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The perennial aspect of the Newtonian foundation of mathematical physics is that the concept of
“motion,” that is, ‘“kinematics,” is to serve as the interface between mathematics and physics. Ki-
nematics subdivides into the theory of orbital translation and that of undulation and spinning.
Newtonian mechanics is based on giving to translational kinematics a priority over the other modes,
since planetary revolution can be represented as translation modified by gravitation. The so-called
breakdown of classical physics stems from giving the translational priority a canonical status and
extending it to the constituents of matter. We claim that in this case the priority is to be reversed.
The main content of this paper is to establish the algebraic model for an indivisible, undulating enti-
ty that we call a “wave simplex.” It is used as the point of departure for a non-Newtonian quantum
dynamics in which physical and algebraic concepts are in close correspondence. The postulates of
the classical phenomenological theories and those of the canonical theories based on translational
priority are established as theorems under the proper limiting conditions, and forces are constructed
rather than postulated. While the formal structure of two-level quantum mechanics is established
as well, exception is taken to treating spin as a property of a point particle. It is considered self-
evident that a spinning object is orientable, a property accounted for in terms of a unitary triplet.
This is the point of departure for an intrinsic particle dynamics. A main result is the integration of
classical and quantum physics, thus closing the gap created by the heuristic method of canonical
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quantization.

I. INTRODUCTION

The basic rules for connecting observation and
mathematics in terms of proper concepts are implicit in
the work of Newton. However, the formulation of these
rules in the Newtonian tradition is flawed by the tacit as-
sumption that the aim of mathematical physics is to es-
tablish a single deductive system that provides the
“theory of everything.”

This paper presents a method in which the unity of
physics is developed by establishing the coherence of a
plurality of theories.

By writing two major works Newton demonstrated the
need for the parallel development of phenomenological
and fundamental theories. The priorities of the former
are empirical; mathematical postulates must be anchored
in experience, and repealed or restricted in scope in the
light of later experiments. Phenomenological theories are
necessarily pluralistic, as demonstrated by the variety of
theories making up macroscopic classical physics.

The integration of this plurality can be expected in
terms of mathematically based fundamental theories. In
the preface to the first edition of the Principia, Newton
suggests that the concept of motion lends itself to a medi-
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ating role between mathematics and physics. We sharpen
the term “motion” to mean “kinematics,” with prefer-
ence given to the even narrower definition of kinematics
as a purely mathematical discipline, only one step re-
moved from geometry.

Kinematics is a generic term that includes translation,
rotation, and undulation. No simple mathematical
theory can handle all of these simultaneously. In
Newtonian mechanics the problem is solved by the ex-
clusive use of translational kinematics. This theory is
based on Newton’s discovery that (i) “planetary revolu-
tion” can be seen as translation modified by gravitation,
and (ii) that universal gravitation is sufficient for the syn-
thesis of planetary orbits and terrestrial ballistics. The
formalism is extremely simple since the translation of any
object can be represented “as if”’ its mass were concen-
trated in its center of mass. The resulting permanent,
structureless point particle is a theoretical construct for
representing translational motion, the Newtonian model.

The formalism has been extended to many-body sys-
tems, as appropriate interactions have been postulated.
The resulting canonical mechanics of point masses (CMP)
is technically applicable to a wide variety of situations,
although the restriction to translations and to point parti-
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cles may not be justified, as for problems of microphysics.

In such cases of overextension, agreement with experi-
ment can be achieved either by the traditional method of
correcting the Newtonian model in terms of canonical
quantization, or by replacing it, as demonstrated in this
paper.

Canonical quantization was invaluable as a heuristic
device, and canonical quantum mechanics (CQM) is satis-
factory on the pragmatic grounds that it accounts for a
wide range of experiments. However, it contradicts the
canonical concepts which are used for its foundation.
This defect is eliminated in the forthcoming rational
reconstruction which involves the formation of a set of
new concepts extracted from the experiments of micro-
physics. The canonical theory is recaptured under the
proper limiting conditions.

The experimental discovery of the photon suggests that
there exist undulatory entities of a fixed frequency which
cannot be subdivided into smaller configurations of the
same frequency. We shall see in the next section that this
experimental finding is sufficient to establish an algebraic
formalism, to become the point of departure for a non-
Newtonian mechanics.

This is the essential step responsible for the divergence
of the forthcoming developments from tradition, hence a
preview of the argument is indicated.

It was evident from the outset that the photon cannot
be described in terms of a linear wave equation, the solu-
tions of which can be scaled down at will. It is, however,
traditional to ‘‘save” the classical method by ‘“‘quantiza-
tion.”

In the present context we bring the discrepancy to a
head, and point out that the methods of classical
mathematical physics are based on the continuous distri-
bution of matter and radiation and hence their
mathematical expression has the property of self-
similarity, an important principle of inductive generaliza-
tion through scaling, and a tool for problem solving.

Most of the methods of mathematical physics are self-
similar. The scope of this property is apparent from the
fact that it was stretched to such nonclassical situations
as fractal geometry, the theory of chaos, and is invoked
even in the deep inelastic scattering of particle physics.

