𝐴. The common feature of the first 
and third regimes—their invariant—is that one contribution dominates the 
other. Only the second regime, where 𝐴 ∼ 𝐵, is different. To handle it, just 
make the lumping approximation that 𝐴 = 𝐵; then 𝐴+ 𝐵 ≈ 2𝐴. 
So, when estimating 𝐴 + 𝐵, we do not need addition. In the first and third 
regimes, we just pick the larger contribution, 𝐴 or 𝐵. In the second regime, 
we just multiply by 2. 
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8.2.1.2 Area of an ellipse 
A mathematical example of this kind of symmetry happens when 
guessing the area of an ellipse. The dimensionless quantity is its 
aspect ratio 𝑎/𝑏, where 𝑎 is one-half of the horizontal diameter 
and 𝑏 is one-half of the vertical diameter. Here are the regimes. 

a
b

Regime 1 Regime 2 Regime 3 

a

b

a

b

a
b

𝑎/𝑏 ≪ 1 𝑎/𝑏 = 1 𝑎/𝑏 ≫ 1 

area → 0 area = 𝜋𝑎2 area → 0 

The first and third regimes are identical because of a symmetry: Interchang-
ing 𝑎 and 𝑏 rotates the ellipse by 90∘ (and reflects it through its vertical axis) 
without changing its area. Therefore, any proposed formula for the area 
must work in the first regime, must satisfy the symmetry requirement that 
interchanging 𝑎 and 𝑏 has no effect on the area (thereby taking care of the 
third regime), and must work for a circle (the second regime). 
Because of the symmetry requirement, simple but asymmetric modifica-
tions of the area of a circle—namely, 𝜋𝑎2 and 𝜋𝑏2—cannot be the area of 
an ellipse. A plausible, symmetric alternative is 𝜋(𝑎2 + 𝑏2)/2. In the sec-
ond regime, where 𝑎 = 𝑏, it correctly predicts the area of a circle. However, 
it fails in the first regime: The area isn’t zero even when 𝑎 = 0. 

Is there an alternative that passes all three tests? 

A successful alternative is 𝜋𝑎𝑏. It predicts zero area when 𝑎 = 0; it is sym-
metric; and it works when 𝑎 = 𝑏. It is also the correct area. 

8.2.1.3 Atwood machine 
In the preceding examples, we had a ready-made dimensionless group and 
used it to categorize the three easy-cases regimes. The next example shows 
what you do when there is no group handy: Use dimensional analysis to 
make one. Then use the group to categorize the regimes and understand 
the system’s behavior. Easy cases and dimensional analysis work together. 
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The example is the Atwood machine, a staple of the introductory mechan-
ics curriculum. Two masses, 𝑚1 and 𝑚2, are connected by a massless, 
frictionless string and are free to move up and down because of the pul-
ley. This machine, invented by the Reverend George Atwood, reduces 
the effective gravitational acceleration by a known fraction and makes 
constant-acceleration motion easier to study. (A historical discussion of 
the Atwood machine is given by Thomas Greenslade in [27].) Today its 
principle is used in elevators: The elevator car is 𝑚1, and the counter-

m1 m2

weight is 𝑚2. 

What is the acceleration of the masses? 

Our second step is to identify the easy-cases regimes, LT−2𝑎 acceleration 
but our first step is to find the dimensionless group 𝑔 LT−2 gravity 
that categorizes them. Therefore, we make our list of 𝑚1 M left block’s mass 
relevant quantities and their dimensions. The goal 𝑚2 M right block’s mass 
is the acceleration of the masses. Because they are 
connected by a string, their accelerations have the same magnitude but op-
posite directions. Let 𝑎 be the downward acceleration of the mass on the 
left—whether it is labeled 𝑚1 or 𝑚2 (planning for an application of symme-
try). Because 𝑎 is our goal quantity, it is the first quantity on the list. The 
motion is caused by gravity, so the list includes 𝑔 . Finally, the masses affect 
the acceleration, so the list includes 𝑚1 and 𝑚2. And that’s the whole list. 

Doesn’t the tension also affect the acceleration? 

The tension has an important effect: Without the tension, there would be 
no problem to solve, because each mass would accelerate downward at 𝑔 . 
However, the tension is a consequence of 𝑚1, 𝑚2, and 𝑔—quantities already 
on the list. Thus, tension is redundant; adding it would only confuse the 
dimensional analysis. 

This list contains only two independent dimensions: mass (M) and acceler-
ation (LT−2). Four quantities built from two independent dimensions pro-
duce two independent dimensionless groups. The most natural choices are 
the acceleration ratio 𝑎/𝑔 and the mass ratio 𝑚1/𝑚2. Then the most general 
dimensionless statement is 

𝑎 = 𝑓 ( 
𝑚1) , (8.7)𝑔 𝑚2 

where 𝑓 is a dimensionless function. 
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Although the next step is to use easy cases to guess the dimensionless func-
tion, first pause for a moment. The more we think now in order to choose 
a suitable representation, the less algebra we have to do later. Here, the 
ratio 𝑚1/𝑚2 does not respect the symmetry of the problem. Interchanging 
the masses 𝑚1 and 𝑚2 turns 𝑚1/𝑚2 into its reciprocal: It raises the ratio to 
the −1 power. Meanwhile, because the left mass is now 𝑚2, which has the 
opposite acceleration to 𝑚1, this symmetry operation changes the sign of 
the acceleration 𝑎 (which measures the downward acceleration of the left 
mass): It multiplies the acceleration by −1. The function 𝑓 will have to in-
corporate this change in the nature of the symmetry and will have to work 
hard to turn 𝑚1/𝑚2 into an acceleration. Therefore, 𝑓 will be complicated 
and hard to guess. (You can find it anyway in Problem 8.3.) 
A more symmetric alternative to the ratio 𝑚1/𝑚2 is the difference 𝑚1 − 𝑚2. 
Now interchanging 𝑚1 and 𝑚2 negates 𝑚1 − 𝑚2, just as it negates the accel-
eration. Unfortunately, 𝑚1 − 𝑚2 is not dimensionless! It has dimensions of 
mass. To make it dimensionless, we need to divide it by another mass, say
𝑚1, to make (𝑚1−𝑚2)/𝑚1. Unfortunately, that choice abandons our beloved 
symmetry. Dividing instead by the symmetric combination 𝑚1 + 𝑚2 solves 
all the problems. Let’s call the result 𝑥: 

𝑥 ≡ 
𝑚1 − 𝑚2 . (8.8)𝑚1 + 𝑚2 

This ratio is dimensionless and respects the problem’s symmetry. With it 
as the dimensionless group, the most general dimensionless statement is 

𝑎 
𝑔 

= ℎ( 
𝑚1 − 𝑚2) , (8.9)𝑚1 + 𝑚2 

where ℎ is a dimensionless function (different from 𝑓 ). (This combination of 
𝑚1 and 𝑚2 doesn’t satisfy the definition of a group given in Section 5.1.1, as a 
dimensionless product of the quantities raised to various powers. However, 
it is worth extending the concept to include such combinations.) 
To guess ℎ, study the easy-cases regimes according to 𝑥. They are three: 
𝑥 = −1 (imagine that 𝑚1 = 0), 𝑥 = 0 (when 𝑚1 = 𝑚2), and 𝑥 = +1 (imagine 
that 𝑚2 = 0). Here you see how easy cases help us. The extremity of the 
first and third regimes and the simplicity of the second regime amplify our 
physical intuition and help our gut predict the behavior. 
In the first regime, 𝑚2 falls as if there were no mass on the other end of 
the string. Thus, 𝑚1 rises with acceleration +𝑔 . Because 𝑎 measures the 
downward acceleration of the left mass, 𝑎 = −𝑔 . In the third, symmetric 
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Regime 1 Regime 2 Regime 3 

m1 m2

g

m1 m1 m1 m2

g

𝑥 = −1 𝑥 = 0 𝑥 = +1 

𝑚1 = 0 𝑚1 = 𝑚2 𝑚2 = 0 

𝑎 = −𝑔 𝑎 = 0 𝑎 = +𝑔 

regime, 𝑚1 accelerates downward as if there were no mass on the other end, 
so 𝑎 = +𝑔 . In the second regime, where 𝑥 = 0 or 𝑚1 = 𝑚2, the masses are 
in equilibrium, and 𝑎 = 0. 

Here are the three easy cases plotted on a graph 
of the dimensionless acceleration 𝑎/𝑔 versus the 
dimensionless mass parameter 𝑥. Based on this 
graph, the simplest conjecture, an educated guess, 
is that the full graph of ℎ(𝑥) is the straight line of 
unit slope passing through the three points. Thus, 
its equation is 𝑎/𝑔 = 𝑥. In terms of the masses, the 
equation is 

𝑎 𝑚1 − 𝑚2= . (8.10)𝑔 𝑚1 + 𝑚2 

In Problem 8.4(d), you solve for the acceleration by 

a/g

x

m1 = 0

m2 = 0

m1 = m2

1−1

1

−1

using Newton’s laws to find the tension in the string. Then you’ll confirm 
our reasonable conjecture based on easy-cases reasoning. 

Problem 8.3 Using the less symmetric dimensionless group 

Find the dimensionless function 𝑓 based on the simpler, but less symmetric, di-
mensionless group 𝑚1/𝑚2: 

𝑎 
𝑔 

= 𝑓 ( 
𝑚1 

𝑚2 
) . (8.11) 

Compare it to the dimensionless function that results from choosing the symmetric 
form (𝑚1 − 𝑚2)/(𝑚1 + 𝑚2) as the independent variable. 
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Problem 8.4 Tension in the string in Atwood’s machine 
In this problem you use easy cases to guess the tension in the connecting string. 

a.	 The tension 𝑇 , like the acceleration, depends on 𝑚1, 𝑚2, and 𝑔 . Explain why 
these four quantities produce two independent dimensionless groups. 

b.	 Choose two suitable independent dimensionless groups so that you can write 
an equation for the tension in this form: 

group proportional to 𝑇 = 𝑓 (group without 𝑇).	 (8.12) 

c. Use easy cases to guess 𝑓 ; then sketch 𝑓 . 

d. Solve for 𝑇 using freebody diagrams and Newton’s laws. Then compare that re-
sult with your guess in part (c), and use 𝑇 to find 𝑎, the downward acceleration 
of 𝑚1. 

8.2.2 Only two regimes because of a restriction 
In the preceding examples, there were three regimes of a dimensionless 
quantity, but the two bookend regimes were connected by a symmetry op-
eration and were therefore the same situation. Therefore, there were only 
two qualitatively different regimes. In the next group of examples, there are 
only two regimes for a different reason: A geometric or physical constraint 
excludes one bookend regime. 

8.2.2.1 Projectile range 
In Section 4.2.3, we used proportional reasoning
 
to show that the range of a projectile should have
 
the form 𝑅 ∼ 𝑣2/𝑔 , where 𝑣 is its launch velocity.
 
However, we didn’t determine how the launch
 
angle 𝜃 affects the range. We can do so using easy
 
cases, with help from dimensional analysis.
 

v

θ

R

Now the problem contains four quantities: 𝑅, 𝑣, 𝑔 , and 𝑅 L range 
𝜃 . Four quantities containing two independent dimen- 𝑣 LT−1 launch velocity 
sions (for example, L and T) produce two independent LT−2𝑔 gravity 
dimensionless groups. A reasonable pair is the launch 𝜃 1 launch angle 
angle 𝜃—which is already dimensionless—and, based 
on the proportional-reasoning result, 𝑅𝑔/𝑣2. Then the most general dimen-
sionless statement is 

𝑅𝑔 
= 𝑓 (𝜃),	 (8.13)

𝑣2 
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where 𝑓 is a dimensionless function. Solving for 𝑅, 

𝑅 = 
𝑣
𝑔
2 
× 𝑓 (𝜃). (8.14) 

Dimensional analysis does not tell us the form of 𝑓 , but we can guess it 
by examining the easy cases. Easy-cases reasoning is a way of introducing 
physical knowledge. 
Because angles are dimensionless, 𝜃 can categorize the easy-cases regimes. 
The natural easy cases of any quantity are its extremes: 𝜃 ≪ 1 (our usual 
first regime) and 𝜃 ≫ 1 (our usual third regime). The regime 𝜃 ≪ 1 in-
cludes the smallest launch angle 𝜃 = 0∘. Then the range is zero: The pro-
jectile starts at ground level, is launched horizontally, and hits the ground 
immediately. However, the opposite extreme 𝜃 ≫ 1 is not useful, because 
angles are periodic. Any angle beyond 2𝜋 is already handled by an angle 
less than 2𝜋 . Our usual third regime is therefore geometrically excluded. 
Our usual second regime is 𝜃 ∼ 1. Here, the easy angle comparable to 1 
(in radians) is 𝜃 = 90∘ (𝜋/2 radians). This angle describes a vertical launch, 
which doesn’t produce any range. Thus, 𝑅 in this regime is also 0. 
The two regimes are therefore 𝜃 = 0 (an example of 𝜃 ≪ 1) and 𝜃 = 𝜋/2 (an 
example of 𝜃 ∼ 1). 

Regime 1 Regime 2 

𝜃 = 0 𝜃 = 𝜋/2
 

𝑅 = 0 𝑅 = 0
 

𝑓 (𝜃) = 0 𝑓 (𝜃) = 0
 

What reasonable functions satisfy the two easy-cases constraints on 𝑓 (𝜃)? 

One such function is the product of two straight lines, 
each line ensuring that one of the constraints is satisfied: 

𝑓 (𝜃) = 𝜃 ( 
𝜋
2 

− 𝜃) . (8.15) 

However, this functional form looks funny. The 𝜋/2 in 
the second factor appears by magic, with no obvious ori-

θ
π
20

π
2 − θ θ

(
π
2 − θ

)
θ

gin in the equations of free fall. Worse, the guess is not periodic. Increasing
𝜃 by 2𝜋 shouldn’t change the range, but it changes this proposed 𝑓 . Thus, 
we need to keep looking. 
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A similar but less magical form, also the product of two
 
factors, is
 

𝑓 (𝜃) ∼ sin 𝜃 cos 𝜃. (8.16) 

The cos 𝜃 factor ensures that 𝑓 (𝜋/2) = 0. The sin 𝜃 fac-
tor ensures that 𝑓 (0) = 0. This functional form is also 
periodic. And it has a physical justification: sin 𝜃 is the 
trigonometric factor that converts the launch velocity 𝑣 into its vertical com-
ponent 𝑣𝑦; the cos 𝜃 factor does the same for the horizontal component 𝑣𝑥. 
Because these velocities appeared in the proportional-reasoning analysis 
of Section 4.2.3, we already know that they are physically relevant, making 
this functional form more plausible than the preceding form. 

θ
π
20

cos θ sin θ

sin θ cos θ

The resulting range, including the effect of the angle, is then 

𝑅 ∼ 
𝑣
𝑔
2 
sin 𝜃 cos 𝜃. (8.17) 

This form is correct, and the dimensionless prefactor turns out to be 2 (as 
you can show in Problem 8.5). 

Problem 8.5 Finding the dimensionless constant 
Extend the proportional-reasoning analysis of Section 4.2.3 to show that the miss-
ing dimensionless prefactor in the projectile range is 2. 

8.2.2.2 Light bending with large angles 
Our next example of a physical limit excluding a third regime also involves 
an angle: the bending of light by gravity. 

Sun

star
eye

starlight

apparent
position

r

θ

mass m

In Section 6.4.6, we used lumping to find that the gravitational field from a 
mass 𝑚 bends light by an angle 

𝜃 ∼ 
𝐺𝑚 

(8.18)
𝑟𝑐2 

, 
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where 𝑟 is the distance of closest approach. 

This angle is dimensionless. Thus, let’s use it to categorize and to investi-
gate the easy cases of light bending. The first regime is 𝜃 ≪ 1—for example, 
the Sun bending starlight by roughly 1 arcsecond. The second regime is 
𝜃 ∼ 1. In this regime, a new physical phenomenon appears, and lumping 
will help us analyze it. 

The lumping analysis is based on the American televi-
sion cartoon of the Road Runner pursued by the Wile 
E. Coyote. The road runner runs across a chasm, fol-
lowed by the coyote. They cruise as if gravity is gone, 
until the road runner, safely across the gap, holds up 
a sign with an arrow pointing downward explaining, 
“Gravity this way.” The coyote looks down, remembers 
the existence of gravity, and falls into the chasm. 

coyote:
”Oh, no!”

road
runner

g

chasm

In the coyote model, light zooms past the mass 
(say, a star) ignorant of gravity. After it has gone 
too far—by a distance comparable to 𝑟—the star 
holds up a sign saying, “You forgot about grav-
ity! Please bend by 𝜃 now!” In this second regime, 
𝜃 ∼ 1. The following pictures and analysis are 
clearest if 𝜃 = 𝜋/2 (or 90∘), so let’s use 90∘ to rep-
resent the 𝜃 ∼ 1 regime. 

The ray, on command, bends by 90∘. It travels 
along and gets reminded again. The distance of closest approach is still
𝑟, so 𝜃 is still 90∘. The beam traces out a square. Although the ray doesn’t 
actually follow this path with its sharp corners, the path illustrates the fun-
damental feature of the 𝜃 ∼ 1 regime: The ray is in orbit around the star. 
When 𝜃 ∼ 1, light gets captured by the strong gravitational field. The third 
regime, 𝜃 ≫ 1, doesn’t introduce a new physical phenomenon—the light is 
still captured by the gravitational field. In either regime, the mass is a black 
hole. 

ray goes merrily along

m

r

r

Bend!

Bend!Bend!

θ θ

θ

Problem 8.6 Guessing a variance 
The variance is a squared measure of the spread in a distribution: 

Var 𝑥 = ⟨𝑥2⟩ − ⟨𝑥⟩2. (8.19) 

where ⟨𝑥2⟩ is the average or expected value of 𝑥2 (the mean square) and ⟨𝑥⟩ is the 
average value of 𝑥 (the mean). 
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a.	 Use an easy case to convince yourself that the mean square ⟨𝑥2⟩ is never smaller 
than the squared mean ⟨𝑥⟩2. 

b.	 The simplest possible distribution has only two possibilities, 𝑥 = 0 and 𝑥 = 1, 
with probabilities 1 − 𝑝 and 𝑝, respectively. This distribution describes a coin 
toss where heads (represented by 𝑥 = 1) comes up with probability 𝑝. Use easy 
cases to guess Var 𝑥. 

Problem 8.7 Local black hole 
What is roughly the largest radius that the Earth could have, with its current mass, 
and be a black hole? 

8.3 Three regimes 
Two regimes are easier than three. Therefore, we studied that case first to 
develop experience and identify the transferable ideas. Fortunately, even 
when a complex situation has three regimes, two simplifications are pos-
sible. First, the bookend regimes are often easier than the middle regime 
(Section 8.3.1). Then we study the bookends and, to predict the behavior 
in the middle, interpolate between the bookends. Alternatively, two effects 
compete and reach a draw in the middle regime (Section 8.3.2). This middle 
regime is then the regime found in nature. 

8.3.1 Three regimes where the bookends are easier 
In a common easy-cases situation, the dimensionless number categorizing 
the three regimes is a ratio between two physical effects. Then the two book-
ends are the easiest regimes to analyze—because at each bookend, one or 
the other effect vanishes. We’ll practice this analysis in an example from 
introductory mechanics (Section 8.3.1.1); then we’ll graduate to drag (Sec-
tion 8.3.1.2). 

8.3.1.1 Rolling down the plane 
As our introductory example, let’s revisit objects rolling with-
out slipping down an inclined plane. The goal will be to pre-
dict an object’s acceleration 𝑎 along the plane. Dimensional 
analysis, from Problem 5.18, tells us that the most general di-
mensionless statement about 𝑎 is 

θ

r

mass m

a

𝑎 𝐼= 𝑓 (𝜃,	 (8.20)𝑔 𝑚𝑟2
) , 
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where 𝑓 is a dimensionless function, 𝜃 is the incline angle, 𝐼 is the object’s 
moment of inertia, 𝑚 is its mass, and 𝑟 is its radius. The only quantities 
that affect the acceleration are the two dimensionless groups: the incline an-
gle 𝜃 and the dimensionless mass distribution 𝐼/𝑚𝑟2. The ratio 𝐼/𝑚𝑟2, and 
therefore the acceleration, is invariant under changes to the object’s mass 
or radius (for example, making a bigger ring or disc). In plainer language, 
which however doesn’t connect as much to symmetry reasoning, simply 
changing the object’s mass or radius without changing its shape does not 
change its acceleration. 

Which shape rolls faster—a ring or a disc? 

In this comparison, the inclined plane and thus the incline angle 𝜃 remain 
fixed. However, the dimensionless group 𝐼/𝑚𝑟2 changes and can categorize 
the easy-cases regimes. This group occurs repeatedly in the analysis, so 
we’ll often symbolize it as 𝛽. By understanding the behavior in the regimes 
defined by 𝛽, we’ll be able to predict the result of the ring–disc race. 

Let’s start with the first regime, 𝐼/𝑚𝑟2 = 0. This regime is reached by mak-
ing 𝐼 zero. Then rolling, represented by 𝐼 , becomes irrelevant. The object 
moves as if it were sliding down the plane without friction. Its acceleration 
is then 𝑔 sin 𝜃 , and 𝑎/𝑔 = sin 𝜃 . 

With this easy-cases result, we can simplify the unknown function 𝑓 , which 
unfortunately is a function of two dimensionless groups. As a reasonable 
conjecture, the dependence on angle is probably still sin 𝜃 , even when 𝐼 is 
not zero. Then the dimensionless statement simplifies to 

𝑎 
𝑔 

= ℎ( 
𝑚𝑟
𝐼 
2 ) sin 𝜃, (8.21) 

where ℎ is a dimensionless function of only one group. 

Let’s guess ℎ using easy cases of 𝛽 = 𝐼/𝑚𝑟2. The three regimes will be 𝛽 = 0 
(a special case of 𝛽 ≪ 1), 𝛽 ∼ 1, and 𝛽 ≫ 1. In the first regime, when 𝛽 = 0, 
rolling is unimportant, as we just observed. Therefore, 𝑎/𝑔 = sin 𝜃 and the 
dimensionless function ℎ(𝛽) is just 1. 

The middle regime 𝛽 ∼ 1 is difficult to analyze without a full calculation. 
Yet the goal of an easy-cases analysis is to make the situation simple enough 
that the behavior is easy to see and we can skip the full calculation. Even 
the simplest value within this regime, 𝛽 = 1, is not any easier than other 
values. (It describes the ring, where all mass is distributed at the edge of the 
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object, at a distance 𝑟 from the center). The middle regime is, as promised, 
the difficult regime. Neither fish nor fowl, it mixes rolling and sliding in 
comparable amounts. 
The solution is to study the third regime, where 𝛽 ≫ 1, and then to inter-
polate between the first and third regimes in order to predict the behavior 
in the middle regime. (We implicitly used this interpolation approach in 
Section 6.4.3, when we estimated the time and distance for a falling cone to 
reach its terminal speed.) 

For an object rolling down the plane, how can 𝛽 be increased beyond 1? 

There seems to be no way to increase 𝛽 beyond 1: When 𝛽 = 1, all mass is 
already distributed at the edge. Fortunately, the subtle point is that, in the 
dimensional analysis, 𝑟 is the rolling radius, rather than the radius of the 
object, because the rolling radius determines the torque and the motion. 
The object’s radius can be larger than the rolling radius. This possibility 
allows us to increase 𝛽 as much as we want. 
As an example, imagine a barbell used for weight lifting: A 
thin axle of radius 𝑟 connects two large and massive ears of 
radii 𝑅. Place the axle on the inclined plane, with the ears 
beyond the plane. The rolling radius is the radius 𝑟 of the axle. 
However, the moment of inertia 𝐼 is mostly due to the large ears, because 

θ

axle
ear

moment of inertia ∝ (distance from the axis of rotation)2. (8.22) 

Thus, 𝐼 ∼ 𝑚𝑅2, where 𝑚 is the combined mass of the two ears, which is 
almost the same as the mass of the whole object. By choosing 𝑅 ≫ 𝑟, we 
can make 𝛽 ≫ 1: 

2𝐼𝛽 ≡ ≫ 1. (8.23)
𝑚𝑟2 

∼ ( 
𝑅
𝑟 )

How quickly does this large-𝛽 object accelerate down the plane? 

This extreme regime is easier to think about than the intermediate regime
𝛽 = 1. The extremity of the 𝛽 ≫ 1 regime amplifies our intuition and shouts 
loudly enough for our gut to hear. Then our gut’s answer is loud enough 
for us to hear: The barbell, rolling on its small axle, as long as it doesn’t slip, 
will creep down the plane (the italics represent my gut’s shouting). Going 
fast would, in spinning up the ears, demand far more energy than gravity 
can provide. Thus, as the ears get ever larger and 𝛽 goes to infinity, the 
dimensionless rolling factor ℎ(𝛽) goes to zero. 
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Regime 1 Regime 2 Regime 3 

θ

m

θ θ

axle
ear

𝛽 ≡ 
𝐼 

𝑚𝑟2 
= 0 

𝐼 
𝑚𝑟2 

∼ 1 
𝐼 

𝑚𝑟2 
≫ 1 

𝑎 = 𝑔 sin 𝜃 𝑎 = ? 𝑎 → 0 

ℎ = 1 ℎ = ? ℎ → 0 

A simple guess that accounts for the two extreme 
regimes is 

1ℎ(𝛽) = (8.24)1 + 𝛽 
. 

In terms of the original quantities, the accelera-
tion would be 

𝑔 sin 𝜃 
𝑎 = (8.25)

1 + 𝐼/𝑚𝑟2
. β

1 sliding limit: h(0) = 1

0
0 1

h(β) → 0

big-ears limit

interpolated
guess

This educated guess turns out to be correct (Problem 8.8). Now we can 
answer our original question about which shape rolls faster. The farther 
outward the mass is distributed, the greater 𝛽 is, so 𝛽ring > 𝛽disc. Because 𝑎 
decreases as 𝛽 increases, the disc rolls faster than the ring. 

Problem 8.8 Exact solution to rolling down the plane 
Use conservation of energy to find the acceleration of the object along the plane, 
and confirm the guess based on the easy-cases regimes. 

Problem 8.9 A pendulum with chewing gum 

A pendulum with a disc as the pendulum bob is oscillating with period 𝑇 . You 
then stick a small piece of chewing gum onto the center of the disc. How does the 
gum affect the pendulum’s period: an increase, no effect, or a decrease? 

rod

before

rod

gum

after
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8.3.1.2 Drag using easy cases 
Drag, like any phenomenon related to fluids, is a hard problem. In par-
ticular, there is no way to calculate the drag coefficient 𝑐d as a function of 
Reynolds number 𝖱𝖾—even for simple shapes such as a sphere or a cylinder. 
However, dimensional analysis (Section 5.3.2) has told us that 
drag coefficient = 𝑓 (Reynolds number). (8.26)⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

𝑐d 𝖱𝖾 

However, dimensional analysis could not tell us the function 𝑓 . That’s no 
slur on dimensional analysis; finding the whole function is beyond our 
present-day understanding of mathematics. However, we can understand 
much about 𝑓 in two easy cases: the bookend regimes 𝖱𝖾 ≫ 1 and 𝖱𝖾 ≪ 1. 
In the difficult middle regime 𝖱𝖾 ∼ 1, the function 𝑓 interpolates between 
its behavior in the two extremes. 
Low Reynolds number. Flows at low Reynolds number, although not as fre-
quent in everyday experience as flows at high Reynolds number, include 
a fog droplet falling in air (Problem 8.13), a bacterium swimming in water 
(discussed in the classic paper “Life at low Reynolds number” [39]), and 
ions conducting electricity in seawater (Problem 8.10). Our goal here is to 
find the drag coefficient in the regime 𝖱𝖾 ≪ 1. 
The Reynolds number (based on radius) is 𝑣𝑟/𝜈 , where 𝑣 is the speed, 𝑟 is 
the object’s radius, and 𝜈 is the kinematic viscosity of the fluid. Therefore, 
to shrink 𝖱𝖾, either make the object small, make the object’s speed low, or 
use a fluid with high viscosity. The method does not matter, as long as 𝖱𝖾 
is small: The drag coefficient is determined not by any of the individual 
parameters 𝑟, 𝑣, or 𝜈 , but rather by the abstraction 𝖱𝖾. We’ll choose the 
means that leads to the most transparent physical reasoning: making the 
viscosity huge. Imagine, for example, a tiny bead oozing through a jar of 
cold honey. (The tininess of the bead further reduces 𝖱𝖾.) 
In this extremely viscous flow, the drag force, as you might expect, is pro-
duced directly by viscous forces. As you reasoned in Problem 7.25, viscous 
forces, which are proportional to the kinematic viscosity 𝜈 , are given by 

𝐹viscous ∼ 𝜌𝜈 × velocity gradient × area. (8.27) 

The area is the surface area of the object. The velocity gradient is the rate at 
which velocity changes with distance; it is analogous to the concentration 
gradient Δ𝑛/Δ𝑥 in the Fick’s-law analysis of Section 7.4.2 or to the tempera-
ture gradient Δ𝑇/Δ𝑥 in the heat-flow analysis of Section 7.4.4. 
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Because the drag force is due to viscous forces directly, it should be pro-
portional to 𝜈 . This constraint determines the form of the function 𝑓 and 
therefore the drag force. Let’s write out the dimensional-analysis result 
connecting the drag coefficient and the Reynolds number: 

𝑐d ≡ 
𝐹d = 𝑓 ( 

𝑣𝑟 , (8.28)1 
2𝜌𝐴cs𝑣

2 ⏟𝜈 
) 

𝖱𝖾 

where 𝐹d is the drag force and 𝐴cs is the object’s cross-sectional area. In 
terms of the radius, 𝐴cs ∼ 𝑟2, so 

𝐹d ∼ 𝑓 ( 
𝑣𝑟 . (8.29)

𝜌𝑟2𝑣2 𝜈 
)

⏟ ⏟
 
∼𝑐d 𝖱𝖾
 

The viscosity 𝜈 appears only in the Reynolds number, where it appears in 
the denominator. To make 𝐹d proportional to 𝜈 requires making the drag 
coefficient proportional to 1/𝖱𝖾. Equivalently, the function 𝑓 , when 𝖱𝖾 ≪ 1, 
is given by 𝑓 (𝑥) ∼ 1/𝑥. Then 

(8.30)
𝜌𝑟
𝐹
2
d 

𝑣2 
∼ 𝑣𝑟 

𝜈 . 

