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Welcome back. And today we will continue doing some more problems to do with
standing waves. It's a very important topic, so | thought it worthwhile considering

some different kinds of problems.

So the first problem | want to discuss with you is the following. Suppose you have
two equal-length strings, each of length L, but they are very different. One is very
massive. The other one is very light. And we tie the massive one at one end. It's

connected to the other one in the middle. And the other one is tied here.

The whole system is taut. And the question is, what are two lowest normal modes of

vibrations? Calculate the frequencies of these and sketch what they look like.

And | like this problem because it's counter-intuitive. You could take a few seconds
for yourself and think whether you could predict by guessing. And I'm almost certain
your guess will be wrong. Certainly, the first time | tried to figure this out, my intuition

gave me the wrong answer.

OK. Now, again, it's idealized. We'll assume that these strings are ideal, lossless
strings. All the displacements are very small. So in the derivations of the equations
of motion, et cetera, the usual sine theta equals theta, there is a constant tension in
this string T. Because they are connected, of course, like this, the tension

everywhere must be the same.

And all we know is that the density per unit length of this string, which | call mu sub
H, this is the heavy string, is much bigger than the density, the mass per unit length,
of the light one. Now, the fact that they don't give me the values of these, just say
this, basically is telling me they want almost a qualitative answer. | cannot calculate

it exactly if | don't know these two numbers. All right?



Now, the other thing we are told is, of course, a system like that can oscillate in
three dimensions. It could oscillate up and down, out of the board, in, et cetera.
They're telling us limit ourselves to oscillations of the string in the plane of the

board. OK? So it's a 2D problem, not a three-dimensional problem.

OK. So how do we do this? We immediately recognize that when you have a
continuous line of harmonic oscillators in the continuum limit, and that's what the
string is, the equation of motion of the string is this. This is the standard wave

equation. It's the same equation for the heavy string and the light string.

And the only difference is the phase velocity v, which depends on the tension and
the mass density of the string. So the heavy one we will call v sub H, and it's the
square root of T over mu H. And the light one | call v sub L, square root of T over

mu L.

OK. Since we know that mu H is much bigger than mu L, we immediately know that

vH is much less than vL. That's the information we have about those strings. OK.

What else do we know about this system? | mean, we are now in the usual process
of translating a physical situation into the mathematical description of the system.
OK? In this particular idealized case, this is almost a mathematical description up

there, but still. So this is the equation of motion.

And the other thing we know about the system are the boundary conditions. We
know that at both ends, at x equals 0 and at x equals 2L, the string is tied down. So

that for all time, therefore, the displacement will be 0, y equals 0.

We know that at the boundary, the strings are connected. So at all times, y of H
must be equal to yL. Otherwise, it would be broken. So they're connected. The
displacement of the string in the middle, both the heavy one and the light one, is the

same, and this is true at all times.

And the other thing is that the slope of the string on both sides must be the same.

How do | know that? Well, imagine the junction to be some object. Then that



junction has 0 mass. If it has 0 mass, you cannot have a net vertical force on that.
You cannot have a net force on it, period. Or because of Newton's laws, force on

the 0 mass object will give it an infinite acceleration. It will just disappear there.

So at the junction, there can be no net force. The tension on the string on both
sides is the same. And therefore, the slope of the strings at all times, on the left it

must equal the right.

So this is the complete mathematical description. And we are asked to, with this
information, figure out, what are the two lowest mode frequencies and what are

their shapes? OK? So that's what now | will do.

OK. Now, we know that what we're interested is in the normal mode. If you have a
normal system oscillating in the normal mode, you know that the all parts oscillate
with the same frequency and same phase. That's the meaning of being in the

normal mode. OK?

So we know that when this system is oscillating in the normal mode, both sides of
the string will be oscillating with the same omega, same frequency and phase. All
right? And also, on both sides we have a string, a row, a continuous row of
oscillators, and we know what the normal mode oscillations of such a system is.

We've seen it over and over again. It is sinusoidal in fall.

So the general expression of the displacement of the string, whether it's on the left
side or on the right side, will be the displacement of it from equilibrium is a
sinusoidal function in position multiplied by a sinusoidal function in time. This
function will be different for the left and the right, the spatial distribution. This part

will be the same.