It is, nevertheless, evident that self-similarity does not
properly account for the theory of indivisible particles.
This is closely connected with the existence of the ele-
mentary constant of action. However, the insertion of
this constant into the self-similar theories has been right-
ly considered disruptive. The point of departure of the
present program is the establishment of a special branch
of mathematics in which self-similarity is replaced by
“absolute” properties to be associated with the action #.
The elementary action entered physics in the context of
electromagnetic radiation, and this is the problem we
reconsider from the new point of view. Although we
could not, without circularity, start our discussion with a
complete theory of the photon, we can confine ourselves
to the safe statement that there exist indivisible undulat-
ing entities. It is shown in the next section that this frag-
mentary information is sufficient to define an algebraic
model, the wave simplex. A heuristic argument leads to
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its algebraic description where the infinitesimal formal-
ism appropriate for wave fields is replaced by a specially
chosen algebra of 2 X2 matrices.

The non-Newtonian kinematics developed in terms of
the wave simplex has a number of remarkable properties.
It is developed as a purely mathematical discipline and
the switch to dynamic concepts is achieved in terms of
universal constants. Finally, we demonstrate a novel way
to integrate the plurality of phenomenological theories.
Whereas the canonical program aims to reduce all
theories to a single formalism, the present development
consists of a sequence of steps, where each deals with a
precisely circumscribed problem and its completion is the
point of departure for the next. The apparent simplicity
of the developments depends critically on the chosen se-
quence, particularly on the first step.

We call the totality of these systems core theory within
which the postulates of the pragmatic theories are estab-
lished as theorems, with their limits of validity spelled
out.

The ground rules for carrying out this program are es-
tablished in Sec. III. The postulates of the Maxwell-
Lorentz-Einstein electrodynamics are derived from this
basis in Sec. IV. This is achieved in a streamlined form,
and an initial step is made toward the elimination of the
latent discrepancy between the special relativity theory
and quantum mechanics.

We deal in Sec. V with the problem of spin by postulat-
ing that spinning objects must be orientable. This proper-
ty is represented in terms of a unitary triplet, a formalism
which enables us to give a kinematic interpretation of the
difference between the classical Einstein—de Haas and the
quantum Stern-Gerlach experiments. This ‘kinematic
quantization” provides us with a quantum system and a
corresponding classical phenomenological limit. In such
a fashion we are led to the beginning of two-level quan-
tum mechanics, and a preview of further developments.

Our central move to replace the Newtonian model by
that of the wave simplex is in contrast with the aim of the
traditional critics of CQM who hoped to construct a
theory which conforms more nearly to the Newtonian
model. However, in a posthumously printed remark,
Einstein finally conjectured that the representation of
matter in terms of a field theory would have to yield to an
algebraic one.!

II. FROM WAVE FIELD TO WAVE SIMPLEX

In order to construct a theory of wave configurations
which is general enough to subsume both the self-similar
and the absolute versions, we start from a minimal list of
postulates.

(i) The experimental criterion for an entity to be con-
sidered undulatory is to exhibit diffraction which is ac-
counted for in the case of a monochromatic beam in
terms of a wave vector

k=027/Mk .

(ii) There exists a group of inertial frames in which
light beams have a universal vacuum velocity c.
These are undoubtedly valid properties of light beams,
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and are sufficient to initiate a mathematical theory of un-
dulation which naturally splits into two variants.

The content of the two postulates is expressed in terms
of the special “dispersion relation,” expressing in this
case the absence of dispersion:

k3—k*=0, 2.1)

where ky=w/c.

This precise mathematical relation obtains because
vacuum light velocity ¢ has the character of a universal
constant.

Equation (2.1) becomes significant only if it is placed
into a wider mathematical context. Let us start with the
standard method and map the wave vector components
into differential operators:

(P): (ko,k)—i(dg, —V) .

Inserted into (2.1) this leads indeed to the linear wave
equation, the standard tool for macroscopic wave fields.
Here (P) refers to “‘point sets” and emphasizes the fact
that this relation is part of a larger context of theories
symbolically designated as {?} in which the points of
space-time form the connecting link between physics and
mathematics. We shall refer to entities which perform
this mediating role briefly as an ‘interface.” This
Newtonian choice of an interface is in harmony with the
unlimited divisibility of radiant energy in the classical
theory, but is at variance with the quantal limitation of
self-similarity.

Instead of taking care of the quantum ‘“breakdown” of
self-similarity by corrective prescriptions, we propose to
find a consistent replacement for (P). The presence of the
imaginary factor is not necessary for the derivation of the
wave equation, but it enables us to state that (P) maps the
wave vector components into Hermitian operators over
the Hilbert space of plane waves.

This formulation suggests that the Hermitian operators
over the infinite-dimensional Hilbert space @, could be
replaced by any of the finite-dimensional complex vector
spaces. Actually, we have a situation which will become
typical. The two-dimensional complex space @? which is
the furthest removed from the classical limit is not only
the simplest, but provides also the point of departure for
a wealth of formal constructions admitting physical inter-
pretation. The two extreme cases undoubtedly play a
privileged role. Thus we consider a mapping (V), a desig-
nation which refers to ““vector space:”

(V): (ko k)—kol +k-o =K .