For the drag force itself, the consequence is (as you found in Problem 7.26) 

𝐹d ∼ 𝜌𝑟2𝑣2 
𝑣𝑟 
𝜈 = 𝜌𝜈𝑣𝑟. (8.31) 

This result is valid for almost all shapes; only the dimensionless prefactor 
changes. For a sphere, the British mathematician George Stokes showed 
that the missing dimensionless prefactor is 6𝜋 : 

𝐹d = 6𝜋𝜌𝜈𝑣𝑟. (8.32) 

Accordingly, this result is called Stokes drag. 
High Reynolds number. Because the Reynolds number 𝑟𝑣/𝜈 contains three 
quantities, the limit of high Reynolds number can also be reached in three 
ways, all of which produce the same behavior. We’ll choose the method 
that is easiest to feel, which is to shrink the viscosity 𝜈 to 0. In this limit, 
called form drag, viscosity disappears from the problem and the drag force 
should not depend on viscosity. This reasoning contains several untruths, 
but they are subtle and the conclusion is mostly correct. (Clarifying the 
subtleties required centuries of progress in mathematics, culminating in 
the theory of singular perturbations and boundary layers, the subject of 
Section 7.3.4 and discussed much more in Physical Fluid Dynamics [46].) 
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Without viscosity and thus without the Reynolds number to depend 𝑐d 

on, the dimensionless function 𝑓 must be a constant! Its value de-
car 0.4pends on the shape of the object and typically ranges from 0.5 to 2. 
sphere 0.5Because the drag coefficient is 𝐹d/ 12𝜌𝑣

2𝐴cs, the drag force is cylinder 1.0 
𝐹d ∼ 𝜌𝑣2𝐴cs. (8.33) flat plate 2.0 

This result agrees with our analysis in Section 3.5.1 based on energy 
conservation. In that analysis, we had implicitly assumed a high Reynolds 
number without knowing it. 

Problem 8.10 Conductivity of seawater 
Estimate the conductivity of seawater by assuming that the current-carrying ions
 
(Na+ or Cl−) travel with a shell one layer thick of water molecules around them.
 

Problem 8.11 Drag coefficient resulting from Stokes drag 
At low Reynolds number, the drag force on a sphere is 𝐹 = 6𝜋𝜌𝜈𝑣𝑟 (Stokes drag). 
Find the drag coefficient 𝑐d as a function of Reynolds number, basing the Reynolds 
number on the sphere’s diameter rather than its radius. 

Problem 8.12 Choosing the high- or low-Reynolds-number regime 
To estimate the terminal speed of a raindrop (Problem 3.37), you implicitly used
 
the high-Reynolds-number regime. Now that you know another regime, how can
 
you choose which regime to use? Without knowing which regime, you cannot
 
find the terminal speed. Without the terminal speed, how do you find Reynolds
 
number, which you need to choose the regime? The answer is to choose a regime
 
and see whether the result is self-consistent. If it is not, choose the other regime.
 

As practice with this reasoning, assume that the Reynolds number for the falling
 
raindrop is small and therefore that the drag force 𝐹d is given by Stokes drag:
 

𝐹d ∼ 𝜌air𝜈𝑣𝑟.	 (8.34) 

Estimate the resulting terminal speed 𝑣 for the raindrop (diameter of about 0.5
 
centimeters). Then check the assumption that 𝖱𝖾 ≪ 1.
 

Problem 8.13 Terminal speed of fog droplets 
a.	 Estimate the terminal speed of fog droplets (𝑟 ∼ 10 𝜇m). In estimating the drag
 
force, use either the limit of low or high Reynolds numbers—whichever limit
 
you guess is more likely to be valid. (Problem 8.12 introduces this reasoning.)
 

b.	 Use the speed to estimate the Reynolds number and check whether you used
 
the correct limit for the drag force. If not, try the other limit!
 

c.	 Fog is a low-lying cloud. How long does a fog droplet require to fall 1 kilometer
 
(a typical cloud height)? What is the everyday effect of this settling time?
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Interpolation. We now know the drag force in the two extreme regimes: vis-
cous drag (low Reynolds number) and form drag (high Reynolds number). 
Interpolating between these regimes is easiest in dimensionless form—that 
is, in terms of the drag coefficient rather than the drag force. 
When 𝖱𝖾 ≫ 1, the drag coefficient 𝑐d is roughly 
0.5 (for a sphere). On log–log axes, the 𝖱𝖾 ≫ 1 
behavior is a straight line with zero slope. In the
𝖱𝖾 ≪ 1 regime, you should have found in Prob-
lem 8.11 that the drag coefficient (for a sphere) 
is 24/𝖱𝖾, where the Reynolds number is based 
on the diameter rather than the radius: The 1/𝖱𝖾 
scaling happens because, as we just deduced, 𝑓 (𝖱𝖾) ∼ 1/𝖱𝖾 to make the 
drag force proportional to viscosity 𝜈 ; the dimensionless prefactor of 24 is 
what you had to compute. On log–log axes, the 𝖱𝖾 ≪ 1 behavior is also a 
straight line but with a −1 slope. 

cd ≈ 24
Re

cd ≈ 0.5

Re � 1 Re � 1

The dashed line interpolates between the extremes. The final twist is that 
at 𝖱𝖾 ∼ 3×105, the boundary layer becomes turbulent (Problem 7.23), and 
the drag coefficient drops significantly. With that caveat, we have explained 
the main features of drag, a ubiquitous force in the living world. 

Problem 8.14 Q as an easy-cases parameter 
A damped spring–mass system has a dimensionless measure of damping known 
as the quality factor 𝑄, which you studied in Problem 5.53. Choose 𝑄 ≪ 0.5, 
𝑄 = 0.5, or 𝑄 ≫ 0.5 to describe each of the three regimes: (a) underdamped, 
(b) critically damped, and (c) overdamped. 

Problem 8.15 Floating on water 
Some insects can float on water thanks to the surface tension of water. Extend the 
analysis of this effect from Problem 5.52 by estimating the dimensionless ratio 

𝑅 ≡ 
force due to surface tension 

(8.35)weight of the bug 

as a function of the bug’s size 𝑙 (as a length). Interpret the regimes 𝑅 ≪ 1 and 
𝑅 ≫ 1, and find the critical bug size 𝑙0 for floating on water. 

Problem 8.16 Energy loss in highway versus city driving 
Explain why the following dimensionless ratio measures the importance of drag: 

mass of fluid swept out 
. (8.36)mass of object 

An equivalent computation, except for a dimensionless factor of order unity, is 
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fluid density 
× 
distance traveled , (8.37)object density size of object 

where the size of the object is its linear dimension in the direction of travel. When 
this ratio is comparable to unity, drag significantly affects the trajectory. 

Apply either form of the ratio to a car during city driving, and find the distance
𝑑 at which the ratio becomes significant (say, roughly 1). How does the distance 
compare with the distance between stop signs or traffic lights on city streets? What 
therefore is the main mechanism of energy loss in city driving? How does this 
analysis change for highway driving? 

Problem 8.17 Gain of an RC circuit 
The low-pass 𝑅𝐶 circuit of Section 2.4.4 is amen-
able to easy-cases analysis. With the abstraction
 
of capacitive impedance (Section 2.4.4), explain
 
the unity gain at low frequency and why the gain
 
goes to zero at high frequency. What is the dimen-
sionless way to say “high frequency”?
 

R

C

Vin Vout

ground

Problem 8.18 Bode magnitude sketch for an RC circuit 
A Bode magnitude plot is a log–log plot of ∣gain∣ versus frequency. In a lumped 
Bode sketch, which often gives the most insight into the behavior of a system, the 
segments of the plot are straight lines. Make the Bode magnitude sketch for the 
low-pass 𝑅𝐶 circuit of Problem 8.17, labeling the slopes and intersection points. 

8.3.2 Three regimes where two effects compete 
In the final group of three-regime examples, the three regimes are again 
based on the relative size of two physical effects. However, in contrast to the 
examples in Section 8.3.1, where we chose a regime—for example, by choos-
ing a flow speed and thus the Reynolds number—here nature chooses. Na-
ture chooses the middle regime, where the two competing physical effects 
reach a draw. The method of easy cases shows how that choice is made. 

8.3.2.1 Height of the atmosphere 
Competition between physical effects is the theme of the wonderful Gases, 
Liquids and Solids and Other States of Matter [43, pp. xiii], where we learn 
how “the three primary states of matter are the result of competition be-
tween thermal energy and intermolecular forces.” The following example, 
estimating the height of our atmosphere, illustrates an analogous competi-
tion: between thermal energy and gravity. Here is how these two physical 
effects determine the height of the atmosphere. 
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1.	 Thermal energy. Thermal energy gives the molecules speed. Unfettered 
by gravity, the air molecules and the atmosphere would disperse into 
space. Thermal energy is therefore responsible for increasing the atmos-
phere’s height. 

2.	 Gravity. Gravity pulls air molecules downward. If gravity is the only 
effect, meaning that thermal motion is absent (the atmosphere is at ab-
solute zero), then gravity pulls the molecules all the way to the ground. 
Gravity therefore decreases the atmosphere’s height. 

A dimensionless measure of the relative size of the two effects is a compari-
son of the typical gravitational energy with the thermal energy of one mol-
ecule. The typical thermal energy is 𝑘B𝑇 . With 𝑚 for the molecule’s mass 
and 𝐻 for the characteristic or typical or scale height of the atmosphere, the 
typical gravitational potential energy is 𝑚𝑔𝐻 . The energy ratio is then 

𝛽 ≡ 
𝑚𝑔𝐻 

(8.38)𝑘B𝑇 
. 

This ratio categorizes the three easy-cases regimes: 𝛽 ≪ 1, 𝛽 ∼ 1, and 𝛽 ≫ 1. 

Regime 1 Regime 2 Regime 3 

atmosphere

thermal

atmosphere atmosphere

gravity

expanding stable contracting 

𝛽 ≪ 1 𝛽 ∼ 1 𝛽 ≫ 1 

𝑚𝑔𝐻 ≪ 𝑘B𝑇 𝑚𝑔𝐻 ∼ 𝑘B𝑇 𝑚𝑔𝐻 ≫ 𝑘B𝑇 

In the first regime, the atmosphere is expanding: The molecules have so 
much thermal energy that they escape farther from Earth. In the third 
regime, the atmosphere is contracting: The molecules do not have enough 
thermal energy to resist gravity as it pulls them back to Earth. The happy 
medium, where the atmosphere is stable, is the middle regime. 

Therefore, the regime is chosen not by us but by nature. The height of the 
atmosphere is determined by the requirement that the two effects compete 
and reach a draw—when the two effects are comparable in strength. In that 
regime, 𝑚𝑔𝐻 ∼ 𝑘B𝑇 , so the atmosphere’s scale height is 
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𝐻 ∼ 
𝑘B𝑇	 

(8.39)𝑚𝑔 
. 

For the Earth’s atmosphere, where 𝑇 ≈ 300 K and the molecular mass 𝑚 is 
approximately the mass of a nitrogen molecule, this height is roughly 8 kilo-
meters—as we predicted in Section 5.4.1 using dimensional analysis. The 
easy-cases reasoning complements the dimensional analysis by providing 
a physical model. 
As a bonus, this general model of competition explains why we guess that 
an unknown dimensionless number is comparable to 1—for example, when 
we estimated an atomic blast energy in Section 5.2.2. Often, the dimension-
less number represents a ratio between two physical effects. Then “com-
parable to 1” means “the effects have reached a draw.” By guessing that 
unknown dimensionless numbers were comparable to 1, we foreshadowed 
the easy-cases reasoning that we use for these examples of competition. 

8.3.2.2 Hydrogen’s binding energy 
Our next example, before we turn to the giant scales of stars, is our old 
friend the hydrogen atom. In Section 5.5.1, we predicted its size, the Bohr 
radius 𝑎0, using dimensional analysis. The prediction was correct, but, as 
with the dimensional analysis of the atmosphere height, dimensional analy-
sis didn’t give us a physical model. Easy-cases reasoning will help us make 
our tacit physical knowledge about hydrogen explicit and thereby build a 
physical model. 
As we found in Section 6.5.2 using lumping, two physical effects compete: 
1.	 Electrostatics. The electrostatic attraction between the proton and elec-
tron shrinks the atom. 

2.	 Quantum mechanics. Via the uncertainty principle, quantum mechanics 
gives an electron confined to a small region a high momentum uncer-
tainty and, therefore, a high kinetic energy. With this confinement en-
ergy, analogous to the thermal energy of an air molecule, the electron 
can resist the inward pull of electrostatics. Therefore, quantum mechan-
ics expands the atom. 

A dimensionless ratio that measures the relative size of the two effects is 
the energy ratio 

∣ electrostatic potential energy ∣
𝛽 ≡	 , (8.40)confinement energy 
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where the absolute-value bars say that, although the electrostatic potential 
energy is negative, we care only about its magnitude.
 
In a hydrogen atom of radius 𝑟, the electrostatic energy is 𝑒2/4𝜋𝜖0𝑟. The
 
confinement energy—which we estimated in Section 6.5.2 by using lump-

ing—is comparable to ℏ2/𝑚e𝑟2. Therefore,
 

𝛽 ∼ 
𝑒2/4𝜋𝜖0𝑟 (8.41)
ℏ2/𝑚e𝑟2 

. 

Regime 1 Regime 2 Regime 3 

𝛽 ≪ 1 𝛽 ∼ 1 𝛽 ≫ 1 

expanding stable contracting 

𝑒2 

4𝜋𝜖0𝑟 
≪ 

ℏ2 

𝑚e𝑟2 

𝑒2 

4𝜋𝜖0𝑟 
∼ 

ℏ2 

𝑚e𝑟2 

𝑒2 

4𝜋𝜖0𝑟 
≫ 

ℏ2 

𝑚e𝑟2 

In the first regime, 𝛽 ≪ 1, quantum mechanics is much stronger than elec-
trostatics, and the huge kinetic energy from quantum mechanics (the con-
finement energy) expands the atom. In the third regime, 𝛽 ≫ 1, electrostat-
ics, now much stronger than quantum mechanics, contracts the atom. 
The radius of hydrogen, like the height of the atmosphere, is determined by 
the requirement that two physical effects compete and reach a draw. This 
truce happens in the middle regime. There, 𝑒2/4𝜋𝜖0𝑟 ∼ ℏ2/𝑚e𝑟2, so 

ℏ2𝑟 ∼ (8.42)
𝑚e(𝑒2/4𝜋𝜖0)

, 

which is the Bohr radius 𝑎0 that we found using dimensional analysis (Sec-
tion 5.5.1) and lumping (Section 6.5.2). 
An alternative approach, which also uses easy cases but gives different in-
sights, is to base the dimensionless ratio on the size 𝑟 directly. Making 𝑟 
dimensionless requires another size. Fortunately, we have one, because 
the two energies, electrostatic and confinement, have different scaling ex-
ponents. The electrostatic energy is proportional to 𝑟−1. The confinement 
energy is proportional to 𝑟−2. 
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Regime 1 Regime 2 Regime 3 

𝛽 ≪ 1 𝛽 ∼ 1 𝛽 ≫ 1 

expanding stable contracting 

𝑟 ≪ 𝑟0 𝑟 ∼ 𝑟0 𝑟 ≫ 𝑟0 

On log–log axes, they are straight lines but with different slopes:
−2 for the confinement line and −1 for the electrostatic-energy 
line. Therefore, they intersect. The size at which they intersect 
is a special size. Let’s call it 𝑟0. Then our dimensionless ratio is 
𝛽 ≡ 𝑟/𝑟0, and the three regimes are shown in the table. 
The stable middle regime is the one chosen by nature. Then 𝑟, 
the radius of hydrogen, is comparable to our special radius 𝑟0. 
The special radius, and therefore 𝑟, is determined by equating 

Econfinement
∝ r−2

Eelectrostatic
∝ r−1

r0

electrostatic and confinement energies, which is how we found the Bohr ra-
dius 𝑎0 in Section 6.5.2. Thus, the radius of hydrogen is the Bohr radius and 
results from competition between electrostatics and quantum mechanics. 
Our next project is to use the easy-cases regimes of size to 
understand thermal expansion—why substances expand 
upon heating. The first step is to sketch the total energy 𝐸, 
which is the sum of confinement and electrostatic energies. 
This sketch is easiest in the bookend regimes. In the first 
regime, where 𝑟 ≪ 𝑟0, the atom is too small, and quan-
tum mechanics is stronger: Its kinetic-energy contribution 
is the dominant term in the energy, because its 1/𝑟2 scal-
ing overwhelms the 1/𝑟 scaling of the potential energy. In 
the third regime, where 𝑟 ≫ 𝑟0, the atom is too large, and electrostatics is 
the dominant term in the energy: Its 1/𝑟 scaling goes to zero more slowly 
than the 1/𝑟2 scaling of the kinetic energy. Therefore, in the extremes (the 
bookends), the total energy has two different scalings: 

E

r

Econfinement

Eelectrostatic

(regime 1: 𝑟 ≪ 𝑟0)𝐸 ∝ { 
1/𝑟2 

(8.43)−1/𝑟 (regime 3: 𝑟 ≫ 𝑟0) 

To complete the sketch, we interpolate between the bookend regimes. 
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The slopes in the two regimes have opposite signs, so there 
is no smooth way to connect the two extreme segments 
without introducing a point where the slope is zero. This 
point, where the energy is a minimum, is nature’s choice 
for the ground state of hydrogen. 

With this sketch, we can explain thermal expansion. Ther-
mal expansion first appeared in Problem 5.38, where you 
used dimensional analysis to estimate a typical thermal-ex-

E

r

Econfinement

Eelectrostatic

a0

pansion coefficient. However, the problem glided over the 
fundamental question: the coefficient’s sign. Knowing nothing about ther-
mal expansion, we might guess that positive and negative coefficients are 
equally likely. Equivalently, substances are equally likely to expand as to 
contract when heated: Some substances might expand, and others might 
contract. However, this symmetry reasoning fails empirically: Almost all 
substances expand rather than contract when heated. The symmetry be-
tween positive and negative thermal-expansion coefficients, or between ex-
pansion and contraction, must get broken somewhere. 

The curve of energy versus size for hydrogen shows where the symmetry 
gets broken. In its generic shape, the curve applies to all bonds, whether 
intra-atomic (such as the electron–proton bond in hydrogen), interatomic 
(such as hydrogen–oxygen bonds in a water molecule), or even intermolec-
ular (such as the hydrogen bonds between water molecules). Bonds result 
from a competition between (1) attraction, which is important at long dis-
tances and which looks like the electrostatic piece of the generic curve, and 
(2) repulsion, which is important at short distances and which looks like 
the confinement piece of the generic curve. (Even the gravitational bond 
between the Sun and a planet, represented by the curve that you drew in 
Problem 5.55c, has the same shape.) 

Therefore, the curve of bond energy versus separation cannot be symmetric. 
At the 𝑟 ≪ 𝑟0 end, which is the first regime, 𝑟 has a minimum possible value, 
namely zero. However, at the 𝑟 ≫ 𝑟0 end, which is the third regime, 𝑟 is 
unbounded. Thus, the two bookend regimes are not symmetric, and the 
bond-energy curve skews toward larger 𝑟. 

To see how this asymmetry leads to thermal expansion, look at how thermal 
energy affects the average bond length. First, think of the bond as a spring 
(a model that we will discuss further in Section 9.1). As the bond vibrates 
around its equilibrium length 𝑟0, thermal energy, which is a kinetic energy, 
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converts into and out of potential energy in the bond. The minimum bond 
length 𝑟min and the maximum bond length 𝑟max are determined by where 
the vibration speed is zero—where the bond has slurped up all the kinetic 
energy (the thermal energy) and turned it into potential energy. 

r

ravg

r

ravg

Ethermal

r

ravg

Ethermal

cold warm hot 

Graphically, we draw a horizontal line at a height 𝐸thermal above the mini-
mum energy. This line intersects the potential-energy curve twice, at 𝑟 = 
𝑟min and at 𝑟 = 𝑟max. Because the potential-energy curve skews to the right, 
toward 𝑟 ≫ 𝑟0, the average bond length 𝑟avg = (𝑟min + 𝑟max)/2 is larger 
than 𝑟0. As 𝐸thermal grows, the skew affects the average more, and the differ-
ence between 𝑟avg and 𝑟0 grows: Adding thermal energy increases the bond 
length. Therefore, substances expand when heated. 

8.3.2.3 Core temperature of the Sun 
As our final example, we’ll estimate the temperature of the core of the Sun. 
The Sun, like the atmosphere, is a result of competition between thermal 
motion and gravity: Thermal motion expands the Sun; gravity compresses 
the Sun. A dimensionless measure of the two effects’ relative strength is 

thermal energy 
𝛽 ≡ . (8.44)

∣ gravitational potential energy ∣ 

The numerator, the thermal energy for one particle, is just 𝑘B𝑇 . For the 
denominator, we need to know the mass of a particle. The Sun itself is made 
of hydrogen, but in the core of the Sun, the thermal energy is more than 
enough to strip an electron from the proton (as you verify in Problem 8.19). 
Each proton gets gravitational potential energy from the rest of the Sun, 
which has mass 𝑀Sun. The rest of the Sun, if lumped into a massive particle, 
would be at a distance comparable to 𝑅Sun, where 𝑅Sun is the Sun’s radius. 
Therefore, the typical gravitational potential energy (per particle) is 

𝐺𝑀Sun𝑚p𝐸gravitational ∼ , (8.45)𝑅Sun 
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where the ∼ contains the minus sign in the potential energy. The ratio of 
energies is therefore 

𝑘B𝑇𝛽 ∼ , (8.46)𝐺𝑀Sun𝑚p/𝑅Sun 

and it produces the following three regimes. 

Regime 1 Regime 2 Regime 3 

too cold, contracting stable too hot, expanding 
𝛽 ≪ 1 𝛽 ∼ 1 𝛽 ≫ 1 

𝐺𝑀Sun𝑚p 𝐺𝑀Sun𝑚p 𝐺𝑀Sun𝑚p𝑘B𝑇 ≪ 𝑘B𝑇 ∼ 𝑘B𝑇 ≫ 𝑅Sun 𝑅Sun 𝑅Sun 

In the first regime, the Sun is too cold for its size, so gravity wins the com-
petition and compresses the sun. This contraction shows the difference be-
tween the thermal–gravitational competition in the Sun and in the Earth’s 
atmosphere (Section 8.3.2.1). The temperature of the atmosphere is deter-
mined by the blackbody temperature of the Earth, roughly 300 K (Prob-
lem 5.43). In our analysis of the height of the atmosphere, we therefore 
held the temperature fixed and let only the height vary until it produced 
the gravitational energy to match the fixed thermal energy. In the Sun, how-
ever, the temperature is determined by the speed of the fusion reactions, 
which depends on the temperature and the density: Higher density means 
more frequent collisions that might result in fusion, and higher tempera-
ture (faster thermal motion) means that each collision has a higher chance 
of resulting in fusion. Thus, as the Sun contracts, the density increases, as 
does the temperature and the reaction rate. The contraction stops when the 
temperature is high enough for thermal motion to balance gravity. 

(There is a caveat. If a star contracts very quickly, its core can heat up faster 
than the negative-feedback process can oppose the change. Then the core 
ignites like a giant hydrogen bomb and the star becomes a supernova.) 

In the third regime, the Sun is too hot for its size, so thermal motion wins 
the competition and expands the Sun. As the Sun expands, the reaction rate, 
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the temperature, and the thermal energy fall—until thermal motion again 
balances gravity. The result is the middle regime. In the middle regime, 
the Sun has just the right temperature—determined by the condition 𝑘B𝑇 ∼ 
𝐺𝑀Sun𝑚p/𝑅Sun, so 

𝐺𝑀Sun𝑚p𝑇 ∼ . (8.47)𝑘B𝑅Sun 

The proton mass 𝑚p in the numerator and Boltzmann’s constant 𝑘B in the de-
nominator are easier to handle if we multiply each constant by Avogadro’s 
number 𝑁A. The product 𝑁A𝑘B is the universal gas constant 𝑅. The product
𝑚p𝑁A is the molar mass of protons, which is approximately the molar mass 
of hydrogen: 1 gram per mole. Then 

𝐺 𝑀Sun 𝑁A𝑚p
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ × 

⏞⏞⏞⏞⏞ × 
⏞⏞⏞⏞⏞⏞⏞6.7 × 10−11 kg−1 m3 s−2 2×1030 kg 10−3 kg mol−1

𝑇 ∼ . (8.48)
8 J mol−1 K−1 × 0.7 ×109 m⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 

𝑁A𝑘B 𝑅Sun 

To evaluate 𝑇 , start with the most important piece. 

1.	 Units. The inverse moles in the numerator and denominator cancel. The 
numerator then contributes kg m3 s−2, which is J m. The denominator 
contributes J K−1 m. Therefore, the J m in the numerator and denom-
inator cancel, and the inverse kelvins in the denominator become the 
kelvins in the Sun’s core temperature. 

2.	 Powers of ten. The numerator contributes 16 powers of ten; the denomi-
nator contributes 9. The result is 7 powers of ten. Thus, the temperature 
will be comparable to 107 K. 

3.	 Numerical prefactor. The 6.7 in the numerator is mostly canceled out by 
the 8×0.7 in the denominator, leaving only the 2 in the numerator. Thus, 
the temperature is roughly 2 × 107 K. 

No one has measured the internal temperature directly, but the current best 
estimate for the core temperature is 1.5 × 107 K. Our easy-cases model of 
competition between gravity and thermal motion is surprisingly accurate. 

Problem 8.19 Thermal versus electronic energy 
Compare the thermal energy (per particle) in the core of the Sun to the binding 
energy of hydrogen. Were we justified in assuming that the electrons get stripped 
from the protons? 
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8.4 Two dimensionless quantities 
In the examples of Section 8.3, one dimensionless quantity categorized the 
easy-cases regimes. Whether the quantity was small, comparable to 1, or 
large, the regimes could all be arranged on one axis. To extend that idea, 
we’ll use easy cases to categorize the world using two dimensionless quanti-
ties and therefore two axes. For practice, we’ll organize the world of waves 
onto a two-dimensional map (Section 8.4.1). Then we’ll organize the four 
fundamental branches of physics (Section 8.4.2). 