Why would this be different for the two sides? Well, this equation satisfies the wave
equation. It is the solution. | am looking for that wave equation. If this is to satisfy the
wave equation, you'll find that omega/k, which you can write like lambda times f
where lambda is the wavelength and f is the frequency-- this is the angular

frequency on the wave number-- has to be equal to v. Otherwise, this would not



satisfy the wave equation. OK?

And v is different for the two strings. All right? We showed that. We discussed it a
second ago. v, the phase velocity for the heavy string, is much smaller than for the
light one. And therefore, if omega is the same, the k would be different in the two

cases. OK. Fine.

Now, using this, we know that the wavelength is given by v/f. Just I've copied it from
there. And since the frequency on both sides is the same but v is different, | can

immediately conclude that the wavelength of the part of the string which is massive,
the heavy one, over the wavelength of the string on the light side is simply equal to

vH over VL.

But we've been told that the density of the heavy one is much greater than the light
one. Therefore, the velocity, this one, is much smaller than this one. And therefore,
we immediately can conclude that the wavelength in the normal mode oscillation of

the heavy one is much shorter than of the light one. All right.

So now if we were given more information exactly what these quantities are, et
cetera, we could write the equations of the string on both sides and try to solve it.
And in the next problem, I'll try to do an example which is exact. Here I'm treating
the problem of it more qualitatively. And let's see what we can figure out just from
this fact that the wavelength of the massive one is much smaller than of the light

one.

We are now looking for a solution to this problem where everything is moving with
the same phase and frequency. All right? And we are looking for the lowest normal
mode, in other words, when everything is moving as slowly as possible subject to

the boundary conditions.

Now, moving slowly means big wavelengths. So what we have to try to figure out--
here is a sketch of this string. This is the heavy one. This is the light one. And what

we want, we want to find, on each side, this string is just like any old string.

In the normal mode-- in a single mode, will have a sinusoidal function, all right, of a
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single wavelength on both sides. So this must be a part of a sine curve or a cosine
curve. So must this. And we want to make it as long wavelength as possible, and we

want to satisfy all the boundary conditions.

So here it's located. Here this one is located. OK? The one on the right, you want to
make as long a wavelength as possible, and so this is almost a straight line. This is
part of a sine curve, but it's almost a straight line. This one is part of a sine curve.
And at the boundary, we must have the two touch, so the string is not broken, and

the slope to be the same.

So the answer is obvious. The solution will be something like a sine that just turns
around near the top here. And when the curvature of this sine curve is such that it
points towards this point, then we have found the lowest frequency solution. All

right? This is approximate. This will have very slight curvature but approximate.

And so what we see, when the wavelength on the left-hand side is basically 4 times
this, which is 4L. So this will be the lowest normal mode that we figured out without
solving any equations, from just our knowledge of the boundary conditions and what

normal mode solutions are on the string like this. All right?

Now, | can now, knowing the wavelength, | can calculate the frequency this
corresponds to because we know that-- we've got it here-- omega is simply k times
v. All right? k is 2 pi over the wavelength. So we have omega 1. This is the lowest

normal mode. Angular frequency, 2 pi over lambda 1 times vH.

We know what lambda 1 is. We just argued ourselves to show it's approximately 4L.
It's actually a little less than 4L, but approximately 4L. And so this is the lowest

normal mode frequency.

All right. Now, what's the next normal? They ask us for the two lowest normal
modes. We repeat the argument. We are now trying to figure out-- each of these
strings now we would like to oscillate with slightly higher frequency. This, again, will

be a sine curve on both sides.

And again, we've got to find a situation where the curvature-- the sine has shorter
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wavelength-- but the minimum shorter that | can make it so that | satisfy the
boundary conditions as before. The strings must not break, and the slope must be

the same.

Well, if you play around, you'll see that the next lowest normal mode will look like
this. The string goes like this. All right? And here, the massive one is just curving.
And when its curvature is such that it points towards this origin, where this is almost
straight, that will be the sketch of the normal mode. So that's what it will look like.

That will be the next lowest normal mode.

Now, what is the wavelength? You can calculate that from this length. It's just a little
less than 4/3 L. OK? And again, like before, since we know the vH and the
wavelength, we can calculate the frequency. So these are the two normal mode

frequencies.