Here the o’s stand for the Pauli matrices, defined as
mathematical symbols: the invariant Hermitian basis of
the algebra of 2 X2 complex matrices. Among equivalent
options we choose the conventional set of Pauli matrices.
The vector k is on the left-hand side a physical wave vec-
tor, while on the right-hand side it is the mathematical
generating vector of the matrix K. Thus (V) is a mapping
of “wave phenomenology” into a matrix formalism, and
optical manipulations of light beams immediately
translate into matrix operations. We have a non-
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Newtonian “interface” between physics and mathemat-
)
ics.

On multiplying (V) with the action constant we obtain
on the left-hand side the definition of the four-momentum
of a light quantum:

(po,p)="%kg,k) . (2.2)
By using this definition we obtain from (V)
(po,p)—pol +po=P . (2.3)

The above relations describe an entity which we call a
“wave simplex.” It exhibits both the wave property (2.1)
and the corpuscular property (2.2). The manifest, and al-
most trivial consistency of this description comes about
because the corpuscular property is expressed in terms of
an indivisible momentum, and no reference is made to lo-
calization. This is indeed what we obtain from the
Compton effect, whereas localization on emission and ab-
sorption is intermittent rather than continuous.

The origin of the usual difficulties is the inconsistency
of attributing a continuous orbit to an undulating entity.
Since the Newtonian model is inseparable from the con-
cept of a continuous orbit, there is no possibility for its
consistent extension to include undulation. This
difficulty is ““covered up” by the principle of complemen-
tarity.

By contrast, the concept of the wave simplex provides
us with the opportunity for the foundation of a non-
Newtonian dynamics in which localization is recognized
as a complicated problem not to be preempted by postula-
tion.3

The new foundation starts with the wave simplex
defined in terms of the relations (2.2) and (2.3). Since this
concept straddles the “interface,” it has an equally clear
physical and mathematical meaning, but is strictly limit-
ed in content. Our program of development calls for the
extension of this narrow base even while maintaining the
close connection between experiment and formalism.

In order to achieve this goal, we have to establish two
sets of ground rules, dealing with the algebraic and con-
ceptual features, respectively. These are discussed in the
next section.

III. THE POSTULATES OF
WAVE SIMPLEX DYNAMICS

A. The algebraic foundation

The parallel between the maps (P) and (V) reflects the
fact that “points” and ‘“‘vectors” are closely related con-
cepts, and in pure mathematics either one may be given
the logical priority resulting in substantially different
overall structures. The Bourbaki structure of modern
mathematics is based on the point-set priority and may
represent the ultimate formal response to the Newtonian
heuristic use of infinitesimals over space and time.
Switching to the vectorial preference means that we ad-
just the basic structure of mathematical physics to the ex-
perimental discovery of the quantum domain. As the
limit of divisibility is reached, the description in terms of
location in ordinary space yields to description in internal
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parameter spaces, which are mathematically vector
spaces.

The basic space @? is indeed the simplest of complex
vector spaces, and the 2X2 matrix operators form a
four-dimensional complex vector space. We make the
choice of the formalism unique by the following
specification.

Guideline: The algebraic objects obtained through con-
struction on the right-hand side of the map (V) should ad-
mit translation into physical terms.

We call the formalism that satisfies this requirement
{V}. It will be built up in stages and starts with the alge-
bra of 2 X2 matrices supplemented by the group of conju-
gations

J:A—A=a,l +ao, (3.1a)
C:A—A'=atl+a*-o, (3.1b)
P:A— A=a,l—a-0o (3.1¢)
CP:A—A=all—a*o . (3.1d)

Algebras admitting antiautomorphic conjugations are
usually called star algebras. Since we have two indepen-
dent conjugations (3.1b) and (3.1c) of this sort, we refer to
the 2X2 matrix algebra enriched in this manner as the
F3* algebra.*

We shall see that the conjugation relations are in-
dispensable for connecting operational and matricial ex-
pressions.

At this point we note that by using (3.1c) we can write
Eq. (2.1) as the determinant of K in the form

|K|=1Tr(KK)=0 . 3.2)

The algebra #3* enables us not only to handle the in-
complete concept of the wave simplex with precision, but
leads also to the enlargement of the framework. An obvi-
ous step is to join invertible Hermitian matrices to the
singular ones, and to generalize the concept of wave sim-
plex by admitting also massive variants. The phenome-
nological mass concept enters the formalism through the
determinant:

|P|=1Tr(PP)=(mc)*. (3.3)

Thus the wave simplex beams are represented as Hermi-
tian matrices, where the generating vector is the linear
momentum, and the determinant is the square of the
mass.

Bringing the formal representation of massive and
massless particles closer to each other corresponds to the
experimental fact that all of them form beams subject to
diffraction. The differences in charge, mass, and localiza-
tion are left for later elaboration.

B. Events, experiments, and laws of nature

In the last section we specified the algebra appropriate
for the development of the interface, and now we ask,
how do we have to conceptualize experiments in order to
bring them into harmony with the algebra? This is a
prerequisite for explaining how is it possible to derive the
laws of microphysics from actual experiments operating
in terms of macroscopic instruments.
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The Newtonian model was extracted from observation-
al astronomy; it operates in terms of closed systems, and
it is not surprising that, simple as the forthcoming discus-
sion may be, it is not within the scope of the model.