8.4.1 The two-dimensional world of water waves 
Water waves come in several varieties. Perhaps the most evident regime 
represents waves near a beach. These waves, the subject of Problem 5.15, 
have a wavelength much larger than the depth of the water. You can make 
them at home: Fill a bathtub or baking dish with water, disturb the water, 
and create waves sloshing back and forth. Their speed 𝑣 is given by 𝑣2 = 𝑔ℎ, 
where ℎ is the depth of the water. 

shallow-water
waves

v2 = gh

h
n
→ 0

deep-water
waves

v2 = gn

Before these shallow-water waves reached the beach, they traveled 
on the open ocean, where their wavelength was much smaller than 
the depth. Their speed—technically, the phase velocity—is given by
𝑣2 = 𝑔𝜆 (Problem 5.11), where 𝜆 is the reduced wavelength 𝜆/2𝜋 . 
These two regimes—deep and shallow water—are distinguished by 
the dimensionless ratio ℎ/𝜆. (You can also use ℎ/𝜆, but the math-
ematical descriptions turn out to be simpler using ℎ/𝜆.) Therefore, 
the two regimes sit on a dimensionless axis that measures depth. 
Because the axis measures depth, let’s orient the axis vertically and 
place deep water at the bottom. 
Another familiar kind of wave is produced by dropping a pebble in a pond. 
Small ripples zoom outward from the point of impact. These waves have 
a small wavelength, much smaller than the depth of the pond. Therefore,
ℎ/𝜆 is large—as it is for deep-water waves. 
However, these ripples are different from the deep-water waves on the open 
ocean. Ocean waves are driven by the water’s weight—that is, by gravity. In 
contrast, ripples are driven by the water’s surface tension—the same effect 
that allows small bugs to walk on water (see Problem 8.15). In order to 
distinguish ripples from deep-water gravity waves, our second axis should 
measure the relative importance of gravity and surface tension. 
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At long wavelengths (large 𝜆), in dense fluids (large 𝜌), or in strong gravity
 
(large 𝑔), this dimensionless ratio is large, indicating that gravity drives
 
the waves. For short wavelengths (ripples) or, equivalently, high surface
 
tension, this ratio is small, indicating that surface tension drives the waves.
 
Here are the three regimes categorized using both groups.
 

This axis is therefore labeled by the ratio of gravity to surface tension. This
 
ratio is a dimensionless group, so we can find it using dimensional analysis.
 
The ratio will depend on two characteristics of the water: its density 

It will depend on gravity 𝑔
(to make the weight). And it will depend on the (reduced) wavelength 𝜆

(to
 𝜌 

dimensionless group. A useful choice is 
These four quantities, built from three dimensions, form one independent
 

𝜌𝑔𝜆2/𝛾 .

make the weight) and its surface tension 𝛾 .
 
.
 

shallow-water
gravity waves

v2 = gh

deep-water
gravity waves

v2 = gn

deep-water
ripples
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n
→ 0

ρgn2

γ
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The empty corner stares at us, asking to be filled. It incorporates both limits: 

ℎ 
𝜆 

→ 0 (shallow water) and 
𝜌𝑔𝜆2 

𝛾 
→ 0 (ripples). (8.49) 
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deep-water
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h
n
→ 0

ρgn2

γ
→ 0

shallow-water
ripples

v2 =
γh
ρn2

ρgn2

γ
→ 0

h
n
→ 0

These waves are therefore ripples on shallow water. (They are hard to make, 
because ripples are tiny, smaller than a few millimeters, yet the water depth 
must be even smaller.) 

http:������2/��.It
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The four corners are the bookend regimes on two axes. If each axis had 
three regimes, two axes could have made three squared or nine regimes. 
The missing five middle regimes can be constructed by interpolating be-
tween the corners. The easy-cases map shows how: First fill in the four re-
gions between the corners, and then fill in the center. That analysis, which 
involves addition and a tanh function, gives the following map. 

shallow-water
gravity waves

v2 = gh

shallow-water
ripples

v2 =
γh
ρn2

deep-water
gravity waves

v2 = gn

deep-water
ripples

v2 =
γ

ρn

gravity waves

v2 = gn tanh
h
n

ripples

v2 =
γ

ρn
tanh

h
n

deep-water waves

v2 = gn+
γ

ρn

shallow-water waves

v2 = gh +
γh
ρn2

all waves

v2 =

(
gn+

γ

ρn

)
tanh

h
n

ρgn2

γ
→ 0∞←

ρgn2

γ

ρgn2

γ
→ 0∞←

ρgn2

γ

h
n
→∞

h
n
→ 0

h
n
→∞

h
n
→ 0

h
n
→∞

h
n
→ 0

∞←
ρgn2

γ

ρgn2

γ
→ 0

On this map, the middle regimes are not our usual middle regimes. Our 
usual middle regimes represented a particular regime (which was usually 
of the form 𝛽 ∼ 1). However, on this map, the middle regimes represent 
the general solution 𝛽 = anything. As an example, look at the bottom, 
deep-water row of three regimes. The bookend regimes, deep-water grav-
ity waves and deep-water ripples, are easy cases of the middle, deep-water 
regime. For fun, check the other limiting cases, including that the central 
regime—which covers waves driven by any mixture of gravity and surface 
tension and traveling on any depth of water—turns into the other eight 
regimes in the appropriate limits. 

8.4.2 The two-dimensional world of physics 
Now we’ll use the same method to organize the four fundamental branches 
of physics: classical (Newtonian) mechanics, quantum mechanics, special 
relativity, and quantum electrodynamics. 
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As a first step, which will determine the first axis, let’s compare classical 
mechanics and special relativity. Special relativity is Einstein’s theory of 
motion. It unifies classical mechanics and classical electrodynamics (the 
theory of radiation), giving a special role to the speed of light 𝑐. This role is 
popularized in the T-shirt showing Einstein in a policeman’s hat. He holds 
out his arm and palm to make a “Stop” signal and warns: “186 000 miles 
per second. It’s not just a good idea. It’s the law!” The speed of light is the 
universe’s speed limit, and special relativity obeys it. In contrast, classical 
mechanics knows no speed limit. Classical mechanics and special relativity 
therefore sit on an axis connected by the speed of light. In the limit 𝑐 → ∞, 
special relativity turns into classical mechanics. 

classical
mechanics

special
relativity

c → ∞

For the second axis, we compare one of the two remaining branches of 
physics—either quantum mechanics or quantum electrodynamics—with 
either classical mechanics or special relativity. Because quantum electro-
dynamics, if only from its name, looks frightening, let’s select quantum 
mechanics. We’ve seen its effect several times: Quantum mechanics con-
tributes a new constant of nature ℏ. This constant appears in the Heisenberg 
uncertainty principle Δ𝑝Δ𝑥 ∼ ℏ, where Δ𝑝 and Δ𝑥 are a particle’s momen-
tum and position uncertainties, respectively. The Heisenberg uncertainty 
principle restricts how small we can make these uncertainties, and there-
fore how accurately we can determine the position and momentum. 

However, if ℏ were zero, then the uncertainty principle would not restrict 
anything. We could exactly determine the position and momentum of a 
particle simultaneously, as we expect in classical mechanics. Classical me-
chanics is the ℏ → 0 limit of quantum mechanics. Therefore, classical and 
quantum mechanics are connected on a second, ℏ axis. The map including 
quantum mechanics therefore has two dimensions. 

classical
mechanics

special
relativity

c → ∞

quantum
mechanics

h̄ → 0
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In this two-dimensional map of physics, one corner sits empty. Further-
more, one branch of physics—quantum electrodynamics—hasn’t been con-
sidered. We need only a bit of courage to set quantum electrodynamics in 
the empty corner. Quantum mechanics must be the 𝑐 → ∞ limit of quan-
tum electrodynamics. And it is. Quantum electrodynamics is the result of 
marrying special relativity (𝑐 < ∞) and quantum mechanics (ℏ > 0). Thus, 
in the ℏ → 0 limit, quantum electrodynamics turns into special relativity. 

classical
mechanics

special
relativity

c → ∞

quantum
mechanics

h̄ → 0

quantum
electrodynamics

h̄ → 0

c → ∞

What happened to the bookend regimes? 

The bookend regimes are here implicitly, because this example introduced 
a new feature: These axes are not labeled using dimensionless quantities! 
Only for a dimensionless quantity can we sensibly distinguish the three 
regimes ≪ 1, ∼ 1, and ≫ 1. Because 𝑐 and ℏ have dimensions, the only 
valid comparisons are with zero or with infinity (which are zero and infin-
ity in any system of units). Thus, there are only two regimes on each axis. 
The special-relativity–classical-mechanics axis compares 𝑐 with infinity; the 
quantum-mechanics–classical-mechanics axis compares ℏ with zero. 

8.5 Summary and further problems 
When the going gets tough, the tough lower their standards. In this chapter, 
you learned how to do that by studying the easy cases of a problem. This 
tool is based on the idea that a correct solution works in all cases, includ-
ing the easy cases. Therefore, look at the easy cases first. Often, we can 
completely solve a problem simply by understanding the easy cases. 

Problem 8.20 Easy cases for the period of a pendulum 

Does the period of a pendulum increase, decrease, or remain constant as the am-
plitude is increased? Decide by selecting an amplitude for which you can easily 
predict the period. 
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Problem 8.21 Pyramid volume 
Use easy cases to find the dimensionless prefactor in the 
volume of a pyramid with height ℎ and a square (𝑏 × 𝑏) 
base: 

𝑉 = dimensionless prefactor × 𝑏2ℎ. (8.50) 

In particular, choose the easy case of a pyramid that, with 
a few more copies of itself, can be assembled into a cube. 

Problem 8.22 Power means 
The arithmetic and geometric means are easy cases of a higher-level abstraction: 
the power mean. The 𝑘th power mean of two positive numbers 𝑎 and 𝑏 is defined 
by 

𝑀𝑘(𝑎, 𝑏) ≡ ( 
𝑎𝑘 + 𝑏𝑘 

2 
) 

1/𝑘 

. (8.51) 

You raise the numbers to the 𝑘th power, take the (regular) mean, and then undo 
the exponentiation by taking the 𝑘th root. 

a. What is 𝑘 for an arithmetic mean? 

b. What is 𝑘 for the rms (root mean square)? 

c. The harmonic mean of 𝑎 and 𝑏 is sometimes written as 2(𝑎 ∥ 𝑏), where ∥ denotes 
the parallel combination of 𝑎 and 𝑏 (introduced in Section 2.4.3). What is 𝑘 for 
the harmonic mean? 

d. (Surprising!) What is 𝑘 for the geometric mean? 

Problem 8.23 Easy case of the compound pendulum 

For the compound pendulum of Problem 5.25, what easy case produces an ordi-
nary, noncompound pendulum? Check that, in this limit, your formula for the 
period from Problem 5.25 behaves correctly. 

Problem 8.24 Means in an elliptical orbit 

orbit

rmax rmin

b

l

a Sun

A planetary orbit (an ellipse) has two important 
radii: 𝑟min and 𝑟max. The other lengths in the el-
lipse are power means of these radii (see Prob-
lem 8.22 about power means). 

Match the three power means—arithmetic, geo-
metric, and harmonic—to the three lengths: the 
semimajor axis 𝑎 (which is related to the orbital 
period), the semiminor axis 𝑏, and the semilatus 
rectum 𝑙 (which is related to the orbital angular 
momentum). 

Hint: The power-mean theorem says that 𝑀𝑚(𝑎, 𝑏) < 𝑀𝑛(𝑎, 𝑏) if and only if 𝑚 < 𝑛. 
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Problem 8.25 Four regimes in orbital motion 

Once in a while, there are four interesting easy-cases regimes. An example is orbits. 
The dimensionless parameter 𝛽 that characterizes the type of an orbit is 

𝛽 ≡ 
kinetic energy 

∣ gravitational potential energy ∣ 
, (8.52) 

where the absolute value handles a possibly negative potential energy. 

A related dimensionless parameter is the orbit eccentricity 𝜖 . In terms of the ec-
centricity, a planet’s orbit in polar coordinates is 

𝑟(𝜃) = 
𝑙 

1 + 𝜖 cos 𝜃 
, (8.53) 

where the Sun is at the origin, and 𝑙 is the length scale of the orbit (𝑙 is diagrammed 
in Problem 8.24). Sketch and classify the four orbit shapes according to their values 
of 𝛽 and 𝜖 (giving a point value or a range, as appropriate): (a) circle, (b) ellipse, 
(c) parabola, and (d) hyperbola. 

Problem 8.26 Superfluid helium 

Helium, when cold, turns into a liquid. When very cold, the liquid turns into a 
superfluid—a quantum liquid. Here is a dimensionless ratio determining how 
quantum the liquid is 

𝛽 ≡ 
quantum uncertainty in the position of a helium atom 

separation between atoms . (8.54) 

a. Estimate 𝛽 in terms of the quantum constant ℏ, helium’s density 𝜌 (as a liquid), 
the thermal energy 𝑘B𝑇 , and the atomic mass 𝑚He. 

b. In the 𝛽 ∼ 1 regime, helium becomes a quantum liquid (a superfluid). Thus, 
estimate the superfluid transition temperature. 

Problem 8.27 Adiabatic atmosphere 
The simplest model of the atmosphere is isothermal: The atmosphere has one tem-
perature throughout it. A better approximation, the adiabatic atmosphere, relaxes 
this assumption and incorporates the adiabatic gas law: 

𝑝𝑉𝛾 ∝ 1, (8.55) 

where 𝑝 is atmospheric pressure, 𝑉 is the volume of a parcel of air, and 𝛾 ≡ 𝑐p/𝑐v 
is the ratio of the two specific heats in the gas. (For dry air, 𝛾 = 1.4.) Imagine an 
air parcel rising up a mountain. As the parcel rises into air with a lower pressure, 
it expands, and its volume and temperature change according to a combination of 
the adiabatic and ideal gas laws. 

a. What easy case of 𝛾 reproduces the isothermal atmosphere? 

b. For 𝛾 = 1.4 (dry air), will air temperature decrease with, increase with, or be 
independent of height? 
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Problem 8.28 Loan payments 
A fixed-term, fixed-interest-rate loan has four important parameters: the principal
𝑃 (the amount borrowed), the interest rate 𝑟, the repayment interval 𝜏 , and the 
number of payments 𝑛. The loan is repaid in 𝑛 equal payments over the loan term 
𝑛𝜏 . Each payment consists of a principal and an interest portion. The interest 
portion is the interest accumulated on the principal outstanding during the term; 
the principal portion reduces the outstanding principal. 

The dimensionless quantity determining the type of loan is 𝛽 ≡ 𝑛𝜏𝑟. 

a. Estimate the payment (the amount per term) in the easy case 𝛽 = 0, in terms 
of 𝑃, 𝑛, and 𝜏 . (The term 𝑛𝜏 and the repayment interval 𝜏 don’t vary that 
much—𝜏 is usually 1 month and 𝑛𝜏 is somewhere between 3 to 30 years—so 
𝛽 ≪ 1 is usually reached by lowering the interest rate 𝑟.) 

b. Estimate the payment in the slightly harder case where 𝛽 ≪ 1 (which includes 
the 𝛽 = 0 case). In this regime, the loan is called an installment loan. 

c. Estimate the payment in the easy case 𝛽 ≫ 1. In this regime, the loan is called 
an annuity. (This regime is usually reached by increasing 𝑛.) 

Problem 8.29 Heavy nuclei 
In this problem, you study the innermost electron in an atom such as uranium that 
has many protons, and analyze a surprising physical consequence of its binding 
energy. Imagine a nucleus with 𝑍 protons around which orbits one electron. Let 
𝐸(𝑍) be the binding energy (the hydrogen binding energy is the case 𝑍 = 1). 

a. Show that the ratio 𝐸(𝑍)/𝐸(1) is 𝑍2. 

b. In Problem 5.36, you showed that 𝐸(1) is the kinetic energy of an electron mov-
ing with speed 𝛼𝑐 where 𝛼 is the fine-structure constant (roughly 10−2). How 
fast does the innermost electron move around a heavy nucleus with charge 𝑍? 

c. When that speed is comparable to the speed of light, the electron has a kinetic 
energy comparable to its (relativistic) rest energy. One consequence of such a 
high kinetic energy is that the electron has enough kinetic energy to produce a 
positron (an anti-electron) out of nowhere; this process is called pair creation. 
That positron leaves the nucleus, turning a proton into a neutron as it exits: 
The atomic number 𝑍 decreases by one. The nucleus is unstable! Relativity 
therefore places an upper limit to 𝑍. Estimate this maximum 𝑍 and compare it 
with the 𝑍 for the heaviest stable nucleus (uranium). 

Problem 8.30 Minimum wave speed 

For deep-water waves, estimate the minimum wave speed in terms of 𝜌, 𝑔 , and 𝛾 
(the surface tension). Test your prediction in two different ways. (1) Drop a peb-
ble into water, and observe how fast the slowest ripples move outward. (2) Move 
a toothpick through a pan of water, and look for the fastest speed at which the 
toothpick generates no waves. 
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Problem 8.31 Surface tension and the size of raindrops 
A liquid’s surface tension, usually denoted 𝛾 , is the energy required to create new 
surface divided by the area of the new surface. For a falling raindrop, surface ten-
sion and drag compete: the drag force flattens the raindrop, and surface tension 
keeps it spherical. If the drop gets too flat, it can lower its surface energy by break-
ing into smaller and more spherical droplets. The fluid dynamics is complicated, 
but we don’t need to know it. Instead, use competition reasoning (easy cases) to 
estimate the maximum size of raindrops. 

Problem 8.32 Waves driven by surface tension 

Imagine a wave with reduced wavelength 𝜆 on the surface of a fluid. 

a. Show that the dimensionless ratio 

𝑅 ≡ 
potential energy due to gravity 

potential energy due to surface tension 
(8.56) 

is, after ignoring dimensionless constants, the dimensionless group 𝜌𝑔𝜆2/𝛾 
that we used in Section 8.4.1 to distinguish waves driven by gravity from waves 
driven by surface tension. 

b. For water, estimate the critical wavelength 𝜆 at which 𝑅 ∼ 1. 

Problem 8.33 Including buoyancy 
The terminal speed 𝑣 of a raindrop with radius 𝑟 can be written in the following 
dimensionless form: 

𝑣2 

𝑟𝑔 
= 𝑓 ( 

𝜌water 
𝜌air 

) . (8.57) 

In this problem, you use easy cases of 𝑥 ≡ 𝜌water/𝜌air to guess how buoyancy affects 
this result. (Imagine that you may vary the density of air or water as needed.) 
In dimensional analysis, including the buoyant force requires including 𝜌air, 𝑔 , 
and 𝑟 in order to compute the weight of the displaced fluid (which is the buoy-
ant force)—but those variables are already included in the dimensional analysis. 
Therefore, including buoyancy doesn’t require a new dimensionless group. So it 
must change the form of the dimensionless function 𝑓 . 

a. Before you account for buoyancy: What is the dimensionless function 𝑓 (𝑥)? 
Assume spherical raindrops and that 𝑐d ≈ 0.5. 

b. What would be the effect of buoyancy if 𝜌water were equal to 𝜌air? This thought 
experiment is the easy case 𝑥 = 1. Therefore, find 𝑓 (1). 

c. Guess the general form of 𝑓 with buoyancy, and thereby find 𝑣 including the 
effect of buoyancy. 

d. Explain physically the difference between 𝑣 without and with buoyancy. Hint: 
How does buoyancy affect 𝑔? 
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Our final tool for mastering complexity is making spring models. The essen-
tial characteristics of an ideal spring, the transferable abstractions, are that 
it produces a restoring force proportional to the displacement from equilib-
rium and stores an energy proportional to the displacement squared. These 
seemingly specific requirements are met far more widely than we might 
expect. Spring models thereby connect chemical bonds (Section 9.1), xylo-
phone notes (Section 9.2.3), gravitational radiation (Section 9.3.3), and the 
colors of the sky and sunsets (Section 9.4). 

9.1 Bond springs 
A ubiquitous spring is the bond between the electron and proton in hydro-
gen—the bond that is our model for all chemical bonds. In Section 9.1.1, 
we’ll build a spring model of hydrogen, giving us a physical model for the 
Young’s modulus (Section 9.1.2) and for the speed of sound (Section 9.1.3). 

9.1.1 Finding the spring 
In Section 8.3.2.2, we saw how hydrogen is a competition between electro-
statics and quantum mechanics. When the electron–proton separation 𝑥 is 
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much smaller than the Bohr radius 𝑎0, quantum mechanics wins, and the 
net force on the electron is outward (positive). When the separation is much 
larger than the Bohr radius, electrostatics wins, and the net force is inward 
(negative). Between these two extremes, when the separation is the Bohr 
radius (when 𝑥 = 𝑎0), the force crosses the zero-force line (the 𝑥 axis). 
This equilibrium point is an easy case that helps us de-
scribe the bond force simply. We magnify the force curve 
at the equilibrium point. The curve now looks straight, 
because any curve looks straight at a large-enough mag-
nification. Equivalently, any curve can be approximated 
locally by its tangent line—which is an example of lump-
ing shapes and graphs (Section 6.4) and is where spring 
models discard actual information and complexity. 

x

repulsion

attraction

F

magnification
region

a0

Physically, the straight-line approximation means that, 
as long as the bond distance differs from 𝑎0 by only a small amount Δ𝑥, the 
force is linearly proportional to the deviation Δ𝑥. Furthermore, the force 
curve has a negative slope: A negative deviation produces a positive force, 
and vice versa. The force therefore opposes the deviation and is a restor-
ing force. A linear restoring force is the force from an ideal spring, so the 
electron–proton bond is an ideal spring! It has an equilibrium length 𝑎0 at 
which 𝐹 = 0 and spring constant 𝑘 , where −𝑘 is the slope of the force curve. 

𝐹 = −𝑘Δ𝑥. (9.1) 

To make this small Δ𝑥 stretch, the required energy Δ𝐸 is 
Δ𝐸 ∼ force × Δ𝑥. (9.2) 

Because the force varies from 0 to 𝑘Δ𝑥, the typical or characteristic force is 
comparable to 𝑘Δ𝑥. Then 

Δ𝐸 ∼ 𝑘Δ𝑥 ⋅ Δ𝑥 = 𝑘(Δ𝑥)2. (9.3) 

The scaling exponent connecting Δ𝐸 and Δ𝑥 is 2. This quadratic depen-
dence on the displacement is the energy signature of a spring. For small dis-
placements around the equilibrium point (the minimum), the energy-ver-
sus-displacement curve is a parabola. (This analysis is a physical version of 
a Taylor-series approximation.) 
Because almost any energy curve has a minimum, almost every system con-
tains a spring. For the bond spring, the energy relation Δ𝐸 ∼ 𝑘(Δ𝑥)2 gives 
us an estimate of the spring constant 𝑘 . Pretend that the energy curve is ex-
actly a parabola, even for large displacements, and increase Δ𝑥 to the bond 
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size 𝑎 (for hydrogen, 𝑎 is the Bohr radius 𝑎0). That stretch requires an energy 
Δ𝐸 ∼ 𝑘𝑎2. It is a characteristic energy of the bond, so it must be comparable 
to the bond energy 𝐸0. Then 𝐸0 ∼ 𝑘𝑎2, and 

𝑘 ∼ 
𝐸0 (9.4)
𝑎2 

. 

This relation is an estimate for the spring constant in terms of quantities 
that we know in other ways: 𝐸0 from the heat of vaporization and 𝑎 from 
the density and atomic mass. The estimate is often off by a factor of 3 or 10, 
because of the inaccuracy in extending the parabolic, ideal-spring approxi-
mation to displacements comparable to the bond length. But it gives us an 
order of magnitude that will be useful in subsequent estimates. 

9.1.2 Young’s modulus 
From the spring constant of one bond, we could 
find the spring constant of a block of material. But 
as we discussed in Section 5.5.4, a better measure 
is the Young’s modulus 𝑌 : It is an intensive quan-
tity, so not dependent on the block’s dimensions. The Young’s modulus is 
measured by stretching a block of material with a force 𝐹 at each end. 

𝑌 ≡ 
stress 

(9.5)strain 
. 

The stress is 𝐹/𝐴, where 𝐴 is the block’s cross-sec-
tional area. Estimating the strain requires more 
steps. Fortunately, the estimate breaks into a tree. 
To grow it, imagine the block as a bundle of fibers, 
each a chain of springs (bonds) and masses (atoms). Because strain is the 
fractional length change, the strain in the block is the strain in each fiber and 
the strain in each spring of each fiber: 

spring extension 
strain = . (9.6)bond length 𝑎 

That’s the root of the tree. Here are the internal nodes:
 
force/fiber
 spring extension = (9.7)spring constant 𝑘 

;
 

force 𝐹
= . (9.8)fiber 𝑁fibers 
The number of fibers will be 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

320 9 Spring models 

cross-sectional area 𝐴𝑁fibers = (9.9)
per-fiber cross-sectional area 𝑎2 

. 

Here is how the leaf values propagate to the root. 
1. The force per fiber becomes 𝐹𝑎2/𝐴. 
2. The per-spring extension becomes 𝐹𝑎2/𝑘𝐴. 
3. The strain becomes 𝐹𝑎/𝑘𝐴. 
Finally, the Young’s modulus becomes 𝑘/𝑎: 

𝑌 ≡ 
stress 𝐹/𝐴 𝑘= = (9.10)strain 𝐹𝑎/𝑘𝐴 𝑎 

. 

Because 𝑘 ∼ 𝐸0/𝑎2 (Section 9.1.1), 𝑌 ∼ 𝐸0/𝑎3, which 
confirms with a spring model our dimensional-analysis 
prediction in Section 5.5.4. 

9.1.3 Sound speed in solids and liquids 

strain
Fa/kA

spring
extension
Fa2/kA

bond
length

a

force
F

Nfibers

A/a2

spring
constant

k

force
fiber

Fa2/A

−1

−1

−1

The spring model of solids and even liquids also gives a physical model for 
the speed of sound. Start with a fiber of atoms and bonds: 

m m m · · ·

abond

The sound speed is the speed at which a vibration signal travels along the 
fiber. Let’s study the simplest lumped signal: In one instant, the first mass 
moves to the right by a distance 𝑥, the signal amplitude. 

m m m · · ·

x

The compressed bond pushes the second atom to the right. When the sec-
ond atom has moved to the right by the signal amplitude 𝑥, the signal has 
traveled one bond length. The sound speed is the propagation distance
𝑎bond divided by this one-bond propagation time. 

m m m · · ·

x x

What is the propagation time? That is, roughly how much time does the second 
mass require to move to the right by the signal amplitude 𝑥? 
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The second mass moves because of the spring force from the first spring. 
At 𝑡 = 0, the spring force is 𝑘𝑥. As the mass moves, the spring loses com-
pression, and the force on the second mass falls. So an exact calculation of 
the propagation time requires solving a differential equation. But lumping 
will turn the calculation into algebra: Just replace the changing spring force 
with its typical or characteristic value, which is comparable to 𝑘𝑥. 
The force produces a typical acceleration 𝑎 ∼ 𝑘𝑥/𝑚. After a time 𝑡, the 
mass will have a velocity comparable to 𝑎𝑡 and therefore will have moved 
a distance comparable to 𝑎𝑡2. This force acts for long enough to move the 
mass by a distance 𝑥, so 𝑎𝑡2 ∼ 𝑥. Using 𝑎 ∼ 𝑘𝑥/𝑚 gives 𝑘𝑥𝑡2/𝑚 ∼ 𝑥. The 
amplitude 𝑥 cancels, as it always does in ideal-spring motion. (Thus, the 
sound speed does not depend on loudness.) The propagation time is then 

𝑡 ∼ 
𝑚 
𝑘 
. (9.11) 

This characteristic time is just the reciprocal of the natural frequency 𝜔0 = 
𝑘/𝑚 . In this time, the signal travels a distance 𝑎bond, so 

𝑐s ∼ 
distance traveled 
propagation time ∼ 

𝑎bond 

𝑚/𝑘 
= 

𝑘𝑎2 
bond 

𝑚 
. (9.12) 

To make this expression more meaningful, let’s convert the numerator and 
denominator, which are in terms of microscopic (atomic) quantities, into 
macroscopic quantities. To do so, divide by 𝑎3 

bond/𝑎
3 
bond in the square root: 

𝑐s ∼ 
𝑘𝑎2 
bond/𝑎

3 
bond 

𝑚/𝑎3 
bond 

= 
𝑘/𝑎bond 

𝑚/𝑎3 
bond 

. (9.13) 

The numerator 𝑘/𝑎bond is, as we saw in Section 9.1.2, the Young’s modulus 𝑌 . 
The denominator is the mass per molecular volume, so it is the substance’s 
density 𝜌. Thus, 𝑐s ∼ 𝑌/𝜌 . Our physical, spring model therefore confirms 
our estimate for 𝑐s in Section 5.5.4 based on dimensions analysis. 