We consider an experiment as an asymmetric coupling
between a ‘““device” and an “object.” We know the phe-
nomenological laws governing the former, and we find
out something about the latter. An experiment can be
translated into rigorous mathematics if it depends
effectively only on a small number of parameters. In the
case of the device a few phenomenological parameters
suffice because we may ignore its atomic structure.

The case of the object is entirely different. Since the
discovery of the particle beams at the turn of the century,
we know that these play the role of “objects” in micro-
physical experiments. Identifying the relevant parame-
ters involves the tacit use of the first two principles which
we formulate explicitly.

(i) The principle of class identity. The particles arising
from the decomposition of matter and radiation form
classes of identical entities.

The parameters of a single particle account also for the
homogeneous beam. Moreover, if either by observation
or by method of preparation we know that we deal with
say, electrons, then we know that the particles have all
the properties of the electron class, regardless of where
they are located in space-time, even on a cosmic scale.

The principle of class identity is based in chemistry,
and is taken for granted by anyone involved with science
or technology. It made astrophysics possible and is basic
for the connection of particle physics and cosmology.
This principle applies also to pure states; its importance
has been recognized as a way to explain the intuitive
meaning of quantum mechanics.’

By contrast, from the technical point of view, class
identity is viewed in a negative role, as it interferes with
the concept of orbital identity which is the mainstay of
the Newtonian model, and is used for the foundation for
canonical quantum mechanics.

The situation is different if the argument is centered
around the wave simplex which can be directly identified
with the beams of the above mentioned experiments. In
this context, the principle of class identity is the basic
physical principle from which the development of the in-
terface originates. Our first task in the next section is to
indicate how the classical macroscopic theories are de-
duced from the new point of departure.

It is apparent that the principle of class identity pro-
vides an important, but limited prediction with respect to
future experiments. We claim that a limitation of predic-
tability is unavoidable as it is stated in our second princi-
ple.

(ii) The principle of contingency. The observation of in-
dividual events reflects the interplay of law and con-
tingency.

This principle is reminiscent of the “impossibility of
perpetual motion,” which was not the end, but the begin-
ning of power engineering. Likewise in the present case,
it helps to keep in mind what is impossible. Thus we can-
not grant serious consideration to the Laplacian “princi-
ple of determinism” which invokes a divine intelligence
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in order not to acknowledge the contingent character of
the initial and boundary conditions. Neither this “princi-
ple,” nor the ‘“law of induction” enables us to predict
that the sun will rise in strictly periodical intervals. Ac-
tually, the intervals will fluctuate, and the time-keeping
role of astronomical objects has been replaced by atomic
clocks. We ought to establish the underlying quantum
dynamic laws of nature.

Our two principles provide a logical basis for the di-
chotomy of theories tentatively suggested in the Intro-
duction.

(A) The aim of pragmatic theories is to predict any kind
of event which might be of practical interest. These
theories are based on the best available postulates and
handle contingent features statistically.

The weak point of this approach is that postulates may
be useful for prediction, while not deserving to be con-
sidered “laws of nature.” This situation is remedied in
the following.

(B) In the core theory which arises from the develop-
ment of the interface, the close relation between experi-
ment and algebra extends the Newtonian standard of reli-
ability to microphysics.

The procedure relies on the lining up of a sequence of
seminal experiments that enable us to extract the laws
relevant for the interpretation of an unlimited range of
future experiments.

The two types of theories are connected as the prag-
matic postulates are sorted out in terms of theorems
within specified limits of validity in the core theory. Con-
versely, the development of the core theory is practical
only because the derivation of the postulates of the exist-
ing pragmatic theories ensures us of empirical relevance.

While the principle of class identity is empirically reli-
able, it is very much in need of dynamical underpinning.
One of the main goals of the core theory is to provide an
explanation in terms of internal quantum dynamics. This
can be achieved only in terms of carefully aligned steps,
which we start by invoking the phenomenological impli-
cations of the same principle.

IV. FROM THE WAVE SIMPLEX
TO THE MAXWELL THEORY

The formal developments start with a corollary of the
principle of class identity: two inertial observers ought to
agree whether they perceive the same beam. We may
refer to this requirement as the principle of objectivity.
While the generating vector varies relative to the frame,
we expect the invariance of (i) the Hermitian property,
and (ii) the determinant of the representing matrix.

In order to formalize the inertial transformation
P — P’ within the #5* algebra, we try the “ansatz”

P'=VPW . 4.1)
The two conditions are satisfied if and only if
w=v" and |V|=1. 4.2)

In other words, we have for the inertial transformation

p'=vpry', 4.3)
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where V is unimodular. In @? unimodular matrices can
be written in an exponential form that satisfies the gen-
eralized Euler relation

o
KV-O

eV 9 =coshkI +sinh«kV-o , (4.4)

where « is a complex scalar, and ¥ is a complex unit vec-
tor.