9.2 Energy reasoning 
The analysis of sound propagation in Section 9.1.3 required estimating the 
spring forces. Often, however, the forces or their effects are harder to track 
than are the energies. Then, as you’ll see in the next examples, we track 
the energy and look for the energy signature of a spring: the quadratic 
dependence of energy on displacement. 
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9.2.1 Oscillation frequency of a spring–mass system
 

To illustrate the energy method, let’s practice on the most fa-
miliar spring system by finding its natural (angular) oscilla-
tion frequency 𝜔0. The method requires finding its kinetic 
and potential energies. Because these energies vary in complicated ways, 
we use typical or characteristic energies. 

k
m

In terms of the amplitude 𝐴0, the typical potential energy is comparable to 
𝑘𝐴0

2. The typical kinetic energy is comparable to 𝑚𝑣2, where 𝑣 is the typical 
speed of the oscillating mass. This speed is comparable to 𝐴0𝜔0, because 
the mass travels a distance comparable to 𝐴0 in the characteristic time 1/𝜔0 

(which corresponds to 1 radian, or approximately one-sixth of an oscillation 
period). Thus, the typical kinetic energy is comparable to 𝑚𝐴0

2𝜔0
2. 

In spring motion, kinetic and potential energy interconvert, so the ratio 
typical potential energy 

(9.14)typical kinetic energy 

should be comparable to 1. This bold conclusion is not limited to spring 
motion. For example, for gravitational orbits, the ratio, defined carefully 
using the time-averaged energies, is −2. More generally, the virial theorem 
says that, with a potential 𝑉 ∝ 𝑟𝑛, the energy ratio will be 2/𝑛. 
Equating the typical energies gives an equation for 𝜔0: 

𝑘𝐴0
2 ∼ 𝑚𝐴0

2𝜔0
2. (9.15) ⏟ ⏟⏟⏟⏟⏟
 

𝐸potential 𝐸kinetic
 

The amplitude 𝐴0 divides out—another illustration that a spring’s period 
𝑘/𝑚 ∼0𝜔is independent of amplitude—giving . Because the energy ratio 

is 1 (due to the virial theorem), the missing dimensionless prefactor is 1. 

9.2.2 Vibrations of a piano string 
From springs to strings: A piano string is a steel wire stretched close to its 
breaking point—the high tension makes the string’s resistance to bending 
less important and the sound cleaner (as you investigated in Problem 9.17). 
When you push a piano key, a hammer bangs on the string and sets it into 
vibration—whose frequency we’ll estimate with a spring model. 
For a physical model, start with an unstretched piano string of length 𝐿. 
It is a bundle of springs and masses, so it acts like one large spring. Now 
stretch the string by putting it under tension 𝑇 . Then hammer it. 

http:����02��02.(9.15
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The hammer gives the atoms vertical velocities. Eventu-
ally the kinetic energy turns into potential energy, and 
the string gets a sinusoidal shape with a wavelength
𝜆 = 2𝐿 and a small amplitude 𝑦0. 

As we did for the simple spring–mass system (Section 9.2.1), we’ll find the 
typical potential energy in the string and the typical kinetic energy in the 
motion of the string. The potential energy comes from the tension force: 
The curved string is longer than the equilibrium string, so the tension force 
has done work on the string by stretching it; the string stores that work as 
its potential energy. The work done is the force times the distance, so 

y0

0
L =

λ

2

𝐸potential ∼ 𝑇 × extra length. (9.16) 

n

≈ y0
θ ≈ y0/n

stringTo estimate the extra length, lump a piece of the curved 
string as the hypotenuse of a right triangle with base 𝜆, 
where 𝜆 ≡ 𝜆/2𝜋 . This base represents 1 radian of the 
sine-wave shape. In 1 radian, a sine wave attains almost 
its full height (sin 1 ≈ 0.84), so the height of the triangle 
is comparable to the amplitude 𝑦0. The triangle then has slope tan 𝜃 ≈ 𝑦0/𝜆. 
Because 𝑦0 ≪ 𝜆, the opening angle 𝜃 is small; thus, tan 𝜃 ≈ 𝜃 and 𝜃 ≈ 𝑦0/𝜆. 

1

θ√ 1 + θ2 ≈ 1 + θ2 /2Using our lumping triangle, we’ll find the fractional change 
in length between the hypotenuse and the base. Fractional 
changes, being dimensionless, require less algebra and are 
more widely applicable than absolute changes. To find the 
fractional change, rescale the triangle so that the base has unit length; then 
it has height 𝜃 and hypotenuse 1 + 𝜃2 . Because 𝜃 is small, the square root 
is, by the binomial theorem, approximately 1 + 𝜃2/2. Thus, the fractional 
increase in length is comparable to 𝜃2, which is 𝑦2

0 /𝜆
2 . 

The fractional increase applies to the whole string, whose length was 𝐿, so 

extra length ∼ 𝐿 ( 
𝑦0 

𝜆 
)
2 
. (9.17) 

The work done in making this much stretch, which is the potential energy 
in the string, is 𝑇 × extra length, where 𝑇 is the tension, so 

𝐸potential ∼ 𝑇𝐿 ( 
𝑦0 

𝜆 
)
2 
. (9.18) 

As befits a spring, even a giant one composed of individual bond springs, 
the potential energy is proportional to the square of the amplitude 𝑦0. 
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Now let’s estimate the kinetic energy in the motion of the string. As the 
string vibrates at the so-far-unknown angular frequency 𝜔, the pieces of 
the string move up and down with a typical speed 𝜔𝑦0. Thus, 

𝐸kinetic ∼ mass × (typical speed)2 ∼ 𝜌𝑏2𝐿 × 𝜔2𝑦2 , (9.19)⏟ ⏟0
𝑚 ∼𝑣2 

Section 5.5.4, 

Because the numerator 𝑇/𝑏2 is the pressure (force per area) applied to the 
ends of the string to put it under the tension 𝑇 , the speed of these transverse 

(They are called transverse waves because 

Despite the extensive use of lumping, this result turns out to be exact—as 
do many energy-based spring analyses. The circular frequency 𝑓 = 𝜔/2𝜋 

where 𝜌 is the string’s density and 𝑏 is its diameter. The kinetic energy is 

𝜌𝑏2

of a spring. Equating the energies gives the equation for 

𝐿𝜔2 𝑦2
0

⏟⏟⏟⏟⏟⏟⏟ 
∼𝐸kinetic 

∼ 𝑇 𝐿 ⎛⎜
⎝ 

also proportional to the squared amplitude 

𝑦0 

𝜆 
⎞⎟ 
⎠

2

.
⏟⏟⏟⏟⏟⏟⏟ 

∼𝐸potential 

The length 𝐿 and the squared amplitude 𝑦2

𝜔 = 
1 
𝜆 

𝑇
𝜌𝑏2 

. 

has the same structure: 

𝑓 = 
1 
𝜆 

𝑇
𝜌𝑏2 

.

𝑣 = 
𝑇/𝑏2
𝜌 

.

waves is applied pressure/𝜌 .
the direction of vibration is perpendicular, or transverse, to the direction 
of travel.) This speed is analogous to the speed of sound that we found in 

pressure/𝜌 , where the pressure was the gas pressure or the 
elastic modulus. So our speed makes good sense. 

𝑦0
2—the other energy signature 

𝜔: 

The wave propagation speed is 𝑓 𝜆 

(9.22) 

𝑇/𝜌𝑏2 . Let’s(or 𝜔𝜆), which is just 
check that this speed makes sense. As a first step, it can be rewritten as 

(9.20) 

0 cancel, leaving 

(9.21) 

(9.23) 

How long is the middle-C string on a piano? 

We can find the length from the propagation speed and the frequency. The 
frequency of middle C is roughly 250 hertz. The propagation speed is 
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𝑣 = 
𝜎 
𝜌 
, (9.24) 

where 𝜎 is the stress 𝑇/𝑏2. This stress is also 𝜖𝑌 , where 𝜖 is the strain (the 
fractional change in length). Using 𝜎 = 𝜖𝑌 and 𝑐s = 𝑌/𝜌 , 

𝑣 = 
𝜖𝑌 
𝜌 

= 𝜖 
𝑌 
𝜌 

= 𝜖 𝑐s. (9.25) 

Thus, in terms of the Mach number 𝖬, which measures speeds relative to 
the full wave speed, transverse waves have a Mach number of 𝜖 . 
In steel, 𝑐s ≈ 5 kilometers per second. For piano wire, which is made of 
high-strength carbon steel, the yield strain is roughly 0.01. However, the 
string is not stretched quite so far. To provide a margin of safety, the strain

𝑣 ≈ 0.06⏟
𝜖 

is kept to roughly 
× 5×103 ms−1

At 𝑓 ≈ 250 hertz, the wavelength is roughly 1.2 meters: 

𝜆 = 
𝑣

𝜖 3 × 10−3. Then the transverse-wave speed is 

⏟⏟⏟⏟⏟⏟⏟ = 300 ms−1. (9.26) 
𝑐s 

y0

0
L =

λ

2

𝑓 ≈
300 ms−1 

= 1.2 m. (9.27)250 Hz 

The wavelength of this lowest, fundamental frequency is twice the string’s 
length, so the string should be 0.6 meters long. To check, I looked into our 
piano: 0.6 meters is almost exactly the length of the strings set into motion 
when I play middle C. 

9.2.3 Musical notes from bending beams 
Another musical device that we can model is a wooden or metal slat in a 
marimba or xylophone. Using spring models, proportional reasoning, and 
dimensional analysis, we’ll find how the frequency of the slat’s musical 
note depends on its dimensions. 
Thus, imagine a thin block of wood of length 𝑙, width 𝑤,
 
and thickness ℎ. It is supported at the two dots (or held at
 
one of them) and tapped in the center. As it vibrates, its
 
shape varies from bent to straight and back to bent. Here
 
are the shapes shown in side view.
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quency comparable to 

first decision is not difficult: The mass is proportional to the thickness. 
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How does the slat’s width 𝑤 affect the frequency? 

The answer comes from that cheapest kind of experi-
ment, a thought experiment. Using a type of argument 
developed by Galileo in his study of free fall, lay two 
identical slats of width 𝑤 side by side. Tapping both 
slats simultaneously produces the same motion as does tapping a slat of 
width 2𝑤 (the result of gluing the two slats along the long, thin edge). So 
the width cannot affect the frequency. 

How does the slat’s thickness ℎ affect the frequency? 

The slat, made of atoms connected by bond springs, acts 
like a giant spring–mass system. When the slat is straight 
(the equilibrium position), it has zero potential energy. The 
energy increases upon bending the slat, which stretches or 
compresses the bond springs. Thus, the slat resists bending. As befits a 
giant spring, its resistance to bending can be represented by a stiffness or 
spring constant 𝑘 . (Mechanical engineers define a related quantity called 
the bending stiffness or the flexural rigidity, which has dimensions of en-
ergy times length. Our stiffness is an actual spring constant, with dimen-

Then, as befits a giant spring–mass system, the slat has a vibration fre-
𝑘/𝑚 , where 𝑚 is its mass. Deciding how the thick-

ness affects the frequency has split into two smaller problems: how the 
thickness affects the mass and how the thickness affects the stiffness. The 

How does the stiffness 𝑘 depend on thickness? 

To answer this proportional-reasoning question, we’ll perform the thought 
experiment of bending each slat by the same vertical deflection 𝑦. 

y y

The stiffness 𝑘 is proportional to the force 𝐹 required to bend the beam 
(𝐹 = −𝑘𝑦). However, we won’t try to understand 𝑘 by finding how the 
thickness affects 𝐹 itself. Force is a vector, so finding the required force re-
quires carefully bookkeeping many little forces and their directions to know 
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which contributions cancel. Instead, we’ll find how the thickness affects the 
stored energy (the potential energy). As a positive scalar quantity, potential 
energy has no direction or even sign and is therefore easier to bookkeep. 
Because a slat is a big spring, the energy required to produce the vertical 
deflection 𝑦 is given by 

𝐸 ∼ 𝑘𝑦2. (9.28) 

Because 𝑦 is the same for the slats (an easy condition to enforce in a thought 
experiment), the energy relation becomes the proportionality 𝐸 ∝ 𝑘 . To 
find how 𝑘 depends on thickness, let’s redraw the bent slats with a dotted 
line showing the neutral line (the line without compression or extension): 

y y

Above the neutral line, the bond springs along the length of the block get
 
extended; below the neutral line, they get compressed. The compression or
 
extension Δ𝑙 determines the energy stored in each bond spring. Then the
 
stored energy in the whole slat is 

𝐸 ∼ 𝐸typical spring × 𝑁springs. (9.29) 

Because 𝐸 ∝ 𝑘 , 
𝑘 ∝ 𝐸typical spring × 𝑁springs. (9.30) 

To find how 𝐸typical spring depends on the slat’s thickness ℎ, break the energy 
into factors (divide and conquer): 

𝐸typical spring ∼ 𝑘bond × (Δ𝑙)2 (9.31)typical spring. 

Because the bonds in the two blocks are the same (the blocks differ only in 
thickness), this relation becomes the proportionality 

𝐸typical spring ∝ (Δ𝑙)2 (9.32)typical spring. 

Therefore, the stiffness is 
𝑘 ∝ (Δ𝑙)2 (9.33)typical spring × 𝑁springs. 

To find how (Δ𝑙)typical spring depends on ℎ, compare typical bond springs in 
the thick and thin blocks—for example, a spring halfway from the neutral 
line to the top surface. Because the thick block is twice as thick as the thin 
block, this spring is twice as far from the neutral line in absolute distance. 
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The extension is proportional to the distance from the neutral line—as you 
can guess by observing that it is the simplest scaling relationship that pre-
dicts zero extension at the neutral line (or try Problem 9.1). In symbols, 

(Δ𝑙)typical spring ∝ ℎ. (9.34) 

Furthermore, 𝑁springs is also proportional to ℎ. Therefore, 𝑘 ∝ ℎ3: 
𝑘 ∝ (Δ𝑙)2 . (9.35)typical spring × 𝑁springs ∝ ℎ3

Doubling the thickness multiplies the stiffness by eight! The vibration fre-
quency of a slat, considered as a giant spring, is 

𝜔 ∼ 
𝑘 
𝑚 

. (9.36) 

The mass is proportional to ℎ, so 𝜔 ∝ ℎ: 

𝜔 ∝ 
ℎ3 

ℎ 
= ℎ. (9.37) 

Doubling the thickness should double the frequency. To test this prediction, 
I tapped two pine slats having these dimensions: 

(ℎ for the thin slat); 
⏟30 cm × 5 cm ×{ 

1 cm
⏟ (9.38)2 cm (ℎ for the thick slat). 𝑙 𝑤 

To measure the frequencies, I matched each slat’s note to a note on a pi-
ano. The thin slat sounded like C one octave above middle C. The thick slat 
sounded like A in the octave above the thin block. The interval between the 
two notes is almost an octave or a factor of 2 in frequency. 
Now let’s extend the analysis to the xylophone slats, which vary not in thick-
ness but in length. This extension bring us to the third scaling question. 

How does the slat’s length 𝑙 affect the frequency? 

We already found the scaling relation between 𝜔 (frequency) and 𝑤 (width), 
namely 𝜔 ∝ 𝑤0; and between 𝜔 and ℎ (thickness), namely 𝜔 ∝ ℎ. By 
adding the constraints of dimensional analysis to these scaling relations, 
we can find the scaling relation between 𝜔 and 𝑙. 
The quantities relevant to the frequency 𝜔 are the speed of sound 𝑐s and 
two of the three dimensions: thickness ℎ and length 𝑙. The third dimension, 
the width, is not on the list, because the frequency, we already found, is 
independent of the width. (Instead of the speed of sound, the list could 
include the Young’s modulus 𝑌 and the density 𝜌. As the only two variables 
containing mass, 𝑌 and 𝑐s would end up combining anyway to make 𝑐s.) 
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These four quantities, made from two dimensions, make 
two independent dimensionless groups. The first group 
should be proportional to the goal 𝜔. Because 𝜔 and 𝑐s 
are the only quantities containing time, each as T−1, the 
group has to contain 𝜔/𝑐s. Making 𝜔/𝑐s dimensionless 
requires multiplying by a length. Either of the two lengths works. Let’s 
choose 𝑙. (For the alternative, try Problem 9.2). Then the group is 𝜔𝑙/𝑐s. 

The other group should not contain the goal 𝜔. Then the only choices are 
powers of the aspect ratio ℎ/𝑙. If we use ℎ/𝑙 itself, the most general dimen-
sionless statement is 

𝜔𝑙 
𝑐s 

= 𝑓 ( 
ℎ
𝑙 ) .	 (9.39) 

The thickness scaling relation, 𝜔 ∝ ℎ, determines the form of 𝑓 , giving 
𝜔𝑙 ∼ 

ℎ 
(9.40)𝑐s 𝑙 . 

Solving for the frequency, 

𝜔 ∼ 
𝑐sℎ	 

(9.41)
𝑙2 

. 

As a scaling relation, 𝜔 ∝ 𝑙−2. Let’s check the scaling expo- 𝑙 (cm) 𝑓 (Hz)
nent against experimental data. When my older daughter was 

C 12.2 261.6small, she got a toy xylophone from her uncle. Its (metal) slats 
D 11.5 293.6have the tabulated dimensions and frequencies. The lower and 

the scaling relation is correct, C should come from the longer 
G 10.0 392.0 

measured length ratio is almost exactly	 A 9.4 440.0 

B 8.9 493.8 

slat, and the ratio of slat lengths should be Indeed, the 

higher C notes (C and C’) are a factor of 

2 

apart in frequency. If	 2 

. 
2 ≈ 1.414: 

E 10.9 329.6 

F 10.6 349.2 

12.2 cm ≈ 1.419. (9.42) C’ 8.6 523.28.6 cm 

Problem 9.1 Spring extension versus distance from the neutral line 
Consider a bent slat as an arc of a circle, and thereby explain why the spring exten-
sion is proportional to the distance from the neutral line.
 

Problem 9.2 Alternative dimensionless group 

Repeat the dimensional analysis for the dependence of the oscillation frequency on
 
slat length but using 𝜔ℎ/𝑐s and ℎ/𝑙 as the two independent dimensionless groups.
 
Do you still conclude that 𝜔 ∝ 𝑙−2?
 

T−1𝜔 frequency 
𝑐s LT−1 sound speed 

ℎ L thickness 
𝑙 L length 
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Solving the beam differential equation gives the vibration frequency as 

𝑓 ≈ 
3.56 
12 

× 𝑐s 
ℎ 
𝑙2 
. 

The dimensionless prefactor 3.56/ 12 is almost exactly 1. This example is 
one of the rare cases where using circular frequency ( 𝑓 ) rather than angular 
frequency (𝜔) makes the prefactor closer to 1. 

For my block of pine, a light wood, 𝜌 ≈ 0.5𝜌water and 𝑌 ≈ 1010 pascals, so 

𝑐s = 
𝑌 
𝜌 

∼ 
1010 Pa 

0.5 × 103 kg m−3 
≈ 4.5 km s−1. (9.44) 

For the thin block, ℎ = 1 centimeter and 𝑙 = 30 centimeters, so 

𝑓 ≈ 𝑐s 
ℎ 
𝑙2 

≈ 4.5 × 103 m s−1 × 
10−2 m 
10−1 m2 

∼ 450 Hz. (9.45) 

(9.43) 

This estimate is reasonably accurate. The thin block’s note was approxi-
mately one octave above middle C, with a frequency of roughly 520 hertz. 

Problem 9.3 Graphing the data on frequency versus length 

Check the scaling 𝜔 ∝ 𝑙−2 by plotting the xylophone data for frequency versus 
length on log–log axes. What slope should the graph have? 

Problem 9.4 Finding the stiffness, then the frequency 
Use dimensional analysis to write the most general dimensionless statement con-
necting stiffness 𝑘 to a slat’s Young’s modulus 𝑌 , width 𝑤, length 𝑙, and thickness 
ℎ. What is the scaling exponent 𝑞 in 𝑘 ∝ 𝑤𝑞? Use that scaling relation and 𝑘 ∝ ℎ3 

to find the missing exponents in 𝑘 ∼ 𝑌𝑝𝑤𝑞𝑙𝑟ℎ3. 

Problem 9.5 Xylophone notes 
If you double the width, thickness, and length of a xylophone slat, what happens 
to the frequency of the note that it makes? 

Problem 9.6 Location of the node 
CM nodenodeHere’s how you can predict the location of the node 

(where to hold the wood block) using conservation. 
Because the bar vibrates freely without an external 
force, the center of mass (the dot) stays fixed. Ap-
proximate the bar’s shape as a shallow parabola, find the center of mass (CM), and 
therefore find the node locations (as a fraction of the bar’s length). My daughter’s 
longest xylophone slat is 12.2 centimeters long with holes 2.7 centimeters from the 
ends. Is that fraction consistent with your prediction? 
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9.3 Generating sound, light, and gravitational radiation 
The sound generated by the vibrating wood blocks is an example of the 
most pervasive spring: radiation. It comes in three varieties. Electromag-
netic radiation (or, more informally, light) is produced by an accelerating 
charge. Sound (acoustic radiation) can be produced simply by a changing 
but nonmoving charge (such as an expanding or contracting speaker mem-
brane). Therefore, sound is simpler than light—which in turn is simpler 
than gravitational radiation. Do the easy cases first: We’ll first apply spring 
models to sound (Section 9.3.1). By adding the complexity of motion, we’ll 
extend the analysis to light (Section 9.3.2). Then we’ll be ready for the com-
plexity of gravitational radiation (Section 9.3.3). 

9.3.1 Acoustic radiation from a charge monopole 
When we think of radiation, we think first of electromagnetic radiation, 
which we see (pun intended) everywhere. To analyze sound radiation while 
benefiting from what we know about electromagnetic radiation, we’ll find 
an analogy between electromagnetic and acoustic radiation—starting at the 
source of radiation, namely a single charge (a monopole). 

The search for the acoustic analog of charge is aided by scaling relations. An 
electric charge 𝑞 produces a disturbance, the electric field 𝐸. Their connec-
tion is 𝐸 ∝ 𝑞. Because the symbols 𝐸 and 𝑞 amplify the mental connection to 
electromagnetism, let’s write the relation between 𝐸 and 𝑞 in words. Words 
promote a broader, more abstract view not limited to electromagnetism: 

field ∝ charge. (9.46) 

Another transferable scaling comes from the energy density ℰ (energy per 
volume) in the field. For an electric field, ℰ ∝ 𝐸2. In words, 

energy density ∝ field2. (9.47) 

Sound waves move fluid, and motion means kinetic energy. Because the 
kinetic-energy density is proportional to the fluid velocity squared, the 
acoustic field could be the fluid velocity 𝑣 itself. Then our first scaling rela-
tion, that field ∝ charge, becomes 

𝑣 ∝ charge. (9.48) 

Thus, an acoustic charge moves fluid and with a speed proportional to the 
charge. In contrast to electromagnetism, acoustic charge cannot measure a 
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fixed amount of stuff. For example, it cannot measure simply the volume of 
a speaker. A fixed volume would produce no motion and no acoustic field. 
Instead, acoustic charge must measure a change in the source. As an ex-
ample of such a change, imagine an expanding speaker. As it expands, it 
pushes fluid outward. The faster it expands, the faster the fluid moves. To 
identify the kind of change to measure, let’s work backward from the elec-
tric field 𝐸 of a point electric charge to the velocity field 𝑣 of a point acoustic 
charge. The electric field points outward with magnitude 

𝑞
𝐸 = (9.49)

4𝜋𝜖0𝑟2 
. 

Furthermore, the electrostatic 𝜖0 appears in the energy density 

ℰ = 
1
2𝜖0𝐸

2, (9.50) 

whose acoustic counterpart is the kinetic-energy density 

ℰ = 
1
2𝜌𝑣

2. (9.51) 

Because 𝐸 and 𝑣 are analogous, the electrostatic 𝜖0 corresponds, in acoustics, 
to the fluid density 𝜌. Therefore, in the electric field, let’s replace 𝜖0 by 𝜌, 
𝐸 by 𝑣, and 𝑞 by acoustic charge to get 

𝑣 = 
acoustic charge 

, (9.52)
4𝜋𝜌𝑟2 

or 
acoustic charge = 𝜌𝑣 × 4𝜋𝑟2. (9.53) 

Here, 𝑟 is the distance from the charge, and 𝑣 is the fluid’s speed outward 
(just as the electric field points outward). Then each factor in the acoustic 
charge has a meaning, as does the product. The factor 𝜌𝑣 is the mass flux: 

flux = density of stuff ×⏟speed. (9.54)⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝜌𝑣 𝜌 𝑣 

The factor 4𝜋𝑟2 is the surface area of a sphere of radius 𝑟. Thus, the acoustic 
charge 𝜌𝑣 × 4𝜋𝑟2 measures the rate at which mass flows out of this sphere. 
The acoustic charge itself, at the center of this sphere, must displace mass at 
this rate. So the acoustic analog of charge is a mass source. The source could 
be an expanding speaker that directly forces fluid outward. Alternatively, it 
could be a hose supplying new fluid that forces the old fluid outward. For 
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the rate, a convenient notation is �̇� : The dot represents the time derivative, 
turning mass into a mass rate—which is the charge strength. 

acoustics electrostatics 

field fluid velocity 𝑣 electric field 𝐸 

source strength (charge) 

field from a point source 

�̇� 

�̇� 

4𝜋𝜌 
1 

𝑟2 

𝑞 
𝑞 

4𝜋𝜖0 

1 

𝑟2 

We have found an acoustic field 𝑣 proportional to 𝑟−2. But, as we found 
in Section 5.4.3, the signature of radiation is that the field is proportional 
to 𝑟−1. So, we have constructed the acoustic analog of a static electric field 
and charge, but we have not yet constructed a radiating acoustic system. 
Producing radiation requires change—for example, due to a speaker. As a 
model of a speaker, a small pulsating sphere grows and shrinks in response 
to the music that it broadcasts. Maybe you put the sphere in a fancy box and 
slap a brand name on it, but growing and shrinking is still its fundamental 
operating principle and how it makes sound. A simple model of this change 
is spring motion—a sinusoidal oscillation in the charge: 

�̇� = �̇� 0 cos 𝜔𝑡. (9.55) 

At 𝑡 = 0, when cos𝜔𝑡 = 1, the speaker is expanding at its maximum rate, 
displacing mass at a rate �̇� 0 . At 𝑡 = 𝜋/𝜔, the speaker is contracting at its 
maximum rate. Here is one cycle of its oscillation. 

𝜔𝑡 = 0 𝜔𝑡 = 
𝜋 

𝜔𝑡 = 𝜋 𝜔𝑡 = 
3𝜋 

𝜔𝑡 = 2𝜋 2 2 

How much power does this changing acoustic charge radiate? 

This analysis requires easy cases and lumping. Easy cases will help us find 
the velocity field; because the charge and field are changing, lumping will 
help us find the resulting energy flow. The easiest case is near the charge: 
News about the changes requires no time to arrive, so the fluid responds to 
a changing �̇� instantaneously. In this region, we know 𝑣: 

�̇�𝑣 = (9.56)
4𝜋𝜌𝑟2 
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produced by the speaker (𝜆 ≡ 𝜆/2𝜋 ). 

𝑟 ≪ 𝜆means 

𝜆With 

and far are measured relative to 
for middle C ( 

9 Spring models 

Far from the charge, however, the fluid cannot know right away that �̇� has 
changed. But what does “far” mean? As we learned in Chapter 8, easy 
cases are defined by a dimensionless parameter, so the distance from the 
source is not enough information by itself to decide between near and far. 
The decision needs a comparison length. This length is based on how the 
news is transmitted: It travels as a sound wave, so it has speed 𝑐s. Because 
the change happens at a rate 𝜔 (the angular frequency of the charge oscil-
lation), the characteristic timescale of the changes is 

𝜆 

= 1/𝜔𝜏 . In this time, 
the charge changes significantly, and the news has traveled a distance 𝑐s𝜏 
or ∼ 𝑐s/𝜔. This distance is the reduced wavelength of the sound wave 

charge
r ∼
n

near
zone
r� n

far
zone
r� n

Therefore, “near the charge” (in the near field or zone) 
. “Far from the charge” (in the far field or 

the radiation field or zone) means 𝑟 ≫ 𝜆. For example, 
𝑓 ≈ 250 hertz, and 𝜆 ≈ 1.3 meters), near 

20 centimeters. 
as the comparison length, the dimensionless ratio 

determining whether 𝑟 is small or large is 𝑟/𝜆, which is 
𝑟𝜔/𝑐s. At the boundary between the near and far zones, 𝑟 ∼ 𝜆. 
In the lumping model, the velocity field in the near zone follows the changes 
in �̇� instantly, with energy flowing outward and inward in rhythm with the 
speaker’s motion. At the zone boundary, at 𝑟 ∼ 𝜆, the velocity field changes 
its character. It becomes a signal describing those changes, and this signal, 
a sound wave, travels outward at the speed of sound 𝑐s. 