It is a theorem of linear algebra that invertible matrices
have a unique pair of polar forms:

V=UH=H'U , (4.5)
where
U=U(H,+¢)=cosidpl —isinidt-o (4.6)

is a unitary matrix generating a rotation by the angle ¢
around the axis 4,

H=H(ﬁ,§ )=cosh%p1+sinh%,ufl-a 4.7)
is a Hermitian matrix generating a Lorentz transforma-

tion by the rapidity u=tanh 'v /¢ along the direction h,
and

H'=UHU™'. (4.7a)

All of these matrices are unimodular, and the set of all
matrices of this type forms the special linear group con-
ventionally denoted as SL(2,C). Inserted into (4.3) it gen-
erates the Lorentz transformations over the four-
momentum space. We denote this subgroup as [L;P].
We shall consider other subgroups as we go along.

The conventional idea is that the physically significant
parametrization of the Lorentz group is in terms of 4 X4
parameters and SL(2,C) is known as the spinorial repre-
sentation. However, I claim that this complex parame-
trization is not just one of infinitely many representa-
tions. The six parameters implicit in U and H constitute
an intuitive and compact representation of the indepen-
dent parameters left after the orthogonality constraints
are applied to the sixteen real parameters of the Lorentz
matrix. This is an analogy to the Lagrangian coordinates
left after the removal of the mechanical constraints.

Specifically, the exponential form (4.5) implies the gen-
eralized de Moivre relation

[UW,$)]"=U(1,né) , 4.8)
which, with ¢ =wt, is essential for representing stationary
rotations.

We shall call the Lorentz transformation connecting
two inertial frames a ‘“‘passive transformation.” The
same transformation interpreted in an active sense
represents a change of four-momentum which may be as-
cribed to interaction. This idea leads to a coherent repre-
sentation of the varied aspects of electromagnetic interac-
tion.

We introduce the concept of the electron in terms of a
phenomenological charge and mass. In the Compton ex-
periment the effect of the photon on the electron is de-
scribed as an active Lorentz transformation, and so is the
reaction of the electron on the photon. The two transfor-
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mations are related by the conservation of four-
momentum, but not determined by it.

Computing the probability amplitude of the process be-
longs in QED and not in the core theory. Our main line
of argument at this point is to show that our approach
subsumes macroscopic electrodynamics and mechanics.

We introduce a macroscopic unit charge g associated
with a point mass to act as a test charge that is
infinitesimal by macroscopic standards. It detects a local
field which we describe as an active infinitesimal Lorentz
transformation generated by a unimodular ¥ matrix:

V=I+dH+dU

=7+ (duh—idi)-o . (4.9)
Inserted into (4.3) this leads to the Lorentz force and
power equations, provided we make the following
identification:
E+m=%fmﬁ—wm. (4.10)

This is a typical interface relation between the elec-
tromagnetic field and non-Euclidean kinematics. The ki-
nematic reduction of mass and charge is to come later.
The connection of the magnetic field with an angular ve-
locity, i.e., the cyclotron frequency is familiar. The hy-
perbolic angular velocity is associated with the electric
field generating an “active” Lorentz transformation.®

By setting the magnetic field equal to zero and letting
1/c¢—0, we arrive at the Newtonian equations in terms
of central forces. Being nonuniform, this limiting pro-
cess is not invertible, and therefore the canonical reduc-
tion program is not practical.

We introduce the complex six-vector

f=E+iB 4.11)
and the field matrix
F=f-o0 . (4.12)

Thus a six-dimensional parameter space imposes itself
which is closely associated with four-dimensional space-
time.

In order to integrate the Maxwell equations into the
present context, we consider a field in the self-similar lim-
it, in which we are allowed to use the map (P). In order
to harmonize it with our expression for the Lorentz force,
we define an operator that is part of the #>* algebra, but
its generating vector is a differential operator acting on
plane waves. Thus the operator has a “hybrid” character
enabling us to extend the parameter-space formalism to
ordinary space-time:

D=9,—V-o~iK . (4.13)

We write now the homogeneous Maxwell equations con-

cisely as
DF=0. (4.14)

It is easy to establish the rules by which the Lorentz co-
variance of these equations becomes evident.* By itera-
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tion of (4.14) we have

DD=33—V*=0. 4.15)

These equations have spherical wave solutions which are
also Lorentz invariant and we have justified the Lorentz
group acting over space-time [L;ct,r], which is not valid
within the strict assumptions of the beginning of this sec-
tion. This rounds out our junction with the standard (7)
formalism. However, we know that this is based on ap-
proximations involving point masses and plane waves,
and now we proceed to remove these restrictions step-
wise.

By adding to (4.14) the four-current matrix J, we ob-
tain the inhomogeneous equation

DF=J . (4.16)

We continue to have an equation which is formally
Lorentz invariant. We can use charges and currents as
sources of the electromagnetic field and obtain the usual
macroscopic interactions under static and stationary con-
ditions. However, the classical theory fails to account for
radiative interactions and this is closely connected with
the difficulties of harmonizing the principles of special re-
lativity with those of quantum mechanics.’

Let us suppose that we have a classical theory of the
emission of radio waves. The wave pulse can be
transformed into an optical or an x-ray pulse, but the
same transformation will not carry the radio antenna into
an atomic source of radiation: the conjectured invariance
of the laws of nature with respect to inertial transforma-
tions is inconsistent with the quantum limitation of scale
invariance.

This does not affect the validity of the Lorentz group
[L;P], which we derived above on the basis of the invari-
ance of the mapping (V) rather than (P). Conceptually it
is based on the principle of objectivity rather than on rela-
tivity.

We conclude that radiative interaction should be con-
sidered in a consistently quantum context. In order to
avoid chemical complications, we consider at first mag-
netic resonance transitions involving spin flip. Thus our
next move is to consider spin and magnetic moment.

V. FROM RIGID ROTATION TO SPIN 1

A. The algebra of rigid rotations

In the last section we have established the classical
Lorentz and Maxwell-type electromagnetic interactions
from the beginning of wave simplex dynamics in the con-
text of the core theory. This was based on the simplify-
ing assumption that there exist canonical pointlike test
charges coupled to the field.

We proceed now to deepen the discussion by consider-
ing spin phenomena. In canonical quantum mechanics it
is acceptable to endow point particles with spin because
this provides the correct experimental predictions in
atomic spectroscopy and quantum chemistry. However,
this success notwithstanding, a spinning point is an in-
trinsic contradiction. We suggest instead that no object
is spinning unless it is orientable.® This requirement is
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very strong. If orientation is specified in terms of Euleri-
an angles, formalization in terms of the %#3* formalism
admits only two rigorous elaborations which correspond
to a macroscopic and a quantum concept of rigidity, re-
spectively.

The problem of orientable objects was solved by Euler
in terms of the relative orientation of two orthonormal
triads. We combine the geometrical method of Eulerian
angles with SU(2) representation of rotations, and write

the “Eulerian triplet” of rotations as
U,=UZ,la)UGF,BUZ,Ly), (5.1

where a,B,y are the Eulerian angles. By using (4.6) we
obtain explicitly

& —&1
U,= £oer =Ug), (5.2)
1 0
where we introduced the Cayley-Klein parameters
§0=e—ia/2cos_§_e-i7//2 , o
glzeia/?_sinﬁe —iy/2
2
with
[P +1E,17=1. (5.4)

Since every SU(2) matrix can be parametrized in either of
the two alternative ways, we can develop triad kinematics
by expressing an arbitrary rotational displacement as

U, 1) Ug)=U(") , (5.5)
where the “operator” acts on an ‘“‘object” to change its
orientation state. This equation is the point of departure
of what we call the compound SU(2) formalism, a part of
our program for translating experiment into formalism.

The group property of SU(2) matrices leads to the sim-
ple inference that any two of the matrices in (5.5) unique-
ly determines the third. This is a proposition of great
generality and we have to seek out the special conditions
under which it is significant.

We introduce the Hermitian conjugate of Eq. (5.5):

vleu@, —1¢)=U'¢), (5.6)
where
utie)= 6 . 5.7
_§l §0

While it is quite compelling to introduce the Cayley-
Klein parameters in the context of SU(2), the parameters
appear here in a redundant fashion, since either of the
two columns in (5.2), or the two rows in (5.7) contains the
same information as the whole matrix. Considered as
two-component column and row vectors, or briefly spi-
nors, these entities are considerably easier to handle than
the matrices they might replace.

We have at this point an ambiguity, as we can single
out either one of the pair of columns and rows. If the
matrix formalism is justified, this choice ought to be ir-
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relevant. We explore the implications of the map from
the matrix (5.2) to its first column, along with the Hermi-
tian conjugate relation, and will establish the range of va-
lidity of the method on the basis of experimental evi-
dence.

Here are the maps which contain also the definitions of
the spinors:

&
U(E)e [glzlﬂ , (5.8)

UT(&)(&8 e =(¢l .

The bra and ket symbols are introduced here in a purely
mathematical manner. They are in harmony with the
standard Dirac symbols of nonrelativistic quantum
mechanics, but there are differences in their range of ap-
plication. First of all, they are defined in the space @*
rather than @*, and thus deal only with two-state sys-
tems. However, within this restriction the formalism is
richer. Thus we introduce spinors of finite ‘“length,”
rather than normalizing them to unity. This enables us
to apply them also to classical, rather than only to quan-
tum objects.

We feature alternative notations to be used as con-
venient:

lsy=s'21§) =s,ta, 1B, Ly)

(5.9)

(5.10)

and introduce the vector s with the sphefical coordinates
s,a,f3. Its role in the spinor formalism is apparent from
the dyadic product, conventionally called the density ma-
trix

Is)(s|=L(sI+s-0). (5.11)

By taking the trace we recover the vector from the densi-
ty matrix and hence from the spinor:

s=Tr(|s){(slo)={(slo]ls) , (5.12a)

s={(sls) . (5.12b)
More specifically we obtain

s, +is,=e'ssinB, (5.13a)

s, =s cosf3 , (5.13b)

sit+si+si=s?. (5.13c)

These relations parametrize a two-dimensional spherical
surface of radius s in an abstract Euclidean three-space

$CR?, (5.13d)

the axes of which we interpret as the components of in-
trinsic angular momentum.