To estimate the energy density at 𝑟 ∼ 𝜆, return to the lumping approx-
imation—that the velocity field tracks the changes in �̇� throughout the 
near zone—and gather enough courage to extend the assumption. Assume 
that the instantaneous tracking happens all the way out to the zone bound-
ary—that is, it applies not just when 𝑟 ≪ 𝜆 but even when 𝑟 ∼ 𝜆 (where the 
field abruptly changes its character and becomes a radiation field). 

energy flux = energy density (at 𝑟 ∼ 𝜆) × propagation speed. (9.57) 

To estimate the power carried by this signal—which is the power radiated 
by the source—start with the power per area, which is energy flux. At the 

𝑟 ∼ 𝜆zone boundary, , so 

In this approximation, the velocity field at 𝑟 ∼ 𝜆 is 

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝜌𝑣2/2 𝑐s 

http:speed.(9.57
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ℰ ∼ 
1
2𝜌

⎛ (9.59) 

⎝4𝜋𝜌𝜆2 ⎠ 

�̇�
4𝜋𝜌𝜆

𝑣 ∼ 2 ,

⎜ 
⎝

�̇�
4𝜋𝜌𝜆2

⎞⎟ 
⎠

.
2 

enclosing the near zone: 

4𝜋𝜆2 ×
⏟ 
surface area 

Using 𝜆 = 𝑐s

𝑃monopole 

(9.58) 

so the energy density ℰ ∼ 𝜌𝑣2/2 becomes 

𝑃 ∼ 2𝜌
⎛⎜ ⎟⎞ × 𝑐s. (9.60)

1 �̇� 
2 

The radiated power 𝑃 is the energy flux times the surface area of the sphere 

⏟⏟⏟⏟⏟⏟⏟ ⏟ 
energy density 𝜌𝑣2/2 propagation speed 

/𝜔, the power radiated by our acoustic monopole becomes 
1 �̇� 2𝜔2 

= . (9.61)8𝜋 𝜌𝑐s 
Despite the absurd number of lumping approximations, this result is exact! 
Let’s use it to estimate the acoustic power output of a tiny speaker. 

How much power is radiated by an 𝑅 = 1 centimeter speaker whose radius varies 
by ±1 millimeter at 𝑓 = 1 kilohertz (roughly two octaves above middle C)? 

This calculation becomes slightly simpler if we replace �̇� by 𝜌�̇� , 
where �̇� is the rate of volume change. (In acoustics, �̇� is often called 
the source strength 𝑄—for example, in the classic work The Physics 
of Musical Instruments [15, p. 172]. However, for the sake of the anal-
ogy with electromagnetism, it is more consistent to make the source 
strength �̇� rather than �̇� .) In terms of �̇� , 

1 cm

±1 mm

1 𝜌�̇� 2𝜔2
𝑃monopole = . (9.62)8𝜋 𝑐s 

Here, �̇� = �̇� 0 cos 𝜔𝑡, where �̇� 0 is the amplitude of the oscillations in �̇� . 
Therefore, the power 𝑃monopole is also oscillating. By symmetry, the aver-
age value of cos2𝜔𝑡 is 1/2 (Problem 3.38), so the time-averaged power is 
one-half the maximum power: 

1 𝜌�̇�0
2𝜔2 

𝑃avg = . (9.63)16𝜋 𝑐s 
To find the amplitude �̇� 0 , write �̇� in terms of the speaker dimensions: 

http:12���(9.59
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𝑉 = ˙ 4𝜋𝑅2	 (9.64) ⏟ × 𝑣surface,
 
surface area
 

where 𝑣surface is the outward speed of the speaker membrane. Because the 
surface is oscillating like a mass on a spring with amplitude 𝐴0, its maxi-
mum velocity is 𝐴0𝜔 and its time variation is 

𝑣surface(𝑡) = 𝐴0𝜔 cos 𝜔𝑡.	 (9.65) 

Then 

˙ (9.66)𝑉 = 4𝜋𝑅2𝐴0𝜔 cos𝜔𝑡. 

The corresponding amplitude is everything except the cos 𝜔𝑡: 
�̇�0 = 4𝜋𝑅2𝐴0𝜔. (9.67) 

The radiated power is then 

�̇� 
0
2

⏞⏞⏞⏞⏞⏞⏞ 𝜔21 𝜌 (4𝜋𝑅2𝐴0𝜔)2 𝜋𝜌𝑅4𝐴0
2𝜔4 

mensionless ratio 𝑅𝜔/𝑐s
4 

) = 𝜋𝜌𝑐3 

By multiplying 𝑃avg by 𝑐3/𝑐3, the power can be written in terms of the di-

16𝜋 𝑐s	 𝑐s 

Physically, 𝑅/𝜆 is the dimensionless speaker size (measured relative to 𝜆). 
The scaling exponent of 4 tells us that the radiated power depends strongly 
on the dimensionless size of the speaker. As a result, big speakers (large 𝑅) 
are loud; and long wavelengths (low frequencies) require big speakers. 

𝑃

𝑃 = 𝜋𝜌𝑐3s 𝐴
2
0 (

𝑅𝜔
𝑐s

avg = 

, which is also 𝑅/𝜆:

s 𝐴
2

𝜆 ) .0 (
𝑅 4

= .	 

(9.69)

(9.68) 

s s 

1.	 Units. They are watts: 
kg m−3 × m3 s−3 × m2 = kg m2 s−3 = W. (9.71) 

2. Powers of ten. They contribute 10−4: 

For this speaker, the radius is 𝑅 is 1 centimeter, the surface-oscillation am-
plitude 𝐴0 is 1 millimeter, and 𝑓 is 1 kilohertz. So the wavelength of the 
sound is roughly 30 centimeters (𝜆 = 𝑐s/ 𝑓 ), and 𝜆 is roughly 5 centimeters. 
Then the dimensionless speaker size 𝑅/𝜆 is approximately 0.2, and 

𝑃avg ≈ 3⏟ 
𝜋 

× 1 kg m−3
⏟⏟⏟⏟⏟ 

𝜌 

× (3 × 102 m s−1)3⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
𝑐3 
s 

× (10−3 m)2⏟⏟⏟⏟⏟ 
𝐴2

0 

× 0.24.⏟
(𝑅/𝜆)4 

(9.70) 

To evaluate this power mentally, divide and conquer as usual: 

http:9.69)(9.68
http:�4����2(9.64
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× 10−4⏟ 
from (𝑅/𝜆)4 

= 10−4

So far, the power is 10−4 watts. 

Remaining numerical factors. They are 

24.⏟ 
from (𝑅/𝜆)4 

ical factors contribute roughly 1600. Let’s round it to 2000. 
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10−6⏟106 × ⏟ . (9.72) 
from 𝑐3 from 𝐴2

s 0 

3. 

3 × 33 × (9.73) 
from 𝜋 from 𝑐3 

⏟ ⏟ 
s 

Because 24 = 16 and 3×33 is (32)2 or roughly 102, the remaining numer-

Then the power is roughly 2000 × 10−4 or 0.2 watts. 

Does that power represent a loud or a soft sound? 

It depends on how close you stand to the speaker. If you are 1 meter away, 
the 0.2 watts are spread over a sphere of area 4𝜋 × (1 meter)2, or roughly 
10 square meters. Then the power flux is roughly 0.02 watts per square 
meter. In decibels, which is the more familiar measure of loudness (intro-
duced in Problem 3.10), this power flux corresponds to just over 100 deci-
bels, which is very loud, almost enough to cause pain. 

What radius fluctuations would produce a barely audible, 0-decibel flux? 

Shrinking the flux to 0 decibels, which is a drop of 100 decibels, is a drop 
of a factor of 1010 in energy flux and power. Because the energy flux is 
proportional to 𝐴0

2, 𝐴0 must fall by a factor of 105: from 10−3 meters to 
10−8 meters. Thus, 10-nanometer fluctuations in a small speaker’s radius 
are (barely) enough to produce an audible sound. The human ear has an 
amazing dynamic range and sensitivity. 

9.3.2 Electromagnetic radiation from a dipole 
In the spirit of laziness, let’s transfer, by analogy, the radi- acoustics electrostatics 
ated power from acoustic to electromagnetic radiation. In 

𝜌 𝜖0Section 9.3.1, we developed the analogy between acoustics 
𝑣 𝐸and electrostatics. Using it, the acoustic radiated power, 
𝑐s 𝑐

1 �̇� 2𝜔2 
�̇� 𝑞𝑃monopole = , (9.74)8𝜋 𝜌𝑐s 

implies an electromagnetic radiated power of 𝑞2𝜔2/8𝜋𝜖0𝑐. 
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Alas, this conjecture has three problems. First, if it represents the power ra-
diated by an oscillating charge—moving, say, on a spring oscillating with 
frequency 𝜔—then its acceleration is ∝ 𝜔2, so the radiated power is pro-
portional to the acceleration. However, we learned from dimensional analy-
sis (Section 5.4.3) that the power had to be proportional to the acceleration 
squared. Second, the power should depend on the amplitude of the motion, 
which is a length, yet the proposed power contains no such length. 

These two problems are symptoms of the third problem, that transferring 
the acoustic analysis to electromagnetism has made an illegal situation. A 
single changing electromagnetic charge 𝑞(𝑡) violates charge conservation: 
If 𝑞(𝑡) is increasing, from where would the new charge come? 

This question suggests the valid physical model, that the new charge 
comes from a nearby charge. As a model of this flow, imagine a pair 
of opposite, nearby charges. As the positive charge flows to the negative 
charge, the two charges swap places; and vice versa. This model is an 
oscillating dipole. Here is a full cycle of its oscillation. 

+

−

flow

+

−

−

+

+

−

𝜔𝑡 = 0 𝜔𝑡 = 𝜋 𝜔𝑡 = 2𝜋 

If the charges are ±𝑞 and their separation is 𝑙, then 𝑞𝑙 is called their dipole 
moment 𝑑. Here, the time-varying dipole moment is 𝑑(𝑡) = 𝑑0 cos 𝜔𝑡, 
where 𝑑0 is the amplitude of the oscillations in the dipole moment. To 
estimate the power radiated, we’ll reuse the structure from acoustics, 

1𝑃 ∼ 4𝜋𝑟2 

⏟ 
× 2 

𝜖0𝐸2 

⏟ 
× 𝑐,

⏟ 
(9.75) 

surface area energy density propagation speed 

tracking their individual components. Let’s therefore make the lumping 
approximation that we can add the vectors using only their magnitudes: 

𝐸dipole ≈ 𝐸+ − 𝐸−. (9.76) 

+q

−q

l

and evaluate it at the near-field–far-field boundary (𝑟 ∼ 𝜆). The only change 
from acoustics is that the electric field 𝐸 is not the field from a single point 
charge (a monopole source) but rather from two opposite charges (a dipole 
source). Let’s evaluate their field at the position of a test charge at 𝑟 ∼ 𝜆. 
The two charges (the monopoles) contribute slightly different electric fields
𝐄+ and 𝐄−. Because these fields are vectors, adding them correctly requires 
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This approximation would be exact if the vectors lay along the 
same line—which they would if the dipole were an ideal di-
pole, with zero separation (𝑙 = 0). By making this approxima-
tion even for this nonideal dipole, we will obtain an important 
and transferable insight about the field of a dipole. 
Because the distances from the test charge to the monopoles 
are almost identical, the two fields 𝐸+ and 𝐸− have almost the 
same magnitude. Therefore, the difference 𝐸+ − 𝐸− is almost 
zero. (The key word is almost. If the difference were exactly 
zero, there would be no light and no radiation.) Let’s approxi-
mate the difference using a further lumping approximation. 

+q

−q

l

test
charge

E+

E−

The dipole field is the difference Δ𝐸 = 𝐸(𝑟+) − 𝐸(𝑟−), where 𝐸(𝑟) is 
the monopole field. The difference is approximately 

Δ𝐸 ≈ 𝐸′(𝑟) × Δ𝑟 , (9.77)⏟ ⏟ ⏟ 
rise slope run 

where Δ𝑟 = 𝑟− − 𝑟+. (This formula ignores a minus sign, but we 
are interested only in the magnitude of the field, so the sign doesn’t 
matter.) In Leibniz’s notation, the slope 𝐸′(𝑟) is also 𝑑𝐸/𝑑𝑟. Using 
the lumping approximation of Section 6.3.4 (which I remember as
𝑑 ∼ 𝑑), the 𝑑s cancel and 𝑑𝐸/𝑑𝑟, and therefore 𝐸′(𝑟), is roughly 𝐸/𝑟. 

E(r)

r+ r−

E+

E−
∆r

∆E

The trickiest factor is Δ𝑟, which is 𝑟− − 𝑟+. It depends on the charge separa-
tion 𝑙 and on the position of the test charge relative to the dipole’s orienta-
tion. When the test charge is directly above the dipole (at the north pole),
Δ𝑟 is just the charge separation 𝑙. When the test charge is at the equator, 
Δ𝑟 = 0. With our lumping approximation, Δ𝑟 is comparable to 𝑙. 
Then the difference Δ𝐸, which is the dipole field, becomes 

(9.78)𝐸dipole ∼ 𝐸monopole × 𝑟
𝑙 . 

The 1/𝑟 factor comes from differentiating the monopole field. The factor of 𝑙, 
the dipole size, turns the derivative of the field back into a field and makes 
the overall operation dimensionless: Making a dipole from two monopoles 
dimensionlessly differentiates the monopole field. 
Because the energy density ℰ in the electric field is proportional to 𝐸2, and 
the power radiated is proportional to the energy density, the power is 

2 

. (9.79)𝑃dipole ∼ 𝑃monopole (𝑟
𝑙 ) 
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In evaluating the radiated power, what 𝑟 should we use? 

The power radiated is determined by the energy density at the boundary 
between the near- and far-field regions: at 𝑟 ∼ 𝑐/𝜔. With that substitution, 

1 𝑞2𝜔2 𝑙 2 1 𝑞2𝑙2𝜔4
𝑃dipole ∼ × ( = . (9.80)8𝜋 𝜖0𝑐 𝑐/𝜔 

) 8𝜋⏟⏟⏟⏟⏟ 𝜖0𝑐3 

𝑃monopole 

With a 1/6𝜋 instead of 1/8𝜋 , this result is exact. Furthermore, if the source 
is a single accelerating charge, instead of a charge flow, then its acceleration 
is comparable to 𝑙𝜔2, and 𝑃dipole ∼ 𝑞2𝑎2/𝜖0𝑐3, which is now consistent with 
what we derived in Section 5.4.3 using dimensional analysis. 

In terms of the dipole moment 𝑑 = 𝑞𝑙, 
1 𝜔4𝑑2

𝑃dipole = (9.81)6𝜋 𝜖0𝑐3 
. 

Dipole radiation is the strongest kind of electromagnetic radiation. In Sec-
tion 9.4, we’ll use the dipole power to explain why the sky is blue and a 
sunset red. 

Problem 9.7 Lifetime of hydrogen if it could radiate 
Assuming that the ground state of hydrogen could radiate as an oscillating dipole 
(because of the orbiting electron), estimate the time 𝜏 required for it to radiate its 
binding energy 𝐸0. The ground state of hydrogen is protected by quantum mechan-
ics—there is no lower-energy state to go to—but many of hydrogen’s higher-energy 
states have a lifetime comparable to 𝜏 . 

9.3.3 Gravitational radiation from a quadrupole 
Having started with acoustics and practiced with electromagnetics, we can 
extend our analysis of radiation to gravitational waves—without solving 
the equations of general relativity. In acoustics, radiation could be pro-
duced by a monopole (a point charge). In electromagnetics, radiation could 
be produced by a dipole but not by a monopole. Building a dipole requires 
charges of two signs. Because the gravitational equivalent of charge is mass, 
which comes in one sign, there is no way to make a gravitational dipole. 

Therefore, gravitational radiation requires a quadrupole. A quadrupole is 
to a dipole what a dipole is to a monopole. It is two nearby dipoles with 
opposite strengths—so that their fields almost cancel. 
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An example is an oblate sphere. Relative to a sphere, it is 
fat at the equator (represented by the + signs) and thin at 
the poles (represented by the − signs). One plus–minus 
pair forms one dipole. The other plus–minus pair forms 
the second dipole. They have the same magnitude but 
point in opposite directions. As the sphere shifts to pro-
lateness (tall and thin), the signs of the charges flip, as do 

+ +

−

−

dipole
1

dipole
2

the directions of the dipoles. 

Just as the dipole field is the dimensionless derivative of the monopole field 
(Section 9.3.2), the quadrupole field is the dimensionless derivative of the 
dipole field. Thus, if the pulsating object has size 𝑙, so that the two dipoles 
are separated by a distance comparable to 𝑙, then at the boundary between 
the near and far fields (at 𝑟 ∼ 𝑐/𝜔), the fields are related by 

𝑙 
(9.82)𝐸quadrupole ∼ 𝐸dipole × 𝑐/𝜔 

= 𝐸dipole × 
𝜔𝑙 
𝑐 . 

The radiated powers are related by the square of the extra factor: 
2 

. (9.83)𝑃quadrupole ∼ 𝑃dipole × ( 
𝜔𝑙 
𝑐 )

That dimensionless ratio in parenthesis has a physical interpretation. Its 
numerator 𝜔𝑙 is the characteristic speed of the objects making the field. Its 
denominator 𝑐 is the wave speed. Their ratio is the Mach number 𝖬, so 
𝜔𝑙/𝑐 is the characteristic Mach number of the sources. In terms of 𝖬, 

𝑃quadrupole ∼ 𝑃dipole × 𝖬2. (9.84) 

For the radiated power from an electromagnetic dipole, we found an anal-
ogous relation: 

𝑃dipole ∼ 𝑃monopole × 𝖬2. (9.85) 

In general, 

𝑃2𝑚-pole ∼ 𝑃monopole × 𝖬2𝑚, (9.86) 

where a 20-pole is a monopole, a 21-pole is a dipole, and so on. 

With the analogy between electrostatics and gravity (from Section 2.4.2), we 
can convert the power radiated by an electromagnetic dipole to the power 
radiated by a gravitational dipole, if it existed. Then we just adjust for the 
difference between a dipole and a quadrupole. From the analogy, the elec-
trostatic field 𝐸 is analogous to the gravitational field 𝑔 , and electrostatic 
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charge 𝑞 is analogous to mass 𝑚. Finally, because 𝑔 = 𝐺𝑚/𝑟2 is analogous 
to 𝐸 = 𝑞/4𝜋𝜖0𝑟2, the electrostatic combination 1/4𝜋𝜖0 is analogous to New-
ton’s constant 𝐺. 

For electromagnetic dipole radiation, the power radiated is 

1 𝑞2𝑙2𝜔4
𝑃dipole = . (9.87)6𝜋𝜖0 𝑐3 

Replacing 1/4𝜋𝜖0 with 𝐺 and 𝑞 with 𝑚, but leaving 𝑐 alone because gravita-
tional waves also travel at the speed of light (a limitation set by relativity), 
the power radiated by a gravitational dipole, if it existed, would be 

. (9.88)𝑃dipole ∼ 
𝐺𝑚

𝑐
2𝑙
3

2𝜔4 

Changing from dipole to quadrupole radiation adds a factor of 𝜔𝑙/𝑐 to the 
field and (𝜔𝑙/𝑐)2 to the power, so 

. (9.89)𝑃quadrupole ∼ 
𝐺𝑚

𝑐
2𝑙
5

4𝜔6 

Let’s use this formula to estimate the gravitational power radiated by the 
Earth–Sun system. We’ll divide the system into two sources. One source is 
the Earth as it rotates around the system’s center of mass (CM). The other 
source is the Sun as it rotates around the system’s center of mass. 

Sun E
CM

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

= E
CM

⏟⏟⏟⏟⏟⏟⏟ 

+ Sun
CM

⏟⏟⏟⏟⏟ 

(9.90) 

system Earth as source Sun as source 

Which source generates more gravitational radiation? 

The two sources share the constants of nature 𝐺 and 𝑐. Because they orbit 
around the center of mass like a spinning dumbbell, they also share the 
angular velocity 𝜔. Therefore, the power simplifies to a proportionality 
without 𝐺, 𝑐, or 𝜔: 

𝑃quadrupole ∝ 𝑚2𝑙4, (9.91) 

where 𝑚 is the mass of the object (either the Earth or Sun) and 𝑙 is its dis-
tance from the center of mass. Furthermore, 𝑚𝑙 is shared, because the center 
of mass is defined as the point that makes 𝑚𝑙 the same for both objects. 

𝑚Earth × 𝑙Earth–CM distance = 𝑀Sun × 𝑙Sun–CM distance. (9.92) 
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By factoring out two powers of 𝑚𝑙 and discarding them, the proportionality 
further simplifies from 𝑃quadrupole ∝ 𝑚2𝑙4 to 𝑃quadrupole ∝ 𝑙2. The Earth, 
with the longer lever arm 𝑙, generates most of the gravitational wave energy. 
Equivalently, we can factor out four powers of 𝑚𝑙 and get 𝑃quadrupole ∝ 𝑚−2; 
the Earth, with the smaller mass, still wins. So, 

𝑙4𝜔6 
Earth . (9.93)𝑃quadrupole ∼ 

𝐺𝑚2 

𝑐5 

As the last simplification before evaluating the power, let’s eliminate the 
angular frequency 𝜔. For motion in a circle of radius 𝑙, the centripetal ac-
celeration is 𝑣2/𝑙 (as we found in Section 5.1.1). In terms of the angular 
velocity, this acceleration is 𝜔2𝑙. It is produced by the gravitational force 

𝐹 ≈ 
𝐺𝑀Sun𝑚Earth (9.94)

𝑙2 

(approximately, because 𝑙 is slightly smaller than the Earth–Sun distance). 
The resulting centripetal acceleration is 𝐹/𝑚Earth or 𝐺𝑀Sun/𝑙2, so 

𝜔2𝑙 = 
𝐺𝑀

𝑙2 
Sun . (9.95) 

Using this relation to replace (𝜔2𝑙)3 in 𝑃quadrupole with (𝐺𝑀Sun/𝑙2)3 gives 

𝑀3 
Earth Sun . (9.96)𝑃quadrupole ∼ 

𝐺4𝑚2 

𝑙5𝑐5 

The power based on a long and difficult general-relativity calculation is al-
most the same: 

𝐺4 
(9.97)𝑃quadrupole ≈ 

32 
𝑙5𝑐5

(𝑚Earth𝑀Sun)2(𝑚Earth + 𝑀Sun).5 

With the approximation that 𝑚Earth + 𝑀Sun ≈ 𝑀Sun, the only difference be-
tween our estimate and the exact power is the dimensionless prefactor of
32/5. Including that factor and approximating 𝑚Earth + 𝑀Sun by 𝑀Sun, 

𝐺4𝑚2 𝑀3 
Earth Sun . (9.98)𝑃quadrupole ≈ 

32 
𝑙5𝑐55 

To avoid exponent whiplash and promote formula hygiene, let’s rewrite the 
power using a dimensionless ratio, by pairing another velocity with the 𝑐 in 
the denominator. It would also be helpful to get rid of 𝐺, which seems like 
a random, meaningless value. To fulfill both wishes, we again equate the 
two ways of finding the Earth’s centripetal acceleration, as the acceleration 
produced by the Sun’s gravity and as the circular acceleration 𝑣2/𝑙: 
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𝐺𝑀Sun 𝑣2 
= (9.99)

𝑙2 𝑙 . 

Therefore, 𝐺𝑀Sun/𝑙 = 𝑣2 and 

𝐺4𝑀4 
Sun = 𝑣8. (9.100)

𝑙4 

That substitution gives 

Earth 𝑣8 
(9.101)𝑃quadrupole ≈ 

32 𝑚2 

5 𝑀Sun 𝑙𝑐5 
. 

The ratio 𝑣5/𝑐5 is 𝖬5, where 𝖬 is the Mach number of the Earth (its orbital 
velocity compared to the speed of light). Of the three remaining powers of
𝑣, one power combines with 𝑙 in the denominator to give back the angular 
velocity 𝜔 = 𝑣/𝑙. The remaining two powers of 𝑣 combine with one power 
of 𝑚Earth to give (except for a factor of 2) the orbital kinetic energy of the 
Earth. The remaining masses make the Earth–Sun mass ratio 𝑚Earth/𝑀Sun. 
Therefore, in a more meaningful form, the power is 

𝑚Earth (9.102)𝑃quadrupole ≈ 
32 𝖬5 × 𝑚Earth𝑣2 𝜔. 5 𝑀Sun 

In this processed form, the dimensions are more obviously correct than they 
were in the unprocessed form. The factors before the × sign are all dimen-
sionless. The factor of 𝑚Earth𝑣2 is an energy. And the factor of 𝜔 converts 
energy into energy per time—which is power. 
Now that we have reorganized the formula into meaningful chunks, we are 
ready to evaluate its factors. 
1. The mass ratio is 3 × 10−6: 

𝑚Earth ≈ 
6 × 1024 kg 

= 3 × 10−6. (9.103)𝑀Sun 2 × 1030 kg 

2. The Mach number 𝖬 ≡ 𝑣/𝑐 turns out to have a compact value. The 
Earth’s orbital velocity 𝑣 is 30 kilometers per second (Problem 6.5): 

𝑣 = 
circumference ≈ 

2𝜋 × 1.5 × 1011 m = 3×104 ms−1, (9.104)orbital period 𝜋 ×107 s 
which uses the estimate from Section 6.2.2 of the number of seconds in 
a year. The corresponding Mach number is 10−4: 

3 × 104 ms−1
𝖬 ≡ 

𝑣 = . (9.105)𝑐 3×108 ms−1 
= 10−4
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3.	 For the factor 𝑚Earth𝑣2, we know 𝑚Earth and have just evaluated 𝑣. The 
result is 6 × 1033 joules: 

6 × 1024 kg × 109 m2 s−2 = 6×1033 J.	 (9.106)⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟ 
𝑚Earth 𝑣2 

4.	 The final factor is the Earth’s orbital angular velocity 𝜔. Because the 
orbital period is 1 year, 𝜔 = 2𝜋/1 year, or
 

2𝜋
𝜔 ≈ = 2×10−7 s−1.	 (9.107)
𝜋 ×107 s 

With these values, 

5 
× 3×10−6 × 10−20 × 6×1033 J × 2 × 10−7 s−1. (9.108)𝑃quadrupole ≈ 

32 
⏟⏟⏟⏟⏟ ⏟ ⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 
𝑚Earth/𝑀Sun 𝖬5 𝑚Earth𝑣2 𝜔 

The resulting radiated power is about 200 watts. At that rate, the Earth’s 
orbit will not soon collapse due to gravitational radiation (Problem 9.8). 

Quadrupole radiation depends strongly on the Mach number 𝑣source/𝑐, and 
the Earth’s Mach number is tiny. However, when a star gets captured by a 
black hole, the orbital speed can be a large fraction of 𝑐. Then the Mach 
number is close to 1 and the radiated power can be enormous—perhaps 
large enough for us to detect on distant Earth. 

Problem 9.8 Energy loss through gravitational radiation 

In terms of a gravitational system’s Mach number and mass ratio, how many or-
bital periods are required for the system to lose a significant fraction of its kinetic 
energy? Estimate this number for the Earth–Sun system. 

Problem 9.9 Gravitational radiation from the Earth–Moon system 

Estimate the gravitational power radiated by the Earth–Moon system. Use the 
results of Problem 9.8 to estimate how many orbital periods are required for the 
system to lose a significant fraction of its kinetic energy. 