Since the compound SU(2) formalism involves opera-
tions on this space, rather than dealing with its metric
properties, it should be properly called kinematics rather
than geometry. Accordingly we introduce the concept of
time by setting ¢ =wt to account for stationary rotation.
As a rule we put the distinguished Z direction along the
rotational axis and describe the process as

a—atywt . (5.13e)
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Here y==1 is a “chirality factor”” which enables us to
deal with both senses of spinning even while considering
the frequency w and time ¢ as positive and the rotational
axis fixed.

Equations (5.13a)-(5.13e) describe a mode of motion
often called conical rotation. It is understood that the
conical angle B is constant.” It is often convenient to
average over this rapid motion:

(52) per =(5}) per=1s7sin’B . (5.13f)
The symbol { ), is to indicate that the smoothing is
over a rapid periodical process, that is, “deterministic” if
the frequency is constant. The “smoothed” orbits are
specified in terms of the parameters s, 3.

We arrived at this mode of motion by a simple global
method. The same results follow also in terms of familiar
differential equations.

We insert the time parameter into the kinematic equa-
tion (5.5), use the explicit operator from (5.1) and going
from matrices to spinors according to (5.9), we obtain

first for the kets
e ~/2ixerdo|g(0)) =|s5(z)) . (5.14)

Expanding the exponential for infinitesimal times, we ob-
tain a first-order differential equation:

idgls ) =H|s) (5.15)
with the “rotational Hamiltonian”
H=two, (5.16)

where 0= yoll.
By taking the Hermitian conjugate of (5.15), we obtain
for the bras

—i{s|3,=(s|# , (5.15")

where the operators act toward the left on the bras.

In spite of their similarity to the Schrodinger equation,
the relations (5.15) are entirely classical. Since s is the
angular momentum vector, its time derivative is the
torque 7. We compute it by applying the operator in
(5.14) to (5.11):

Uls){(s|U '=Uk(s+s-:0)U " . (5.17)
Instead of expanding U(%i,twt), we reduce it in global
terms according to (4.4) and obtain

T=0s=w XS . (5.18)
This relation is indeed manifestly classical. Although the
similarity to the Schrodinger equation is significant, the
discussion of the subtle connection is deferred.

Our next step is to establish the transition from kine-
matics to dynamics. Within a mechanical context, the
procedure would be to consider the constitutive relations
between angular momentum and angular velocity. How-
ever, this method is impractical, since the moment of in-
ertia is not among the attributes of elementary particles.

By contrast, particles do have magnetic moments
which respond to macroscopic magnetic fields and in the
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next section we translate the foregoing results into a
gyromagnetic language.

B. Macroscopic and microscopic gyromagnetism

We start from the phenomenological relations for the
energy and torque of a macroscopic magnetic moment u
in a homogeneous magnetic field B:

E=—B-pu,
7=—BXpu.

(5.19)
(5.20)

We introduce the standard gyromagnetic factor y (not to
be confused with the Eulerian angle). By using (5.18), we
arrive at the “magnetomechanical dictionary,” well
known in the context of the Larmor precession:

L=vs, (5.21a)

B=—10. (5.21b)
We obtain also

E=sw, (5.22)

to complete the torque equation (5.18) into a neutral pair.

This “dictionary” enables us to analyze the types of
gyromagnetic precession in terms of conical rotations.

The presence of the magnetic field injects a preferred
direction into the gyromagnetic problem, and the
system’s response to this imposed anisotropy enables us
to make a clean-cut distinction between classical and
quantum systems.

(i) The coupling of a macroscopic magnetic moment to
the external field in a dissipative environment leads to an
alignment along the field to satisfy the energy minimum
principle. The field imposes on the object a maximal an-
isotropy

s, /s—1. (5.23)
It is understood that by convention s, is positive if the
precession is around the stable equilibrium of spin align-
ment. This is to be contrasted with the fictitious preces-
sion around the unstable equilibrium. We thus divide the
angular momentum sphere into a “physical” and a “non-
physical” hemisphere.

(ii) Next we consider the Stern-Gerlach experiment in-
volving a system with an arbitrary spin. The continuum
range of the classical variables s, is sharpened into a
discrete set of states which is symmetrically located in the
physical and the nonphysical hemispheres, respectively.
Thus the Stern-Gerlach experiment reveals to us the
operation of a nonclassical stability principle: whereas
the classical energy minimum principle leads to the dis-
tinction between the physical and the nonphysical hemi-
spheres, the new principle is based on hemispheric sym-
metry.

This qualitative criterion for quantum systems is very
strong and we proceed to cast it into a form that serves as
the basis for quantitative developments for which the
case of spin-1 systems is particularly suited.

We may say in all generality that quantum systems
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cannot be aligned with the field to satisfy the anisotropy
condition (5.23). However, empirically, there is some-
thing special about spin-J particles, which I propose to
ascribe to an underlying principle.

While the macroscopic system submits with some de-
lay to the imposed anisotropy, the spin-J particles line up
only one component, but otherwise maintain an internal
isotropy, or rather ‘‘quasi-isotropy,” since isotropy ob-
tains only in terms of the smoothed motion.