9.4 Effect of radiation: Blue skies and red sunsets 
We have developed almost all the pieces and tools to understand our final 
two phenomena: blue skies (Section 9.4.1) and red sunsets (Section 9.4.2). 
The only missing piece is the amplitude of a spring–mass system when it is 
driven by an oscillating force. We’ll build that piece where it is first needed, 
and then put all the pieces together. 
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9.4.1 Skies are blue 
The light that we see from a clear sky is dipole radiation 
scattered from air molecules (on the Moon, with no at-
mosphere, there are no blue skies). Plenty of sunlight 
does not get affected by air molecules, but unless we look 
at the sun, which is almost always very hazardous, the 
direct sunlight does not reach our eye. (The exception is 

sunlight
+

−

scattered
light

just at sunset, and in Section 9.4.2 we’ll use the exception 
to help explain why sunsets are red.) 
The analysis makes the most sense as a causal sequence from the sunlight 
to this scattered radiation. Sunlight is an oscillating electric field. The elec-
tric field exerts a force on the charged particles in an air molecule (say, in 
N2). The charged particles, the electrons and protons, form spring–mass 
systems, and the electric force accelerates the masses. Accelerating charges 
radiate, which is the radiation that reaches our eye. By quantifying the 
steps in the sequence from sunlight to scattered radiation, we’ll see why 
the scattered radiation looks blue. 
1.	 Electric field of the sunbeam. Sunlight contains many colors of light, each 
simple to describe as an electric field (divide and conquer!): 

𝐸(𝜔) = 𝐸0(𝜔) cos 𝜔𝑡, (9.109) 

where 𝜔 is the angular frequency corresponding to that color. For ex-
ample, for red light, 𝜔 is 3 × 1015 radians per second. The amplitude 
𝐸0(𝜔) depends on the intensity of the color in sunlight, so 𝐸(𝜔) is a 
distribution over 𝜔, and it and the amplitude 𝐸0(𝜔) have dimensions 
of field per frequency. However, as a simple lumping approximation, 
think of seven separate fields, one for each color in the color mnemonic 
Roy G. Biv: red, orange, yellow, green, blue, indigo, and violet. 
For the color of the sky, what matters is the relative distribution of col-
ors in the sunbeam and how that relative distribution is different in scat-
tered light. Therefore, let’s do our calculations in terms of an unknown
𝐸0 and, in the spirit of proportional reasoning, determine the depen-
dence of 𝐸0 on 𝜔 in the scattered light. 

2.	 Force on the charged particles. The electric field produces a force on the 
electrons and protons in an air molecule. Using 𝑒 for the electron charge 
and ignoring signs, 

𝐹 = 𝑒𝐸 = 𝑒𝐸0 cos 𝜔𝑡,	 (9.110) 
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3.	 Amplitude of the motion of the charged particles. Because protons are much 
heavier than an electrons, the electrons move faster and farther than the 
protons and produce most of the scattered radiation. Therefore, let’s 
assume that the protons are fixed and analyze the motion of an electron. 
The electron, which is connected to its proton by 
a spring, is driven by the oscillating force 𝐹. For-

k
proton me F

in general, because we can use easy cases based 
on the ratio between the driving frequency 𝜔 and the system’s natural 

tunately, we do not need to solve for the motion 

frequency 𝜔0 (which is 𝑘/𝑚e , where 𝑘 is the bond’s spring constant). 
The three regimes are then (1) 𝜔 ≪ 𝜔0, (2) 𝜔 = 𝜔0, and (3) 𝜔 ≫ 𝜔0. 
To decide which regime is relevant, let’s make a rough estimate of how 
the two frequencies compare. For air molecules, the natural frequency
𝜔0 corresponds to ultraviolet radiation—the radiation required to break 
the strong triple bond in N2. The driving frequency 𝜔 corresponds to 
one of the colors in visible light (sunlight), so the electron’s motion is in 
the first, low-frequency regime 𝜔 ≪ 𝜔0. (For the analysis of the other 
regimes, try Problems 9.12 and 9.15.) 
The low-frequency regime is easiest to study in the 𝜔 = 0 extreme. It 
represents a constant force 𝐹 = 𝑒𝐸0 pulling on the electron and stretch-
ing the electron–proton bond. When there is change, make what does not 
change! The bond stretches until the spring force balances the stretching 
force 𝑒𝐸0. The forces balance when the stretch is 𝑥 = 𝐹/𝑘 or 𝑒𝐸0/𝑘 . 
Because 𝜔 = 0, the force has been constant since forever, so the bond 
stretched to its extended length back in the mists of time. When 𝜔 is 
nonzero, but still much smaller than 𝜔0, the bond still behaves approx-
imately as it did when 𝜔 = 0: It stretches so that the spring force bal-
ances the slowly oscillating force 𝐹. Therefore, the stretch, which is the 
displacement of the electron, is 

𝑥(𝑡) ≈ 
𝑒𝐸
𝑘 
0 cos 𝜔𝑡.	 (9.111) 

4.	 Acceleration of the electron. We can find the acceleration using dimen-
sional analysis. In driven spring motion, the important length is the dis-
placement 𝑥, and the important time is 1/𝜔. Therefore, the acceleration, 
which has dimensions of LT−2, must be comparable to 𝑥𝜔2. Because we 
used the angular frequency (𝜔 rather than 𝑓 ), the dimensionless prefac-
tor turns out to be 1. Then the electron’s acceleration is 
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𝑎(𝑡) = 𝑥(𝑡)𝜔2 ≈ 
𝑒𝐸0𝜔2 

cos𝜔𝑡. (9.112)𝑘 

Because the spring constant 𝑘 is related to the electron mass 𝑚e and to 
the natural frequency 𝜔0 by 𝑘 = 𝑚e𝜔0

2, 

𝑎(𝑡) ≈ 
𝑒𝐸0 𝜔2 

cos𝜔𝑡. (9.113)𝑚e 𝜔0
2

5. Power radiated by the accelerating electron. We found in Sections 5.4.3 and 
9.3.2 that the power radiated by an accelerating charge 𝑒 is
 

𝑒2 𝑎2

𝑃dipole = (9.114)6𝜋𝜖0 𝑐3

. 

For the squared acceleration 𝑎2, we’ll use the time average to find the 
average radiated power. Because the time average of cos2𝜔𝑡 is 1/2, 

𝑒2𝐸2
⟨𝑎2⟩ = 

1 0 𝜔4
. (9.115)2 𝑚2 𝜔4

e 0 

Then 
41 1 𝑒4𝐸2

( 
𝜔𝑃dipole = 0 ) . (9.116)12𝜋𝜖0 𝑐3 𝑚2 𝜔0e 

This mouthful is useful in explaining the color of sunsets (Section 9.4.2), so 
it has been worthwhile carrying lots of baggage on the trip from sunlight to 
scattered light. But to explain the color of the daytime sky, we can simplify 
the power using proportional reasoning. Because 𝜖0, 𝑐, 𝜔0, 𝑚e, and 𝑒 are 
independent of the driving frequency 𝜔 (which represents the color), 

𝑃dipole ∝ 𝐸0
2𝜔4. (9.117) 

The factor of 𝐸0
2 is proportional to the energy density in the incoming sun-

light (at frequency 𝜔), which itself is proportional to the incoming power 
in the sunlight (also at the frequency 𝜔). Thus, 

𝑃dipole ∝ 𝑃sunlight𝜔4. (9.118) 

Let’s review how the four powers of 𝜔 got here. For low frequencies—and 
visible light is a low frequency compared to the natural electronic-vibration 
frequency of an air molecule—the amplitude of spring motion is indepen-
dent of the driving frequency. The acceleration is then proportional to 𝜔2. 
And the radiated power is proportional to the square of the acceleration, so 
it is proportional to 𝜔4. 
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Therefore, the air molecule acts like a filter that takes in (some of the) in-
coming sunlight and produces scattered light, altering the distribution of 
colors—similar to how a circuit changes the amplitude of each incoming 
frequency. However, unlike the low-pass 𝑅𝐶 circuit of Section 2.4.4, which 
preserves low frequencies and attenuates high frequencies, the air molecule 
amplifies the high frequencies. 

Here are the sunlight and the scattered spectra based on the 𝜔4 filter. Each 
spectrum shows, by the area of each band, the relative intensities of the var-
ious colors. (The unlabeled color band between red and yellow is orange.) 

vi
ol

et

bl
ue

gr
ee

n
ye

llo
w

re
d

Isunlight

ω

→ 

vi
ol

et

bl
ue

gr
ee

n
ye

llo
w

re
d

Iscattered

ω

Sunlight looks white. In the scattered light, the high-frequency colors such 
as blue and violet are much more prominent than they are in sunlight. For 
example, because 𝜔blue/𝜔red ≈ 1.5 and 1.54 ≈ 5, the blue part of the sun-
light is amplified by a factor of 5 compared to the red part. As a result, the 
scattered light—what comes to us from the sky—looks blue! 

9.4.2 Sunsets are red 
As sunlight passes through the atmosphere, ever more of its energy gets 
taken in by air molecules and then scattered (reradiated) in all directions. 
As we found in Section 9.4.1, this process happens more rapidly at higher 
(bluer) frequencies, due to the factor of 𝜔4 in the radiated power. There-
fore, the sunbeam becomes redder as it travels through the atmosphere. If 
the beam travels far enough in the atmosphere, sunsets should look red. 
To estimate the necessary travel distance, we can adapt the analysis of Sec-
tion 9.4.1. Then we will use geometry to estimate the actual travel distance. 

How far must sunlight travel in the atmosphere before the beam looks red? 

To estimate this length, let’s estimate the rate at which energy gets scattered 
out of the beam. The beam carries an energy flux 

𝐹 = 
1
2𝜖0𝐸0

2𝑐, (9.119) 
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which has the usual form of energy density times propagation speed. (The 
electric and magnetic fields each contribute one-half of this flux.) To mea-
sure the effect of one scattering electron on the beam, let’s compute one 
electron’s radiated power divided by the flux: 

4𝑃dipole = 
1 1 𝑒4 𝐸0

2
( 

𝜔 ) ⁄ 
1
2𝜖0 𝐸0

2 𝑐. (9.120)𝐹 12𝜋𝜖0 𝑐3 𝑚2 𝜔0e ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
 
𝑃dipole 𝐹
 

Noticing that the (unknown) field amplitude 𝐸0 cancels out and doing the 
rest of the algebra, we get 

𝑃dipole 8𝜋 1 2 4 

= 3 
( 

𝑒2 
× ( 

𝜔 ) . (9.121)𝐹 4𝜋𝜖0 𝑚e𝑐2
) 𝜔0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

area 𝜎 

The left side, 𝑃dipole/𝐹, is power divided by power per area. Thus, 𝑃dipole/𝐹 
has dimensions of area. It represents the area of the beam whose energy 
flux gets removed and scattered in all directions. The area is therefore called 
the scattering cross section 𝜎 (a concept introduced in Section 6.4.5, when 
we estimated the mean free path of air molecules). 
On the right side, the frequency ratio 𝜔/𝜔0 is dimensionless, so the prefac-
tor must also be an area. It is called the Thomson cross section 𝜎T: 

2 

𝜎T ≡ 
8𝜋 1 
3 

( 
𝑒2 

≈ 7×10−29 m2. (9.122)4𝜋𝜖0 𝑚e𝑐2 
) 

Because 𝜎T is an area, the factor inside the parentheses must be a length. 
Indeed, it is the classical electron radius 𝑟0 of Problems 5.37 and 5.44(a). It 
is comparable to the proton radius of 10−15 meters: 

𝑒2 1𝑟0 ≡ 
𝑐2 

≈ 2.8×10−15 m. (9.123)4𝜋𝜖0 𝑚e
It approximately answers the question: For the electron to acquire its mass 
from its electrostatic energy, how large should the electron be? This elec-
tron’s cross-sectional area is, roughly, the Thomson cross section. In terms 
of the Thomson cross section, our scattering cross section 𝜎 is 

4 

𝜎 = 𝜎T (𝜔
𝜔
0 
) . (9.124) 

Each scattering electron converts this much area of the beam into scattered 
radiation. As a rough estimate, each air molecule contributes one scattering 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

351 9.4 Effect of radiation: Blue skies and red sunsets 

electron (the inner electrons, which are tightly bound to the nucleus, have 
a large 𝜔0 and a tiny scattering cross section). As we found in Section 6.4.5, 
the mean free path 𝜆mfp and scattering cross section 𝜎 are related by 

𝑛𝜎𝜆mfp ∼ 1, (9.125) 

where 𝑛 is the number density of scattering electrons. The mean free path 
is how far the beam travels before a significant fraction of its energy (at that 
frequency) is scattered in all directions and is no longer part of the beam. 

With one scattering electron per air molecule, 𝑛 is the number density of 
air molecules. This number density, like the mass density, varies with the 
height above sea level. To simplify the analysis, we will use a lumped atmos-
phere. It has a constant temperature, pressure, and density from sea level to 
the atmosphere’s scale height 𝐻 , which we estimated in Section 5.4.1 using 
dimensional analysis (and you estimated using lumping in Problem 6.36). 
At 𝐻 , the atmosphere ends, and the density abruptly goes to zero. 

In this lumped atmosphere, 1 mole of air molecules at any height occupies 
approximately 22 liters. The resulting number density is approximately 
3 × 1025 molecules per cubic meter: 

𝑛 = 
1 mol × 

6×1023 
× 

1
10
m
3 

3
ℓ ≈ 3×1025 m−3. (9.126)22 ℓ 1 mol 

Using this 𝑛 and 𝜎 = 𝜎T(𝜔/𝜔0)4, the mean free path becomes 
4


𝜆mfp ∼ 
1 × × ( 

𝜔0
 

𝑛𝜎 
≈ 

⏟⏟⏟⏟⏟⏟⏟ 3 × 10
1
25 m−3 7 × 10

1
−29 m2 𝜔 )


⏟⏟⏟⏟⏟⏟⏟ 
𝑛 𝜎T (9.127) 

4
≈ 

1
2 
km × ( 

𝜔0 .𝜔 
)

Unlike the scattering cross section 𝜎 , which grows rapidly with 𝜔, the mean 
free path falls rapidly with 𝜔: High frequencies scatter out of the beam 
rapidly and travel shorter distances before getting significantly attenuated. 

To estimate the frequency ratio 𝜔0/𝜔, let’s estimate the equivalent energy 
ratio ℏ𝜔0/ℏ𝜔. The numerator ℏ𝜔0 is the bond energy. Because air is mostly 
N2, and the nitrogen–nitrogen triple bond is much stronger than a typical 
chemical bond (roughly 4 electron volts), the natural frequency 𝜔0 corre-
sponds to an energy ℏ𝜔0 of about 10 electron volts. 

The denominator ℏ𝜔 depends on the color of the light. As a lumping ap-
proximation, let’s divide light into two colors: red and, to represent nonred 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

352 9 Spring models 

light, blue–green light. A blue–green photon has an energy ℏ𝜔 of approxi-
mately 2.5 electron volts, so ℏ𝜔0/ℏ𝜔 ≈ 4 and (𝜔0/𝜔)4 ≈ 200. Because the 
mean free path is 

4
𝜆mfp ≈ 

1
2 
km × ( 

𝜔0 , (9.128)𝜔 
)

for blue–green light 𝜆mfp ∼ 100 kilometers. After a distance comparable to 
100 kilometers, a significant fraction of the nonred light has been removed 
(and scattered in all directions). 

At midday, when the Sun is overhead, the travel distance is the thickness 
of the atmosphere 𝐻 , roughly 8 kilometers. This distance is much shorter 
than the mean free path, so very little light (of any color) is scattered out of 
the sunbeam, and the Sun looks white as it would from space. (Fortunately, 
our theory doesn’t predict that the midday Sun looks red—but do not test 
this analysis by looking directly at the Sun!) As the Sun descends in the sky, 
sunlight travels ever farther in the atmosphere. 

At sunset, how far does sunlight travel in the atmosphere? 

REarth

H

xThis length is the horizon distance: Standing as high as 
the atmosphere (𝐻 ≈ 8 kilometers), the horizon distance 
𝑥 is the distance that sunlight travels through the atmos-
phere at sunset. It is the geometric mean of the atmos-
phere height 𝐻 and of the Earth’s diameter 2𝑅Earth (Prob-
lem 2.9), and is approximately 300 kilometers: 

𝑥 = 𝐻 × 2𝑅Earth ≈ 8 km × 2 × 6000 km 

≈ 300 km. 
(9.129) 

This distance is a few mean free paths. Each mean free path produces a 
significant reduction in intensity (more precisely, a factor-of-𝑒 reduction). 
Therefore, at sunset, most of the nonred light is gone. 

However, for red light the story is different. Because a red-light photon has 
an energy of approximately 1.8 electron volts, in contrast to the 2.5 electron 
volts for a blue-green photon, its mean free path is a factor of (2.5/1.8)4 ≈ 4 
longer than 100 kilometers for a blue–green photon. The trip of 300 kilome-
ters in the atmosphere scatters out a decent fraction of red light, but much 
less than the corresponding fraction of blue–green light. The moral of the 
story is visual: Together the springs in the air molecules and the steep de-
pendence of dipole radiation on frequency produce a beautiful red sunset. 
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9.5 Summary and further problems 
Many physical processes contain a minimum-energy state where small de-
viations from the minimum require an energy proportional to the square 
of the deviation. This behavior is the essential characteristic of a spring. A 
spring is therefore not only a physical object but a transferable abstraction. 
This abstraction has helped us understand chemical bonds, sound speeds, 
and acoustic, electromagnetic, and gravitational radiation—and from there 
the colors of the sky and sunset. 

Problem 9.10 Two-dimensional acoustics 
An acoustic line source is an infinitely long tube that can expand and contract. In 
terms of the source strength per length, find the power radiated per length. 

Problem 9.11 Decay of a lightly damped oscillation 
k

m
In an undamped spring–mass system, the motion is de-
scribed by 𝑥 = 𝑥0 cos 𝜔0𝑡, where 𝑥0 is the amplitude 
and 𝜔0, the natural frequency, is 𝑘/𝑚 . In this prob-
lem, you use easy cases and lumping to find the effect of a small amount of (linear) 
damping. The damping force will be 𝐹 = −𝛾𝑣, where 𝛾 is the damping coefficient 
and 𝑣 is the velocity of the mass. 

a. In terms of 𝜔0 and 𝑥0, estimate the typical speed and damping force, and then 
the typical energy lost to damping in 1 radian of oscillation (a time 1/𝜔0). 

b. Express the dimensionless measure of energy loss 

Δ𝐸 
𝐸 

= 
energy lost per radian of oscillation 

oscillation energy (9.130) 

by finding the scaling exponent 𝑛 in 

Δ𝐸 
𝐸 

∼ 𝑄𝑛 (9.131) 

where 𝑄 is the quality factor from Problem 5.53. In terms of 𝑄, what does “a 
small amount of damping” mean? 

c. Find the rate constant 𝐶, built from 𝑄 and 𝜔0, in the time-averaged oscillation 
energy: 

𝐸 ≈ 𝐸0𝑒𝐶𝑡, (9.132) 

d. Using the scaling between amplitude and energy, represent how the mass’s 
position 𝑥 varies with time by finding the rate constant 𝐶′ in the formula 

𝑥(𝑡) ≈ 𝑥0 cos 𝜔0𝑡 × 𝑒𝐶′𝑡, (9.133) 

Sketch 𝑥(𝑡). 
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Problem 9.12 Driving a spring at high frequency 
Sunlight driving an electron in nitrogen is the easy-case regime 𝜔 ≪ 𝜔0. The 
opposite regime is 𝜔 ≫ 𝜔0. This regime includes metals, where the electrons are 
free (the spring constant is zero, so 𝜔0 is zero). Estimate, using characteristic or 
typical values, the amplitude 𝑥0 of a spring–mass system driven by a force 

𝐹 = 𝐹0 cos 𝜔𝑡, (9.134) 

where 𝜔 ≫ 𝜔0. In particular, find the scaling exponent 𝑛 in the transfer function 
𝑥0/𝐹0 ∝ 𝜔𝑛. 

Problem 9.13 High-frequency scattering 
Use the result of Problem 9.12 to show that, in the 𝜔 ≫ 𝜔0 regime (for example, 
for a free electron), the scattering cross section 𝑃dipole/𝐹 is independent of 𝜔 and 
is the Thomson cross section 𝜎T. 

Problem 9.14 Fiber-optic cable 
A fiber-optic cable, used for transmitting telephone calls and other digital data, is a 
thin glass fiber that carries electromagnetic radiation. High data transmission rates 
require a high radiation frequency 𝜔. However, scattering losses are proportional 
to 𝜔4, so high-frequency signals attenuate in a short distance. As a compromise, 
glass fibers carry “near-infrared” radiation (roughly 1-micrometer in wavelength). 
Estimate the mean free path of this radiation by comparing the density of glass to 
the density of air. 

Problem 9.15 Resonance 
In Problem 9.12, you analyzed the case of driving a spring at a frequency 𝜔 much 
higher than its natural frequency 𝜔0. The discussion of blue skies in Section 9.4.1 
required the opposite regime, 𝜔 ≪ 𝜔0. In this problem, you analyze the middle 
regime, which is called resonance. It is a lightly damped spring–mass system dri-
ven at its natural frequency. 

Assuming a driving force 𝐹0 cos 𝜔𝑡, estimate the energy input per radian of oscil-
lation, in terms of 𝐹0 and the amplitude 𝑥0. Using Problem 9.11(b), estimate the 
energy lost per radian in terms of the amplitude 𝑥0, the natural frequency 𝜔0, the 
quality factor 𝑄, and the mass 𝑚. 

By equating the energy loss and the energy input, which is the condition for a 
steady amplitude, find the quotient 𝑥0/𝐹0. This quotient is the gain 𝐺 of the system 
at the resonance frequency 𝜔 = 𝜔0. Find the scaling exponent 𝑛 in 𝐺 ∝ 𝑄𝑛. 

Problem 9.16 Ball resting on the ground as a spring system 

A ball resting on the ground can be thought of as a spring system. The larger the 
compression 𝛿, the larger the restoring force 𝐹. (Imagine setting weights on top 
of the ball so that the extra weight plus the ball’s weight is 𝐹.) Find the scaling 
exponent 𝑛 in 𝐹 ∝ 𝛿𝑛. Is this system an ideal spring (for which 𝑛 = 1)? 
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Problem 9.17 Inharmonicity of piano strings 
An ideal piano string is under tension and has vibration frequencies given by 

𝑓𝑛 = 
𝑛 
2𝐿 

𝑇 
𝜌𝐴 

, (9.135) 

where 𝐴 is its cross-sectional area, 𝑇 is the tension, 𝐿 is the string length, and 
𝑛 = 1, 2, 3, …. (In Section 9.2.2, we estimated 𝑓1.) Assume that the string’s cross 
section is a square of side length 𝑏. The piano sounds pleasant when harmonics 
match: for example, when the second harmonic ( 𝑓2) of the middle C string has the 
same frequency as the fundamental ( 𝑓1) of the C string one octave higher. 

However, the stiffness of the string (its resistance to bending) alters these frequen-
cies slightly. Estimate the dimensionless ratio 

potential energy from stiffness 
potential energy from stretching (tension) . (9.136) 

This ratio is also roughly the fractional change in frequency due to stiffness. Write 
this ratio in terms of the mode number 𝑛, the string side length (or diameter) 𝑏, 
the string length 𝐿, and the tension-induced strain 𝜖 . 

Problem 9.18 Buckling 

w
h

l

∆x

FIn this problem you estimate the force required to buckle a strut, 
such as a leg bone landing on the ground. The strut has Young’s 
modulus 𝑌 , thickness ℎ, width 𝑤, and length 𝑙. The force 𝐹 has de-
flected the strut by Δ𝑥, producing a torque 𝐹Δ𝑥. Find the restoring 
torque and the approximate condition on 𝐹 for 𝐹Δ𝑥 to exceed the 
restoring torque—whereupon the strut buckles. 

Problem 9.19 Buckling versus tension 

A strut can withstand a tension force 

𝐹T ∼ 𝜖y𝑌 × ℎ𝑤, (9.137) 

where 𝜖y is the yield strain. The force 𝐹T is just the yield stress 𝜖y𝑌 
times the cross-sectional area ℎ𝑤. The yield strain typically ranges 
from 10−3 for brittle materials like rock to 10−2 for piano-wire steel. 

Use the result of Problem 9.18 to show that 
force that a strut can withstand in tension 

force that a strut can withstand against buckling ∼ 
𝑙2 

ℎ2 
𝜖y, (9.138) 

and estimate this ratio for a bicycle spoke. 

Problem 9.20 Buckling of leg bone 
How much margin of safety, if any, does a typical human leg bone (𝑌 ∼ 1010 pas-
cals) have against buckling, where the buckling force is the person’s weight? 
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Problem 9.21 Inharmonicity of a typical piano 
Estimate the inharmonicity in a typical upright piano’s middle-C note. (Its para-
meters are given in Section 9.2.2.) In particular, estimate the frequency shift of its 
fourth harmonic (𝑛 = 4). 

Problem 9.22 Cylinder resting on the ground 

x

R

For a solid cylinder of radius 𝑅 resting on the ground (for ex-
ample, a train wheel), the contact area is a rectangle. Find the 
scaling exponent 𝛽 in 

𝑥 
𝑅 

= ( 
𝜌𝑔𝑅 
𝑌 

) 
𝛽 

, (9.139) 

where 𝑥 is the width of the contact strip. Then find the scaling 
exponent 𝛾 in 𝐹 ∝ 𝛿𝛾 , where 𝐹 is the contact force and 𝛿 is the tip compression. 
(In Problem 9.16, you computed the analogous scaling exponent for a sphere.) 
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Bon voyage: 
Long-lasting learning 

The world is complex! But our nine reasoning tools help us master and 
enjoy the complexity. Spanning fields of knowledge, the tools connect dis-
parate facts and ideas and promote long-lasting learning. 
An analogy for the value of connected knowledge is an infinite 
two-dimensional lattice of dots: a percolation lattice [21]. Every 
dot marks a piece of knowledge—a fact or an idea. Now add 
bonds between neighboring pieces of knowledge, with a probabil-
ity 𝑝bond for each bond. The following figures show examples of 
finite lattices starting at 𝑝bond = 0.4. Marked in bold is the largest 
cluster—the largest connected set of dots. As 𝑝bond increases, this 
cluster unifies an ever-larger fraction of the lattice of knowledge. 

pbond = 0.40

pbond = 0.40
12% of lattice

pbond = 0.50
39% of lattice

pbond = 0.55
89% of lattice

pbond = 0.60
91% of lattice

An infinite lattice might hold many infinite clusters, and 
the measure analogous to the size of the largest cluster is 
the fraction of dots belonging to an infinite cluster. This 
fraction 𝑓∞ is, like the number of infinite clusters, zero un-
til 𝑝bond reaches the critical probability 0.5. Then it rises 
above zero and, as 𝑝bond rises, eventually reaches 1. 

pbond

1

0
10.5

f∞

For long-lasting learning, the pieces of knowledge should support each
 
other through their connections. For when we remember a fact or use an
 
idea, we activate connected facts and ideas and solidify them in our minds.
 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

358 

Our knowledge lives best in infinite, self-supporting clusters. But if we 
learn facts and ideas in isolation, we make dots without bonds. Then 𝑝bond 

falls and, with it, the membership in infinite clusters. If 𝑝bond falls too much, 
the infinite clusters simply vanish. 

So, for long-lasting learning and understanding, make bonds; connect each 
new fact and idea to what you already know. This way of thinking will help 
you learn in one year what took me two or twenty. Use your reasoning tools 
to weave a richly connected, durable tapestry of knowledge. Bon voyage as 
you learn and discover new ideas and their fascinating connections! 

Only connect! That was the whole of her sermon… Live in fragments no longer.
 
—E. M. Forster [16]
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sea-level pressure xvii
 
standardized parameters 167
 

atmospheres (pressure) 191
 
atomic bomb, yield of 150–151, 211–212
 
atomic diameter 179, 221
 
atomic mass 273
 
atomic theory 175
 
atomic volume 189, 213
 
attenuation 47
 
Atwood machine 283–286
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Atwood, George 284
 
AU (astronomical unit) xvii, 112
 
audibility 337
 
Avogadro’s number xvii, 29, 67, 166,
 
213, 222, 267, 307
 

baby boomers 215
 
baggage worth carrying 348
 
baking 260–261
 
see also cooking 
three dimensions 277
 
banknotes 248
 
barbell 293
 
barrels, oil 14
 
bar-tailed godwit 134, 135
 
basal metabolism 23, 271
 
batteries
 
typical 168
 
9-volt 23, 139
 
Bayes’ theorem 237–238, 245
 
Bayesian interpretation
 
see probability, Bayesian 

Bayesian probability 
see probability, Bayesian
 

beautiful people 268
 
beauty, mathematical 117
 
bel 63, 243
 
belief, degree of
 
see probability, Bayesian 

bending beam 
musical note 325–330 
stiffness 326–328 
bending stiffness 326
 
bicycle spoke 355
 
bicycling
 
see cycling 

binding energy 179, 189, 191
 
heavy atoms 315
 
hydrogen 307
 
physical model 301–305
 
binomial theorem 323
 
birthday paradox 123–125, 280–281
 
bisection 75
 
black hole 290, 291, 345
 
blackbody radiation 107, 181–186, 306
 

blackbody temperature 306
 
Earth 186
 

blackjack (card game) 259
 
blood doping 22
 
blue skies 174
 
blue–green light 352
 
Bode plot 299
 
body temperature 270
 
Boeing 747
 
coefficient of lift 133
 
cross-sectional area 120–121
 
cruising altitude 120
 
cruising speed 99
 
drag coefficient 128, 132
 
flight range 122, 131–133
 
fuel capacity 122
 
fuel consumption 119–122
 
fuel efficiency 16
 
maximum takeoff mass 98
 
passenger capacity 122
 
runway length 100
 
takeoff power 98
 
technical data 99, 122
 
thrust 99
 
wingspan 98
 
Bohr radius xvii, 176, 178, 179, 187, 233,
 
301, 318
 
see also hydrogen, size
 

Boltzmann’s constant xvii, 68, 165, 167,
 
267, 307
 

bon voyage 358
 
bonds
 
chemical
 
abstraction 28
 
energy scale 180
 
participating electrons 168
 
simplest 187
 

energies 29, 187–188
 
nitrogen 351
 
typical xvii, 187, 191
 

gravitational 304
 
length 305
 
result of competition 304
 
spring model 304, 317–319
 
bone 355
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bookend regimes 282
 
bookkeeping 326
 
books 138
 
Boston 76, 122
 
boundary layer 262–263, 265, 296
 
Reynolds number 263
 
thickness 262, 278
 
turbulence 263
 
box models 75–83
 
atmosphere 80
 
average solar flux 79–80
 
drag 84
 
rainfall 80–82
 
residence time 82–83
 
running in rain 58–59
 
surface temperature 107
 
taxis in Boston 75–77
 
brachistochrone 220
 
brain
 
mass 138
 
power consumption 138
 

brand name 333
 
Brans–Dicke theory 159
 
breaking the bank 259
 
brittle materials 193, 355
 
Brody, Carlos xiii
 
broken symmetry
 
see symmetry, breaking 

brute-force analysis 
compared to proportional reasoning 
105
 

finding dimensionless groups 182
 
fuel consumption 119
 
heat loss 271
 
orbital period 112
 
surface temperature 108, 109
 
temperature distribution 73
 

bubble sort 125
 
Buckingham Pi theorem 145, 147, 159,
 
171, 176, 184
 
Buckingham, Edgar 145
 
buckling 355
 
buoyancy 40, 316
 
bureaucracy 279
 
burst power output 21
 

butter, energy density of 23 

cake, eating and having 63
 
calculus 265
 
as elephant gun 70
 
hindering insight 209
 
leaving magic 113
 
maxima and minima without 70
 
turning into algebra 321, 339
 

calculus of variations 220
 
California, population of 127
 
Calliope hummingbird 95
 
calorie 266, 274
 
Calorie
 
see kilocalorie
 

Caltech xiv
 
Cambridge University xiv, 150, 158
 
capacitance
 
dimensions 169
 
thermal 49
 

capacitor 36, 38, 44
 
Cape Town 51, 122
 
capillaries 253
 
car ownership 13
 
carbohydrates, combustion energy 31
 
Caro, Robert 6
 
Carpenter, Thomas 199
 
carrying capacity
 
highway lane 6, 57
 
train line 7
 

cars
 
fuel efficiency 90–92
 
nocturnal activities in 121
 
cartoon 290
 
cataclysm 175
 
causal sequence 346
 
caveat 306
 
𝑐d
 
see drag coefficient
 

Census Bureau 215
 
center of mass 205, 330, 342
 
centripetal acceleration 343
 
see also circular acceleration 

chance 
see prepared mind 
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347 
change, handling 58, 74, 103, 138, 204,
 

changing units 
see units, changing 

characteristic values 203–212, 354
 
acceleration 208, 224, 321
 
distance 208, 223, 232, 249, 305
 
energy 322
 
force 321
 
gravitational energy 305
 
kinetic energy 322, 323
 
Mach number 341
 
potential energy 322, 323
 
scale height 300
 
speed 322
 
strain 226
 
stress 225
 
time 209
 
circular motion 210
 
demographic 215
 
diffusion 260
 
radiation 334
 
random-walk timestep 250
 
sound propagation 321
 
spring–mass system 322
 

charge 39
 
acoustic 331–332
 
radiated power 333–337
 

capacitor 36
 
conservation 338
 
density 78
 
dimensional analysis 168–171
 
gravitational 39
 
point 40
 

chemical bonds 
see bonds, chemical
 

chemical enhancement 96
 
chessboard tiling
 
see solitaire, chessboard tiling
 

chewing gum 294
 
chunks, fluid 219
 
CH2 unit
 
burning 29
 
circuits
 
inductor–capacitor (𝐿𝐶) 36
 

low-pass 𝑅𝐶 46, 169, 299, 349
 
𝐿𝑅𝐶 169
 

circular acceleration
 
dimensional analysis 139–144
 
electron 177
 
lumping 209–210
 
planet 110
 
train 139
 
using angular frequency 146
 
using period 147
 

circulatory systems 249, 253
 
city driving 299
 
classical electrodynamics 182
 
classical electron radius 180, 187, 350
 
see also electron, size
 

Classical Mechanics 174
 
classical mechanics 310–312
 
clock ticks 250
 
clothing 249, 267
 
clouds 80
 
clutter 219
 
CM
 
see center of mass
 

coaxial cable 54, 194
 
coefficient of lift 133
 
coin game 31–33
 
coin toss 291
 
color 346
 
high frequency 349
 

combustion energy 28
 
comfortable temperature 271
 
commutativity 71
 
comparison
 
meaningful 137, 155, 158, 254, 271,
 
307, 334
 

nonsense 138
 
competition 233, 291, 299–307
 
attraction vs. repulsion 304
 
drag vs. surface tension 316
 
electrostatics vs. quantum mechanics
 
233, 317–318
 

gravity vs. quantum mechanics 230,
 
232
 

gravity vs. thermal motion 167, 299–
 
301, 305–307
 



2014-09-02 10:51:35 UTC / rev 78ca0ee9dfae

368 

thermal motion vs. intermolecular 
attraction 299
 

complex amplitude 169
 
complex number 45
 
compound pendulum
 
see pendulum, compound 

compression, adiabatic vs. isothermal 
166
 

Compton wavelength 187
 
concentration gradient 265
 
concrete thinking 39
 
conduction 267
 
cone
 
see also terminal speed, cone
 
drag coefficient 163
 
free fall 217–218
 
template 85
 
taping 119
 

confidence in estimates 16
 
confinement energy 230, 232
 
hydrogen 301–304
 
neutron star 230
 
conjecture
 
Atwood-machine acceleration 286
 
birthday paradox 123, 125
 
coin game 32
 
electromagnetic radiated power 338
 
random-walk dispersion 251, 252
 
rolling motion 292
 
conscience 122
 
conservation 75, 107
 
charge 188
 
energy 84, 152, 294, 297
 
momentum 219, 330
 
Consider a Spherical Cow 212
 
consistency 297, 335
 
constant acceleration 208, 229
 
constraints
 
boundary 262
 
chain of 144
 
diffusion of 262
 
dimensional validity 140, 328
 
eliminating an easy-cases regime
 
287–290
 

from optimization 130
 

geometric 288
 
no slip 262
 
on dimensionless functions 157
 
contact radius 225
 
from easy cases 288
 
monotonicity 157
 
sign 157
 
viscous drag 296
 

contact
 
area 356
 
force 228, 356
 
radius 193, 225
 
time 193, 228
 

continued fraction 54
 
contour lines 73, 74
 
contour plot 74
 
contradiction 160
 
convection 267
 
conventions 145
 
conversion factor
 
see units, changing 

cooking
 
egg 261
 
fish
 
see baking 

meat 260
 
coordinate axes 249
 
copyright license, open xv
 
correlation 273
 
coulomb 172
 
Coulomb’s law 170, 175
 
courage xiv, 13, 77, 149, 197, 312, 334
 
Coyote, Wile E. 290
 
Creative Commons xv
 
credibility 236
 
critical probability 357
 
critical wavelength 316
 
crooked made straight 220
 
cross section
 
see scattering cross section 

cross-sectional area 68, 84, 189
 
car 91, 121
 
cone 118
 
cyclist 88
 
molecule 220
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plane (747) 120–121, 128, 129
 
cross-sectional radius 117
 
cruising speed
 
see flight speed 

cube
 
for easy cases 313
 
for lumping 207
 
solitaire 60
 

cubic lattice 230
 
current 24, 37, 168
 
as flow 44
 
current density 78
 
curvature 247
 
cycling
 
drag power 87–89
 
to keep warm 271
 
1-hour record 89
 

damped oscillation 353
 
damped spring–mass system 353, 354
 
damping
 
coefficient 353
 
constant 193
 
force 353
 
linear 353
 
ratio 193
 

dB 
see decibel
 

decade (factor of 10) 116, 206
 
decency 270
 
decibel 243, 337
 
acoustic 63, 244
 
deed, good 184
 
degree of belief
 
see probability, Bayesian
 

degree of freedom 58, 152
 
Delaware
 
government budget 127
 
population 127
 
delta-function potential 195
 
demand
 
see also supply
 
energy 269
 
estimating 10–16
 
oil 75
 

Democritus 175 
density
 
air 122
 
effect on sound speed 191
 
instead of mass 115
 
instead of sound speed 328
 
salt 21
 
solids and liquids 212–214
 
water 122
 
derivatives
 
dimensionless 339
 
lumping 209–210
 

desert of the real 207
 
diamond
 
specific heat 277
 
speed of sound 277
 
thermal conductivity 275, 277
 

differential equations
 
avoiding 208, 218, 225, 321
 
solving 218
 
turning into algebra 277
 

differential quantities 259
 
differentiation, dimensionless 339
 
diffraction 181
 
diffusion
 
see also thermal diffusivity; kinematic
 
viscosity; viscosity
 
constant 160, 251
 
types 254–255
 

flux 264–267
 
speed 263–264
 
time 261, 263
 
dimensional analysis 253
 
lumping 252
 
neurotransmitter 254
 

dimensional analysis 80, 328
 
see also dimensionless groups; univer-
sal constants; universal functions
 
atmosphere scale height 167
 
atomic-bomb yield 150–151
 
blackbody radiation 181–186
 
charge 168–171
 
circular acceleration 139–144
 
contact radius 193
 
delta-function potential 195
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diffraction 181
 
drag 159–164
 
electric field of uniform sheet 172
 
electric field, energy density in 170
 
ground-state energies 181
 
hydrogen 176–180
 
impact speed 146
 
in simpler unit system 182
 
light bending by gravity 153–159
 
low-pass 𝑅𝐶 circuit 169
 
𝐿𝑅𝐶 circuit 169
 
magnetic field 172
 
pendulum period 147
 
radiated power 172–174
 
rolling speed 153
 
spring–mass system, period of 149
 
temperature 165–167
 
thermal speed 165
 
wave speed 146
 
with easy cases 283, 287
 
Young’s modulus 189
 
dimensionless derivative 339, 341
 
dimensionless function 152
 
Atwood machine 284
 
contact radius 225, 227
 
drag 163
 
guessing 285
 
projectile range 288
 
rolling speed 292
 

dimensionless groups 139–145
 
as abstractions 144
 
choosing 156
 
counting 144–145, 146
 
extending definition 285
 
finding 139–144
 
independent 141
 
waves 309
 
dimensionless numbers
 
Froude number 𝖥𝗋 143
 
Mach number 𝖬
 
see Mach number
 

Prandtl number 𝖯𝗋 255
 
Reynolds number 𝖱𝖾
 
see Reynolds number
 

dimensionless parameter 50
 

dimensionless prefactor 110, 172, 190,
 
205, 296, 298
 
beam vibration 330
 
binding energy, hydrogen 180
 
blackbody flux 185
 
circular acceleration 210
 
drag 92, 118
 
energy density, electric field 171
 
gravitational radiation 343
 
ignoring 118, 247
 
natural frequency, spring–mass system
 
322
 

projectile range 289
 
pyramid volume 313
 
specific heat 268
 
time aloft 113
 

dimensionless ratio 291
 
atmosphere scale height 300
 
binding energy, hydrogen 301
 
floating on water 298
 
inharmonicity 355
 
Mach number 341, 343
 
radiation 334
 
speaker size 336
 
water depth 308
 
water waves 309, 316
 
dimensionless size 336
 
dimensionless temperature 261
 
dimensions
 
capacitance 169
 
charge 168
 
current 168
 
independent 145, 171
 
inductance 169
 
resistance 168
 
temperature 165
 
voltage 168
 
dipole
 
field 338
 
moment 338
 
oscillating 338
 
radiation 337–340, 346
 

dirty dishes 263
 
discrepancy
 
diffusion constants in water 255
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explaining 116
 
learning from 216, 257
 
disjoint sets, comparing 11
 
displaced fluid 69
 
dissipation 218
 
divide-and-conquer reasoning 39
 
beam vibration 326, 327
 
cycling speed 88
 
dimensional analysis 153
 
dollar bill, volume of 3
 
energy density 266, 273
 
energy minimization 72
 
fuel consumption 120
 
gravitational radiation 342
 
increasing accuracy of 241
 
Karatsuba multiplication 126
 
mental arithmetic 222, 307, 336
 
merge sort 125
 
probabilistic analysis of 239–248
 
supply and demand 77, 205
 
temperature signals 52
 
thermal conductivity 267, 272
 

dollar bill, volume of 3
 
double bond 30
 
double counting, avoiding 124, 188, 191
 
doubling question 109
 
see also proportional reasoning
 
beam vibration 330
 
flux 77
 
gravitational acceleration 126
 
orbits 112
 
pipe flow 195
 
projectile range 113
 
terminal speed 117
 
drag 117, 217, 218
 
box model 84–92
 
dimensional analysis 159–164
 
dimensionless prefactor 118
 
easy cases 295–298
 
energy 128, 129
 
flight 71
 
high Reynolds number 296–297
 
jumping fleas 207
 
low Reynolds number 295–296
 
on cyclist 87
 

Stokes 265
 
drag coefficient 68, 92, 118, 128
 
as dimensionless group 160
 
as ratio of energies 69
 
based on squared wingspan 128, 132
 
based on wing area 132
 
cone 163
 
easy cases 295–298
 
high Reynolds number 296–297
 
low Reynolds number 295–296, 297
 
neglecting 89
 
nonstreamlined objects 118
 
sphere 164
 
drag force 
see drag
 

dressing warmly 270–271
 
drift 259
 
drift speed 214
 
driven spring–mass system 354
 
driving frequency 347
 
natural frequency 347
 

dry water 84
 
dynamic range 337
 

𝑒 
see electron charge 

Earth
 
as black hole 291
 
bending starlight 158
 
blackbody temperature 186
 
density 116
 
gravitational radiation from 342
 
greenhouse effect 186
 
mass xvii, 26
 
oblateness 192
 
orbital speed 203
 
precession of the equinoxes 234
 
radius xvii
 
rainfall 80
 
solar flux 79
 
solar power reaching 138
 
surface temperature 186
 

earthquakes 150
 
Earth–Sun distance xvii, 203, 343
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easy cases 331
 
acoustic field 333–334
 
Atwood machine 283
 
birthday paradox 280
 
choosing regime 297
 
compound pendulum 313
 
drag 295–298
 
driven spring–mass system 347
 
ellipse 283
 
fields of physics 310–312
 
high Reynolds number 296
 
light bending 289–290
 
low Reynolds number 295
 
projectile range 287–289
 
rolling 291–294
 
variance 290
 
waves 308–310
 
eccentricity (orbital) 314
 
eclipse expedition 158
 
Eddington, Arthur 158
 
effective potential 194
 
efficiency
 
see also engine efficiency
 
animal metabolism 95, 271
 
cooling 269
 
effort variable 37, 43
 
see also flow variable
 

egg, boiling 261
 
Einstein, Albert 158, 159
 
as traffic policeman 311
 

elastic modulus
 
see Young’s modulus
 

elders 270
 
electric field 37, 39, 169, 331, 350
 
energy density in 170
 
spherical shell 222
 
uniform sheet 172, 222
 
electromagnetic field 255
 
electromagnetic radiation 40, 177
 
electron
 
charge xvii, 176, 346
 
mass 176, 348
 
rest energy xvii, 178, 183, 187
 
size 177
 
electron shells 179
 

electron volt 29, 67, 168
 
electrostatic energy 233
 
electrostatic potential energy
 
see electrostatics, energy 

electrostatics 181
 
charge 39
 
energy 179
 
hydrogen 301–304
 

elegance 108
 
elephant gun, calculus as 70
 
ellipse 313
 
area 283
 
length parameters 313
 
planetary orbits 112
 

empires 3
 
energy
 
confinement
 
see confinement energy
 

green-light photon 68
 
spring models 321–330
 

energy conservation 
see conservation, energy
 

energy consumption 138
 
energy density 190, 266, 350
 
acoustic field 334
 
atomic blast 211
 
butter 23
 
dimensions 189
 
electric field 170, 332, 339
 
fat 134
 
fields 39, 331
 
fuel 131, 134
 
gasoline 90
 
gradient 265
 
kinetic 332
 
magnetic field 172
 
muscle 205
 
peanut butter 31
 
sunlight 348
 
TNT 151
 
energy flow 48, 333
 
energy flux 79, 182
 
acoustic 63
 
electromagnetic 174
 
sunlight 349
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energy loss 160
 
energy signature 318, 321, 324
 
Engel, Arthur 58
 
engine efficiency 92, 132, 134
 
English dialects
 
American 216
 
British 216
 
envelope, back of 214, 215
 
enzymes 271
 
𝜖0 

see permittivity of free space
 
equality, kinds of 5
 
equating energies 324
 
equations, not getting buried in 47
 
equilibrium 73, 317
 
equinoxes, precession of 234
 
equivalence, mathematical vs. psycholog-
ical 67, 156, 214
 
errors
 
cancellation 92
 
worthwhile 231
 
estimates, confidence in 16
 
Euler, Leonhard 45
 
evaporation 80
 
evaporative cooling 268–270
 
evidence 236
 
exact calculation 199
 
birthday paradox 125
 
too difficult 117, 215, 218, 224
 
exhortation 258
 
expansion, adiabatic vs. isothermal 166
 
expected position 250
 
expected value 290
 
explanatory power 237
 
see also likelihood 
exponential decay
 
atmospheric density 234
 
atmospheric pressure 167
 
temperature 49
 
voltage 47
 
exponents 54
 
mental arithmetic with 200
 
tree representations 9, 111
 

extensive quantities 116
 
extreme case 226, 241
 

see also easy cases 

false negative 238
 
false positive 238
 
far field 334
 
Fermi velocity 257
 
The Feynman Lectures on Physics 175
 
Feynman, Richard 84, 175
 
fiat 183
 
fiber-optic cable 354
 
Fick’s law 265, 266
 
fine-structure constant xvii, 178, 179,
 
257
 

fleas, drag on 207
 
flexural rigidity 326
 
flight range
 
bar-tailed godwit 134
 
Boeing 747 131–133
 
effect of size 134
 
plane (747) 122
 

flight speed
 
bar-tailed godwit 135
 
effect of air density 135
 
effect of mass 135
 
optimization 128–134
 
plane 71
 

flight, airplane
 
see Boeing 747
 

flight, hovering
 
see hovering
 

floating 298
 
flow variable 43, 44
 
see also effort variable
 

fluid, as an abstraction 28
 
Fluid-Dynamic Drag 164
 
flux 77–79, 97, 106
 
see also mass flux; energy flux; diffu-
sion flux; solar flux
 
invariance of 77
 
net 265
 
fly 33
 
fog droplet
 
low Reynolds number 295
 
terminal speed 297
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force
 
as momentum rate 94
 
drag
 
see drag
 

foreshadowing 301
 
form drag 296, 298
 
formula hygiene 343
 
fortnight 68
 
forward flight 96–99
 
see also flight range; flight speed
 
comparison with hovering 98
 

𝖥𝗋 
see Froude number
 

fractional change 323, 325, 355
 
fragments, connecting 358
 
free electrons 276, 354
 
free fall 288
 
freebody diagram 287
 
freezing point 192
 
frequentist interpretation
 
see probability, as frequency 

friction
 
cycling 87
 
sliding
 
see sliding friction
 

Froude number 143, 149, 196
 
fuel consumption 90
 
cycling 93
 
minimizing 71
 
fuel efficiency 90
 
Boeing 747 16
 
car 14
 
cycling 93, 123
 
fuel consumption, compared to 91
 

fuel fraction 131, 134
 
fuel taxes 122
 
fundamental dimensions 145, 165, 168
 
furlong 68
 
fusion
 
see nuclear fusion 

𝐺 
see Newton’s constant
 

gain 46, 50, 51, 169, 354
 
low-pass 𝑅𝐶 circuit 299
 

𝐿𝑅𝐶 circuit 54, 100
 
gait 143
 
Galileo Galilei 112, 326
 
gallon 91
 
Gancarz, Mike 54
 
Gases, Liquids and Solids and Other States of
 
Matter 268, 299
 

gasoline, mass density 90
 
Gaussian distribution
 
see normal distribution
 

Gauss, Carl Friedrich 69, 74
 
summation problem 74
 
general relativity 153, 158, 340
 
general solution 310
 
generalization 117, 181, 220, 251, 322
 
geometric constraint 288
 
geometric interpretation 133
 
geometric mean 19, 203, 226–227, 313
 
arithmetic mean, inequality with 36
 
geometric construction 34
 
logarithmic scale for 64
 
weighted 36, 228
 
geometric series 33
 
geometric similarity 134
 
geometry 223, 226, 349
 
Germany 204
 
Gill, Robert 134, 135
 
give or take 244
 
gliders 94
 
glucose, combustion energy 31
 
gold 6, 248
 
golden ratio 42, 142
 
Goldreich, Peter xiv
 
golf ball, dimples on 164, 263
 
gradient
 
concentration 265
 
energy density 265
 
momentum density 265
 
temperature 266
 
velocity 278, 295
 
graphical interpretation 259
 
grass, growth rate of 31
 
gravitational acceleration 115, 126, 127,
 
143, 145, 205
 
inside a planet 116
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gravitational charge 
see charge, gravitational 

gravitational field 39, 93
 
energy density in 39–40
 
light bending 153–159, 201, 223–224
 
easy cases 289–290
 
large angles 289–290
 

uniform sheet 172
 
gravitational potential energy 230
 
gravitational radiation 40, 340–345
 
Earth–Moon system 345
 
Earth–Sun system 342–345
 
gravitation, theories of 157, 159
 
greenhouse effect 186
 
Greenslade, Thomas 284
 
ground (electronics) 50
 
thermal analog 52
 

ground-state energy 229
 
delta-function potential 195
 
dimensional analysis 181
 
hydrogen 304
 
particle in a box 229
 
guessing 297
 
easy cases 288, 292
 
educated 286, 294
 
Froude number 196
 
need for courage 149
 

gut
 
feeling 12, 18
 
knowledge 120
 
talking to 17–19, 18, 24, 239
 
gut estimates 19
 
logarithmic scale for 64
 
probabilistic basis 246–248
 
with geometric mean 35
 
gymnastics 96
 

handshakes 124
 
harmonic mean 194, 313
 
harmonics 355, 356
 
heat capacity
 
see specific heat
 

heat equation 73
 
simulation 75
 
heat flow 46, 48
 

heat of vaporization 23
 
water xvii, 23–25, 81, 187, 188, 192,
 
195, 269
 

heat reservoir 49
 
Heisenberg uncertainty principle
 
see uncertainty principle 

helium
 
superfluid 314
 
thermal conductivity 271
 

high frequency 47, 299, 351, 354
 
high speeds 129
 
high-pass filter 349
 
highway driving 299
 
home experiment
 
angular diameter 186
 
bending-beam node 330
 
bending-beam note 328
 
big vs. small cone 118, 162
 
boundary layer 262
 
burst power 22
 
drag 85
 
four cones vs. one cone 119
 
heating a skillet 258
 
middle-C piano string 325
 
minimum wave speed 315
 
pendulum period 148
 
perfume diffusion 253
 
salinity 20
 
tea spindown time 278
 
thermal time constant 49
 
tube flow 195
 
wave speed 149
 
waves on shallow water 308
 
xylophone slat lengths 329
 
homework problem, duration of 34
 
homicide rate 104
 
horizon distance 34, 35, 64, 226–227,
 
352
 

hovering 93–96
 
comparison with forward flight 98
 
human 96
 

How to Solve It 249
 
hull speed 196
 
human hearing
 
related frequencies 61
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sensitivity 337
 
human power output 21–22
 
human scale
 
measuring rod 120
 
quantities at 13, 67, 83, 104, 214, 267
 
hummingbird 93
 
Huygens, Christiaan 61
 
hydrocarbons 28
 
hydrogen 213
 
binding energy 307, 340
 
physical model 301–305
 
dimensional analysis 176–180
 
easy cases 301–305
 
ground state 304
 
lifetime 340
 
lumping 232–233
 
size 178
 
spring model 317–319
 
hydrogen bomb 306
 
hydrogen bond 187
 
hyperbola 126
 
hypothermia 271
 
hypothesis 236
 

ice skating 192
 
ideal gas 221, 274
 
ideal gas law 314
 
ideal spring 317, 354
 
image, as quantification aid 124
 
imaginary unit 𝑗
 
see 𝑗 (imaginary unit)
 
impact speed 146
 
impedance 44–48
 
capacitive 46, 299
 
inductive 48
 

implicit knowledge 239
 
incomplete knowledge 249
 
independent dimensions
 
see dimensions, independent
 

independent variables 113, 116, 134,
 
147
 
choosing 115
 
inductance, dimensions of 169
 
inductor 36, 37, 44
 
inductor–capacitor (𝐿𝐶) circuit
 

see circuits, inductor–capacitor (𝐿𝐶)
 
inductor–capacitor (𝐿𝐶) ladder 54
 
inequality, arithmetic mean–geometric
 
mean 36
 

inertia tensor 101
 
infinitesimals 209
 
infinity 217
 
inflection points 247
 
inharmonicity 355, 356
 
inner electrons 351
 
input signal 50
 
insight
 
atomic calculations 178
 
cultivating, importance of xiii
 
dipole field 339
 
from Bode plot 299
 
from conservation of energy 84
 
from less-correlated quantities 273
 
from rewriting expressions 41
 
from rounding 201
 
from tree representations 10
 
from turning calculus into algebra
 
209
 

lacking in exact calculation 215
 
obscured by exact calculation 89
 
physical 207
 

installment loan 315
 
integral quantities 259
 
integrals 217
 
avoiding 223
 

intensity 346
 
intensive quantities 116, 134, 190, 319
 
interatomic spacing 189
 
interest rate 315
 
interpolation 291, 293, 298, 303–304, 310
 
intersection 129, 303
 
introspection
 
see gut, talking to
 

intuition 46, 206, 229, 293
 
amplifying 285
 
invariants 57–66, 74, 80, 189, 204
 
see also solitaire
 
as abstractions 60
 
dimensionless comparisons 138
 
dimensionless groups 148
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energy density 66
 
frequency ratio 61
 
𝐿𝑅𝐶 gain 100
 
mass distribution 292
 
matrix 101
 
random walk 251
 
volume swept out 58
 
inverse-square forces 39, 109, 126, 181
 
ions 297
 
iron 214
 
Isaiah 40:4 220
 
isothermal atmosphere 314
 

𝑗 (imaginary unit) 45, 47
 
jam today 121
 
Jaynes, Edwin xv, 236
 
jelly donut 180
 
jump heights 204–207
 
Jupiter
 
mass 116
 
radius 116
 

𝜅 
see thermal diffusivity
 

Karatsuba, Anatoly 126
 
𝑘B
 
see Boltzmann’s constant
 
Kepler’s third law 110, 111, 181, 196
 
Kepler, Johannes 112
 
key chain, as plumb line 99
 
kilocalorie (kcal) 29, 67
 
kinematic viscosity 160, 262, 295
 
see also viscosity
 
kinematics 37
 
kinetic energy 160
 
displaced fluid 69
 
drag 84
 
Earth 344
 
from confinement energy 230
 
in analogies 37
 
piano string 324
 
rotational 268
 
sound wave 331
 
spring–mass system 140, 322
 
translational 268
 

King, Doug 53
 
kink 224
 
knots 196
 
knowledge
 
connected 357–358
 
isolated 358
 
tapestry of xiv, 358
 

Knuth, Donald 34
 

lake ice 
𝜆 

Kram, Rodger 

landing

144
 

277
 

see reduced wavelength
 
130
 

lattice
 
spacing 256
 
vibrations 255
 
laziness 337
 
Le Chatelier’s principle 192
 
leaves (tree representations) 8
 
left brain 18
 
LeMond, Greg 22
 
“Life at low Reynolds number” 295
 
life expectancy 215
 
lift 71, 93–99
 
energy 128
 
power 128
 

lift coefficient 133
 
light bending
 
see gravitational field, light bending
 

light minutes 182
 
likelihood 237
 
likelihood ratio 237–238
 
limiting cases 310
 
see also extreme cases; easy cases
 

line source (acoustic) 353
 
linear algebra 145, 181, 182, 183, 184,
 
186
 

linear relations 44
 
linear scale 62, 200, 244
 
contrasted with logarithmic 63
 

Linux 54
 
lions, number sense of 11
 
loan payments, easy cases of 315
 
locomotion 87
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logarithmic scales 61–66
 
benefits 63
 
decibels 63
 
geometric mean on 19, 64, 227
 
gut estimates on 64, 240
 
invariance of 62
 
large range, representing 63, 64
 
log-normal distribution 243
 
plausible ranges on 241
 
rounding on 200–202, 203
 
two dimensional 126–127, 129, 151,
 
164, 206, 231, 233, 298, 299, 303, 330
 

logarithmic units
 
see units, logarithmic 

log-normal distribution 242–248 
log–log axes 
see logarithmic scales, two dimen-
sional
 