The principle of quasi-isotropy:

21,2

— 2 —
(52 per =457 ) per =57 =15 (5.24)

The connection with experiment and with existing theory
is ensured by setting

s=s,=%V3/2 (5.25a)
which yields
s,=x1#. (5.25b)

The two signs are expressions of the hemispheric symme-
try of the sphere of Eq. (5.13d). This symmetry is “bro-
ken” by the energy principle and leads to the distinction
between stable ground states and metastable excited
states.

The measure of the symmetry breaking is the energy
difference obtained by using (5.22):

AE =fio . (5.25c¢)

This is the Bohr frequency condition, however, it is now
an implication of the principle of quasi-isotropy within
the context of the core theory. The connection between
energy and frequency stems from classical gyromagnetic
relations combined with the quantization of spin in terms
of the action constant. Note that the transition frequen-
cy is identical with that of the conical rotation defined
above.

In contrast to the present approach, the conventional
procedure fails to recognize that quantization involves
the emergence of the hemispheric symmetry. The origin
of the discrepancy is not in the quantum system, for
which the semiquantitative descriptions are so far identi-
cal, but in the selection of the classical baseline. It is
characteristic of the Copenhagen program that ‘“classical
physics” is identified with ‘“‘canonical mechanics.” The
latter operates in terms of closed systems and the conser-
vation laws are based on Noether’s theorem. In particu-
lar, the conservation of angular momentum is established
for an isolated many-body system in isotropic space, a to-
tally fictitious situation. The quasi-isotropy of the spin-3
particle is significant only because it obtains in an exter-
nal field, which imposes its anisotropy on the classical
system.!©

We shall see that the handling of the transition from
hemispheric asymmetry to symmetry belongs into non-
Euclidean spherical geometry. Therefore, we have the
parallel situation that linear and angular momenta belong
under the purview of hyperbolic and of spherical non-
Euclidean geometry, respectively.

Yet, although the sphere is among the most investigat-
ed mathematical objects, there is no satisfactory spherical
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geometry and kinematics in the literature. The critical is-
sue is that great circles diverging from a point on the
sphere converge in the antipodal point. Felix Klein!!
found this situation inconsistent with projective geometry
to which he wished to subsume the non-Euclidean
geometries. Accordingly, he identified the antipodal
points and called the resulting structure an “elliptic
space.” This convention left its mark on most if not all
developments of the topology of the sphere.

Elliptic kinematics corresponds to the compound SU(2)
formalism and the Einstein—de Haas experiment
developed above. The undoing of the identification of the
antipodal points is closely connected with the transition
from the Einstein—de Haas to the Stern-Gerlach experi-
ment and gives us an insight into the relation between
classical rigid rotation and the quantum-mechanical
spin-1 case. In the former a magnetic moment precesses
around the stable orientation in the magnetic field, while
for spin-1 systems there is also a mirrored *antistate” in
which the precession is around the unstable orientation.
Physically, quantum dynamics centers around the
phenomenon of metastablility related by symmetry to a
stable state. This point is not readily apparent in CQM
in which the rigorous discussion is limited to closed sys-
tems.

The development of these ideas has many ramifications
which remain to be discussed. The wealth of physically
interpreted algebraic structure bears out the expectation
as to the role of the interface, and in the next section we
indicate in general terms where the argument is heading.

VI. DISCUSSION

To describe the spin doublet algebraically, one breaks
up the U(£) matrix into its two columns (and U " into its
two rows) to arrive at a bispinoral space in which the
whole formalism of the quantum mechanics of two-level
systems is derived from the SU(2) formalism. The geome-
trical Eulerian angles are reinterpreted as phase and mix-
ing angles. This has the intuitive meaning of a transition
from mechanical rigidity to the ‘“‘quasirigidity” of wave
configurations: rigid enough for class identity, yet also
flexible to account for quantum transitions.

The concept of “pure state’” extends the scope of the
principle of class identity and “mixtures” enable us to
deal with imperfectly identical classes.

An additional feature of the interface is that the SU(2)
matrices can be mapped on a three-dimensional sphere in
an abstract four-dimensional space:

S*CR*.

This bears out our above remark on the role of non-
Euclidean spaces.

Four-dimensional Euclidean spaces have occasionally
appeared in the literature, with the fourth dimension in-
terpreted as imaginary time. Within the context of the
interface, the interpretation of the fourth dimension
emerges without ambiguity. Thus the four-dimensional
spin space enables us to construct a continuous path for
the spin-flip process. Moreover, the ‘“collapse of the
wave function” appears as a spherical wave that diverges
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from a point of the sphere & to converge toward the an-
tipodal point.

Since an actual particle has both linear and angular
momentum, particle dynamics emerges from the com-
bination of spherical and hyperbolic kinematics, written
in terms of appropriate spinors. The Dirac equation can
be indeed seen as such a combination. When originally
suggested, two of its features were rightly considered puz-
zling: what is the meaning of antiparticles and why does
the equation not apply to protons? These forgotten ques-
tions are answered in the present program. Charge con-
jugation is a symmetry of spherical kinematics, and there
are four different ways of setting up the combination be-
tween spherical and hyperbolic kinematics which are
identified with photons, neutrinos, electrons, and protons,

respectively. The different variants are specified in terms
of their mass, charge and their measure of localization.
These phenomenological properties are thus reduced to
kinematics.
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