London 122
 
Longstocking, Pippi 91
 
long-lasting learning 357–358
 
loot 248
 
Los Angeles 122
 
rainfall 137
 

loudspeaker 332
 
low frequency 47, 50, 299, 347, 348
 
low Reynolds number 265
 
low speeds 129
 
low-pass filter
 
differential equation 77
 
tea mug 50
 

lukewarm temperature 49
 
lumping 282
 
see also all-or-nothing reasoning;
 
rounding
 
atomic-bomb yield 211–212
 
characteristic values for 203–212
 
derivatives 209–210
 
falling cone, free fall of 217–218
 
graphs 214–218
 
need for 199
 
physical models 222
 
light bending 223–224
 
mean free path 220–222
 
precession of equinoxes 234
 

solid mechanics 225–228 
viscosity 218–219
 
quantum mechanics 229–233
 
shapes 212–228, 220
 

lunch, free 184
 

Mach number 341, 345
 
Earth 344
 
transverse bending waves 325
 
MacKay, David xvi
 
macroscopic properties 189
 
macroscopic quantities 321
 
magic (unexplained) factor 268, 288
 
magic (unsatisfied) feeling 113, 211
 
magnetic field 169, 350
 
dimensions 172
 
energy density 172
 
SI units 172
 
wire 172
 
magnetic-resonance imaging (MRI) 172
 
make it so 89
 
Manhattan 268
 
marble 228
 
margin of safety 325, 355
 
marimba 325
 
market sizing 6, 10, 75, 104, 127, 214
 
Mars 196
 
elliptical orbit of 112
 
year on 112
 
mass flux 83, 332
 
Massachusetts 204
 
maxima, finding 70
 
mean
 
see arithmetic mean; geometric mean; 
harmonic mean 

mean free path
 
air molecule 221
 
as characteristic distance 249
 
as comparison length 253
 
electrons 276
 
glass 354
 
in liquid 255
 
lumping model 220–222
 
phonons 256, 257, 276, 277
 
sunlight 351–352
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mean free time 250
 
mean squared position 250, 291
 
meaningful form 67, 344
 
meaningless value 343
 
mechanism 255
 
𝑚e
 
see electron mass
 
memories 104
 
mental arithmetic 89, 179, 200, 222, 336
 
mental hardware 121, 242
 
Mercury
 
mass 116
 
radius 116
 

mercury (Hg), low thermal conductivity
 
of 276
 
merge sort 125
 
mess 130, 183, 194
 
metabolic efficiency 271
 
metabolic rate 253
 
metals 354
 
thermal conductivity 275–276 
thermal diffusivity 276
 
micrometers 68, 178
 
microscopic quantities 321
 
middle C 324, 328, 330, 335, 356
 
migrating birds
 
see bar-tailed godwit
 

military spending 139
 
millimolar 20
 
minimum 304
 
minus signs
 
ignoring 339, 346
 
in scaling exponent 107
 
included in ∼ 230, 306
 

misery, mathematical 117
 
MIT xiv
 
mode number 355
 
models
 
see box models; particle in a box; con-
stant acceleration; spring models
 

molar mass 166, 267
 
protons 307
 

molar volume 273, 275
 
mole 29, 67
 
molecular mass 301
 

moment of inertia 100, 292, 293
 
principal 101
 

momentum
 
conservation 219, 330
 
density 94, 265
 
diffusion constant 262
 
flow 93, 96
 
flux 278
 
uncertainty 181, 229, 232, 311
 

monopole 331, 338
 
radiation 331–337
 

monotonicity 157
 
Monte Carlo 259
 
Moon
 
angular diameter xvii, 116
 
orbital radius 116
 
radius 116
 
surface gravity 116
 
temperature 259
 

moral 352
 
building on what you know 119
 
dimensionless groups as abstractions
 
144
 

ignoring constants 114
 
Moses, Robert 6
 
Mount Everest 120, 167, 228, 234
 
Mount Olympus 228
 
mountain heights 228
 
multiple methods, using 16–17
 
addition 16
 
oil barrel, volume of 17
 
stove power 24
 
walking model 143
 
multiplication
 
importance in estimation 282
 
Karatsuba’s algorithm 126
 
school algorithm 126
 
multiplicative scale
 
see logarithmic scale
 

multiplying by 1 82, 166, 167, 178, 274,
 
307, 321, 336
 

myosin 205
 

𝑁A 
see Avogadro’s number 
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naming 27, 42, 53, 90, 176
 
NASA 97
 
natural frequency 321, 347
 
bound electron 348, 351
 
free electron 354
 
𝐿𝐶 circuit 38
 
spring-and-two-mass system 43
 
spring–mass system 38, 354
 
natural logarithm, approximation for 
124
 

nature 73
 
Navier–Stokes equations 28, 84, 159,
 
218
 

near field 334
 
near zone 334
 
near-infrared radiation 354
 
necessary, sufficient versus 138
 
nectar 96
 
neurons
 
diffusion between 254
 
spike-timing accuracy 254
 
neurotransmitter 249
 
neutral line 327, 329
 
neutron star
 
dimensional analysis 230
 
lumping 229–232
 

New York City 268
 
New Zealand 134
 
Newton’s constant xvii, 40, 115, 154,
 
173, 342
 

Newton’s laws 286, 287
 
second 43, 85
 
universal gravitation 155
 

nitrogen 268, 301, 351
 
node 330
 
nonsense comparisons 138
 
normal distribution 242, 248
 
dimensionless form 245
 
peak height 245
 
notation
 
as abstractions 28
 
compact 46
 
dot (time derivative) 333
 
expected value 250
 
for dimensions of 145
 

for ignoring fixed quantities 207
 
good 42, 43
 
Leibniz’s 339
 
parallel combination 42
 
proportional reasoning 207
 
time derivative (dot) 333
 
no-slip boundary condition 262, 278
 
nuclear fusion 230, 306
 
number density 78, 221, 351
 
conduction electrons 214
 

oak 227
 
oblate sphere 341
 
oblateness 192, 234
 
obviously correct 344
 
octane 29
 
octave 328, 335
 
odds 236
 
posterior 237
 
prior 237
 

ohmmeter 101
 
Ohm’s law 37, 43, 44, 46, 168
 
oil imports 10–16, 35, 203
 
oil usage 75
 
Olin College of Engineering xiv
 
𝜔 
see angular frequency; angular veloc-
ity
 

one-sigma range 246–248
 
oozing flow 219, 295
 
optimism 77
 
optimization
 
constraint from 130
 
eliminating variables 131
 
flight speed 128–134
 

orbits
 
angular momentum 313
 
easy-cases regimes 314
 
eccentricity 314
 
electron around heavy nucleus 315
 
electron in hydrogen 176
 
elliptical 196, 313
 
Kepler’s third law 181, 196
 
light around black hole 290
 
period 109–112
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quantum 181
 
speed 203, 257
 

order of magnitude 206, 207, 239, 319
 
“Order-of-Magnitude Physics” xiii
 
outliers 207
 
output signal 52
 
output voltage 37, 54
 
oxygen 253
 

packing light 105, 107, 115, 117
 
paper
 
areal density 86
 
A4 246
 
density 87
 
ream 4
 
thickness 4
 
US letter 148
 
parallel combination 41–44, 313
 
harmonic mean 313
 
masses 43
 
notation 42
 
resistance 41
 
spring constants 42
 

particle in a box 229–232 
hydrogen 232
 
payroll deduction 279–280
 
peanut butter
 
as fuel 123
 
bicyclist using 93
 
energy density 31
 
pendulum
 
compound 165, 313
 
conical 61
 
inverted 143
 
period 40, 61, 147, 208, 294, 312
 
mass, effect of 113
 

pentagon, temperature distribution on
 

perception 199
 
percolation 357
 
perfume molecule 249, 252, 267
 
periodicity 288–289
 
permeability of free space 172
 
permission 206, 207
 
permittivity of free space 39, 170, 173
 

perpetual motion 173
 
pessimism 242, 246, 252
 
phase velocity 308
 
phenylketonuria (PKU) 238
 
𝜙 
see golden ratio
 

Phinney, Sterl xiv
 
phone numbers 235
 
phonons 255
 
photons
 
blue-green light 352
 
diffraction 181
 
green light 178
 
red light 352
 

physical flows, geometry of 77
 
Physical Fluid Dynamics 296
 
physical interpretation
 
drag coefficient 69
 
light-bending dimensionless group 
156
 

Mach number 341
 
Reynolds number 277
 
water content of atmosphere 83
 
physical knowledge
 
incorporating 149, 156
 
introducing 288
 

physical model
 
atmosphere height 301
 
atomic blast 211
 
binding energy 301–305 
dipole 338
 
electric field above charge sheet 222
 
electric field inside shell 222
 
hydrogen 176, 233
 
jumping 204
 
light bending 223–224 
low Reynolds number 295
 
material strength 193
 
spring period 207
 
trigonometric factors 289
 
viscosity 218–219 
Young’s modulus 190
 
physical reasoning 160, 166
 
Physics of Musical Instruments, The 335
 
physics, easy-cases map of 310–312
 

73 
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piano string
 
inharmonicity 355, 356
 
middle C 324–325
 
spring model 322–325
 
pine needles 77
 
place value, as abstraction 28
 
Planck’s constant 177
 
plane
 
see Boeing 747
 

plant growth 188
 
plausible ranges 239–248, 251
 
see also one-sigma range
 

point charge 40
 
Poiseuille flow 195
 
polar coordinates 314
 
Pólya’s theorem 277
 
Pólya, George 249, 251, 254
 
population
 
California 127
 
typical US state 204
 
United Kingdom 216
 
United States 13, 203–204, 216
 
position uncertainty 229, 311
 
potential energy
 
see also electrostatics, energy
 
as scalar quantity 327
 
chemical bond 305
 
gravitational 22, 205
 
piano string 323
 
spring–capacitor analogy 38
 
spring–mass system 140, 322
 
potential (voltage) 169
 
power 94
 
drag 88
 
lift 128
 
per mass 95
 

power means 313
 
theorem 313
 

powers of ten, counting 222, 307, 336
 
Prandtl number 𝖯𝗋 255
 
precession of equinoxes 234
 
precision, not using extra 50
 
prepared mind, chance favoring 77
 
pressure
 
dimensions of 189, 191
 

melting ice 192
 
stress, similarity to 225
 

principal axes 101
 
probability
 
as degree of belief 236
 
as frequency 236
 
Bayesian 235–238, 239
 
posterior 236
 
prior 236
 
shared birthday 123
 
subjective 236
 

Probability Theory: The Logic of Science 
236
 

Problem-Solving Strategies 58
 
“Programming and Problem-Solving Sem-
inar” 34
 

projectile range 
easy cases 287–289 
proportional reasoning 113–115 

proportional reasoning
 
cone Reynolds number 162
 
cooking amounts 103
 
energies in flying 129
 
gas stations 104
 
graphical notation 108
 
in mathematics 123–125
 
light bending 158
 
projectile range 113–115
 
simplicity of 122
 
thermal conductivity 274
 
“Resource Letter” 135
 
proportionalities
 
linear 103, 104
 
quadratic 105, 106
 

proton
 
mass 213, 307, 347
 
radius 350
 

psychology, knowing own 11
 
pulley 284
 
pupil (eye) 181
 
pyramid, volume of 313
 
Pythagorean sum 244
 

𝑄 
see quality factor 
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quadrupole 340 
radiation 340–345
 
quality factor 193, 298, 353, 354
 
quantities, extensive
 
see extensive quantities 

quantities, intensive 
see intensive quantities 

quantum electrodynamics 310–312 
quantum liquid 
see superfluid helium 

quantum mechanics
 
as easy-cases regime 310–312
 
complicated mathematics 175
 
interpretation 232
 
lumping 229–233
 
saving hydrogen 177
 
uncertainty principle 301
 

𝑅 
see universal gas constant
 

radian 210, 323, 353
 
radiation 170, 172–175
 
see also sound radiation; gravitational 
radiation; electromagnetic radiation; 
quadrupole, radiation; dipole, radia-
tion; monopole, radiation 

radiation field 173, 174, 175, 334
 
radiation zone 334
 
radio astronomy 159
 
radio waves 159
 
radius of curvature 139
 
raindrop
 
diameter 100
 
maximum size 316
 
Reynolds number 297
 
terminal speed 100, 122, 165, 218, 297
 
rainfall 80–82
 
rain, running in 57
 
random walks 249–263
 
escape probability 277
 
transport by 263–276
 
Random Walks and Electric Networks 277
 
rank–nullity theorem 145
 
𝖱𝖾 
see Reynolds number 

real part 45, 169
 
reasonableness 131
 
reasoning tools, organization around
 
xiv
 
recursion
 
coin game 32
 
Karatsuba multiplication 126
 
merge sort 125
 
resistive ladder 41
 

red light 346, 352
 
reduced wavelength 187, 308, 316, 334
 
see also wavelength
 

redundancy
 
in dimensional analysis 284
 
intelligent 16
 
reference frames 173, 174
 
reference temperature 52
 
rejoicing 130
 
relative explanatory power 238
 
see also likelihood ratio 

relativity
 
see also special relativity; general rela-
tivity
 
principle of 173
 

relevance 289
 
representation, choosing 285
 
research problem, duration of 34
 
residence time 82–83
 
resistance 37
 
dimensions 168
 
measuring 101
 
relation to impedance 44
 
thermal 49
 

resistive grid 101
 
resistive ladder 34, 41
 
resonance 354
 
restoring force 225, 317, 318, 354
 
restoring torque 355
 
retina 181
 
Reynolds number 161, 195
 
as abstraction 162
 
boundary layer 263
 
estimating 164
 
high 296–297
 
low 295–296
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physical interpretation 277 
𝜌 
see density
 

right brain 18
 
rigor xiii
 
rigor mortis xiii
 
ripples
 
see waves, ripples
 

rms (root mean square) 252, 313
 
Robin Hood 105
 
rolling 153
 
easy cases 291–294
 
radius 293
 
resistance 87
 
Roman numerals 28
 
room temperature 49, 50, 257
 
root mean square
 
see rms
 

rotational energy 188
 
rounding
 
logarithmic scales for 200–202
 
mental hardware, inherent in 199
 
to half power of ten 202
 
to power of ten 200–201
 
Roy G. Biv 346
 
rubber 227
 
rule of thumb 276
 
atomic diameter 179
 
megajoule 180
 
significant change 167
 

Runner, Road 290
 
running time
 
bubble sort 125
 
Karatsuba multiplication 126
 
merge sort 125
 
school multiplication 126
 

running, compared to walking 143
 
Rydberg 187
 

salinity 20–21
 
Saturn, density of 116
 
savage, mark of a 251
 
scalar quantities, simplicity of 327
 
scale height 234, 351
 
scale, logarithmic
 

see logarithmic scales
 
scaling exponents 302
 
see also proportional reasoning
 
finding 105–116
 
finding mistakes using 115
 
gravitational acceleration 116
 
irrational 126
 
on log–log axes 127
 
random walk 252
 
terminal speed 117
 
Scaling: Why Animal Size Is So Important 
206
 

scattered radiation 346–349
 
scattering cross section 221, 350, 351,
 
354
 

Schrödinger equation 177
 
seawater, conductivity of 297
 
second derivative 247
 
seconds in a year 202
 
self-consistency 297
 
semilatus rectum 313
 
semimajor axis 196, 313
 
semiminor axis 313
 
sense making 115, 324
 
series resistance 41
 
sermon 358
 
747
 
see Boeing 747
 

shock 16
 
shortcut 144, 173, 178, 180
 
shorthand 120, 134
 
signature of radiation 333
 
significant change 167, 210
 
significant fraction 217
 
simplicity, benefit of 75, 205
 
simplification 291
 
using dimensionless form 140
 

simulation
 
heat equation 75
 
shared birthdays 123
 

single approximation sign
 
see twiddle (∼)
 

singular perturbations 296
 
Sirius 231, 232
 
size, ambiguity of 117
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sketching 299, 353
 
skew 305
 
skin temperature 270
 
sky, color of 346–349
 
sliding friction 192, 281
 
slope 127, 129, 218, 231, 247, 259, 298,
 
303, 304, 318
 

small-angle approximation 323
 
smoke cloud, plane landing in 97
 
Socrates 192
 
solar flux xvii, 79, 185
 
Pluto’s orbit 106
 

solar luminosity 106, 107
 
solar power 138
 
Soldner, Johann Georg von 158
 
solid mechanics 225–228
 
solitaire
 
chessboard tiling 59
 
cube 60
 
triplet 60
 
Sommerfeld, Arnold 61
 
sound
 
intensity 63
 
radiation, spring model 331–337
 
speed 165, 166, 191, 211, 328, 334
 
spring model 320–321
 
typical solid 257
 
water 195
 
waves 255
 
source strength, acoustic 335
 
spacetime 182
 
speaker (sound source) 332
 
special relativity 176, 182, 310–312
 
specific heat 23, 266, 272, 314
 
air 267
 
dimensionless 270, 274–275
 
molar 273
 
water 266, 270
 
speed
 
see also diffusion speed; sound, speed
 
highway 90
 
light xvii, 67, 155, 173, 224, 257, 311,
 
342
 
universal limit 311, 342
 

sphere
 
drag coefficient 164
 
surface area 53
 

spike-timing accuracy 254
 
spindown time 278
 
spring constant 42, 347, 348
 
bending 326–328 
bond 318–319
 
spring force 347
 
spring models 317
 
bending beam 325–330
 
bonds 304
 
discarding information 318
 
electromagnetic radiation 337–340
 
energy reasoning 321–330
 
gravitational radiation 340–345
 
hydrogen 317–319
 
piano string 322–325
 
sky, color of 346–349
 
sound radiation 331–337
 
sound speed 320–321
 
sunset, color of 349–352
 
thermal expansion 304
 
Young’s modulus 319–320
 
spring–mass system 36
 
energy method 322–330
 
period 207–208
 

squared wingspan 128, 129
 
standard temperature and pressure 221,
 
274
 

standards, lowering 197, 312
 
steel 227
 
Stefan–Boltzmann constant xvii, 107,
 
185
 

Stefan–Boltzmann law 185, 186
 
stiffness
 
see Young’s modulus
 

Stokes drag 297
 
Stokes, George 296
 
stone floors 276
 
STP
 
see standard temperature and pressure
 

strain 189, 190, 226, 325, 355
 
Street-Fighting Mathematics xv, 124, 167
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strength 193
 
stress 189, 225, 226, 319, 325
 
viscous
 
see viscous stress
 

structure, shared 37
 
strut, buckling of 355
 
subtlety 293
 
subtree 14, 15
 
Summit, New Jersey 104
 
Sun
 
angular diameter xvii, 186
 
core temperature 305–307
 
luminosity 106
 
mass xvii, 344
 
surface temperature 68
 
sunset, color of 349–352
 
superball 227
 
superfluid
 
helium 314
 
transition temperature 314
 
supernova 306
 
supply 269
 
see also demand 
oil 75
 
supply and demand 205
 
surface area 185
 
surface energy 316
 
surface temperature
 
Earth 186
 
Pluto 107–108
 
Sun 185
 

surface tension xvii, 193, 298, 308–309,
 
316
 
surprise 43, 118, 206, 245
 
mild 239, 247
 

sweating 269
 
sweet tooth 278
 
Sydney 122
 
symbols


𝑎0 

see Bohr radius
 
≈ 5
 
𝑐d
 
see drag coefficient
 

≡ 5
 

𝖥𝗋 
see Froude number 

𝐺 

𝑘B 

𝜆
see Boltzmann’s constant 

see Newton’s constant 

𝑁A
see reduced wavelength 

see Avogadro’s number 
𝜙 
see golden ratio
 

∝ 5, 104
 
𝑅
 
see universal gas constant 

𝜌 
see density
 

∼ 5
 
= 5
 

symmetry
 
assumption of 240
 
breaking 304–305
 
for average value 100
 
geometric interpretation 133
 
in easy cases 282–286
 
maximizing gain 100
 
minimizing energy consumption 129
 
minimizing hydrogen energy 233
 
operation 66, 137
 
interchanging masses 285
 
multiplying by 1 66, 178
 
reflection 70, 71
 

reasoning 250
 
connecting to 292
 
enhanced by lumping 204
 
failure of 304
 

requirement 283
 
synaptic cleft 249, 254
 
synaptic vesicle 249
 

tables
 
analysis of flight 98
 
auditory frequencies 61
 
bond energy 29
 
combustion energy 31
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constants for backs of envelopes xvii
 
density 214
 
diffusion constant 251
 
drag coefficient 297
 
jump height 206
 
kinematic viscosity (water and air)
 
255
 

thermal conductivity 276
 
thermal diffusivity (solids) 257
 
thermal diffusivity (water and air)
 
255
 

types of diffusion constants 254
 
word frequencies 127
 
xylophone slat lengths 329
 
Young’s modulus 191
 
tacit knowledge 301
 
takeoff (plane) 130
 
tangent line 318
 
tapestry of knowledge xiv, 358
 
taxi market 76
 
Taylor series 318
 
Taylor, G. I. 150
 
Taylor, John 174
 
teacup spindown 278
 
teaspoon, volume of 20
 
technology, biological 205
 
temperature
 
dimensional analysis 165–167
 
gradient 266
 
profile
 
rectangular 258
 
triangular 258, 260
 

tension 284, 286, 287, 322, 323
 
terminal speed 217
 
cone 85, 87, 117, 118, 163, 217
 
fog droplet 297
 
raindrop 100, 122, 165, 297
 
size, effect of 117
 
tesla 172
 
test charge 338
 
thermal conductivity 266
 
air 267–270
 
diamond 275, 277
 
mercury 276
 
metals xvii, 275–276
 

nonmetallic solids 272–274
 
water 272, 274–275
 
thermal diffusivity 73
 
liquids and solids 255–257
 
metals 257, 276
 
typical solid 257
 

thermal energy 167, 182, 211, 267, 304–
 
305
 

thermal expansion
 
coefficient 180
 
easy cases 303–305
 

thermal motion 300
 
thermal resistance 135
 
thermal speed 166, 256
 
thermal systems 48–53
 
Thomson cross section 350, 354
 
thought experiment
 
bending beams 326
 
compression 226
 
jumping 205
 
slat width 326
 
zero viscosity 296
 

thrust 99
 
ticket price 122
 
tidal waves 150
 
time average 335, 348, 353
 
time constant
 
low-pass 𝑅𝐶 circuit 47
 
residence time 83
 
thermal 49
 
house 51
 
tea mug 50
 

time, mists of 347
 
TNT, energy density of 151
 
toast, falling 116
 
Tokieda, Tadashi xvi
 
torque 234, 355
 
total energy, flight 129
 
Tour de France 22
 
tourists 76
 
tradeoff, accuracy for simplicity 201,
 
232
 

transfer
 
easy to hard cases 280
 
ideal-spring characteristics 317
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insight about dipole field 339
 
limited by exact calculations 215
 
spring models 353
 
two to three easy-cases regimes 291
 

transfer function 
see gain 

transport 
see convection; conduction; random 
walks, transport by 
transverse waves 324
 
tree representations
 
as abstractions 28
 
Boston taxi market 77
 
coin game 32
 
divide-and-conquer estimates 7–10
 
dollar bill, volume of 8
 
exponents in 9
 
leaf values 8
 
merge sort 125
 
propagating estimates upward 8, 10,
 
25, 88, 320
 
strain 319–320
 
train line, capacity of 8
 
triple bond 347, 351
 
tube 78, 84, 220
 
turkey, baking 261
 
tutorial teaching xv
 
twiddle (∼) 92
 
twin primes xiii
 
2-second following rule 6
 
as an invariant 58
 
two-sigma range 248
 
typical values
 
see characteristic values 

ultraviolet radiation 347
 
uncertainty principle 181, 229–230, 301,
 
311
 

undergraduates, number of 214–216
 
understanding, lack of 199
 
unit conversion
 
see units, changing 

United Kingdom
 
area 239–245
 
homicide rate 104
 

map 240 
United States
 
area 18
 
Census Bureau 104
 
energy consumption 138
 
homicide rate 104
 
oil imports 10–16, 139
 
population 216
 
population density 18
 

units
 
𝑐 ≡ 1 182
 
changing 61, 69, 80, 91, 137, 188
 
see also multiplying by 1
 

checking 307
 
convenient 243, 247
 
familiar 89
 
ℏ ≡ 1 182, 183
 
logarithmic 243, 244, 247
 
magnetic field 172
 
metric 4, 15, 148, 241
 
SI 88
 
US customary 4, 68
 

universal constants 147–149
 
impact speed 152
 
pendulum period 149
 

universal functions
 
drag coefficient 161
 
impact speed 152
 
planetary orbits 194
 

universal gas constant xvii, 166, 167,
 
307
 

universe, age of xvii
 
UNIX 54
 
untruths, subtle 296
 
uranium 315
 

variance 290
 
variations, ignoring 206
 
vector quantities, harder than scalar
 
quantities 326, 338
 

velocity
 
analogous to current 37
 
field, acoustic 332
 
gradient 278, 295
 
profile 219
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virial theorem 322 
viscosity
 
air xvii, 162, 253
 
as momentum-diffusion constant 255,
 
265
 

causing drag 84, 160
 
dimensions 160
 
dynamic 265
 
equalizing velocities 219
 
hidden in Reynolds-number abstrac-
tion 162
 

high 219
 
physical model 218–219
 
water xvii
 
zero, imagining 296
 

viscous forces 295
 
viscous stress 265
 
voltage 24, 168
 
voltage divider 46
 
voltage source 36
 
von Neumann, John 33, 84
 

wake vortex, picture of 97
 
walking speed 143
 
warm-blooded organisms 253
 
water
 
density 21, 87, 214
 
dry 84
 
heat of vaporization
 
see heat of vaporization
 

sound speed 195
 
specific heat 266, 270
 
surface tension
 
see surface tension
 

thermal conductivity 272, 274–275
 
thermal diffusivity 256, 260
 
viscosity xvii
 

wavelength 68, 159, 323
 
see also reduced wavelength
 

waves
 
deep water 146, 192, 308, 315
 
easy-cases map 308–310
 
gravity driven 146, 149, 192
 
minimum speed 315
 
ripples 308, 309, 315, 316
 
shallow water 149, 308, 309
 

weighted average 250
 
whiplash, avoiding 110, 178, 273, 343
 
white light 349
 
“why” question, unanswered 113, 123,
 
207, 209
 

Wiedemann-–Franz law 277
 
wind speed 146
 
wings 94
 
effect on airflow 94, 96
 
squared wingspan 97
 
wingspan 94, 128
 
flying bicyclist 100
 
747 98
 

wisdom xiv, 58
 
wood floors 276
 
words, fostering abstraction 39, 331
 
work (energy) 323
 
World War One 158
 
World War Two 215
 

xylophone 325
 

yield strain 193, 325, 355
 
Young’s modulus 189–191, 328, 355
 
ball 225
 
spring model 319–320
 
stress–strain relation 226
 

youth, power of 22
 

zero frequency 52
 
Zipf’s law 127
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