And why did | say it's counter-intuitive? For you, maybe it is intuitive. But | would
have thought that if you connect a heavy string to a light one, it's the light one that
would be wobbling up and down and not the heavy one. And in the reality, it's the

opposite that happens.

It's the little guy that seems to be deciding what the big guy is doing. And this is the
one which is-- also this one-- all the time is nearly straight. The role of this one is
simply to keep this end of the heavy string tied down, and it determines the

boundary condition here. OK? But it's an interesting case to think about.

OK. So that's the first problem | wanted to do. Now let's go to another one. In some
ways, it's similar to the one we've done. But just in order to show you how general
these discussions are of these problems, I'm taking a situation where the
displacement from equilibrium is not transverse to the location of the oscillator. I'm

going to consider an example of longitudinal waves.

Let me discuss the problem here. This is the problem we're going to consider.
We're going to consider a solid rod attached to a wall. So this is just a round rod. It

is connected to another rod. Let's say take some case, maybe a tungsten, a lead



alloy, a rod of tungsten lead, which has a certain Young's modulus y.

And Young's modulus, let me remind you, it is the extension per unit length if you
apply to it a force, certain force per unit area. So it's extension per unit length
divided by force per unit length. It tells you how, under the system, what strain you

get into the system.

This is analogous to like, in a spring, we talk of the constant k for the spring. Tells
you how much the spring [INAUDIBLE] when you apply a force. So the y will tell you

how much this extends under a force per unit area.

And I'm going to assume this rod has a density rho, mass density rho. It's
connected to another, but this time much lighter rod, a rod which has three lengths,
3L length, same area. They are welded together here, connected together, glued

together. OK?

I've chosen two materials. And if you look in the books, you can find different
materials having same y. This is a carbon fiber composite. This is a tungsten-lead
alloy. And they both have the same Young's modulus. But this is much, much

lighter. The density of this is 1/9 of the density of this material.

And | chose these-- | wanted to come up with numbers where one can solve the
problem completely. In the previous problem, | want to do this qualitatively so |
didn't have to pick up numbers which gave you a final mathematical description

which has an analytic solution.

OK. So we have these two rods connected like this. This one is attached to a wall. It
cannot move. And this is free. | purposely wanted a problem where there are new

things coming in so that you can see how one tackles it. OK.

As usual, there's some assumption. We're going to assume that this is a lossless
system, while the rods are oscillating that they're not losing energy, that the

oscillations are small so that we can do all the usual approximations.

We'll make the assumption that this radius is small compared to this length so that



we don't have to worry about transverse oscillations of the system. We're only
talking about longitudinal oscillations. So we're talking about small oscillations in the

longitudinal direction.

And we are told that for such a system-- and you could derive it for yourselves-- that
the phase velocity is the square root of Young's modulus divided by the density. So

it's different for the two sides. OK?

And the question is, can we calculate for this-- knowing all these quantities, these
are now all given quantities-- can we calculate what is the angular frequency omega
1 of the first normal mode as this oscillates? The problem, in some ways, is similar

to the previous one.

But as | say, normally we more often do things like strings oscillating because it's
easier to plot on the board the displacement of the string, which is in the y direction,

and the position in the x direction.

Here we have the displacement from equilibrium at any point in the same direction,
in the same as the position, and that makes it harder to plot. That's why one
normally doesn't take this example. We tend to take examples which are easier to

illustrate on the board.

OK. So let's now, as usual-- this is the physical situation-- what does it correspond
to as a description in terms of mathematics? Well, let's define, at any point x and
time t, the displacement of the material of the rod from the position of equilibrium by

the Greek letter psi. So it's psi at x of t

Now, this system is, again, an ideal system of a continuous distribution of harmonic
oscillators. Each piece of mass oscillates backwards and forwards longitudinally.
That's the oscillator. It's continuous, that is, an oscillator at every x. OK? And each
oscillator is coupled to its neighbors. So this is mathematically exactly the same
situation as a string, where the oscillators are there oscillating up and down instead

of longitudinally.

So the equation of motion of this system will be, as always, the wave equation. This
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is the longitudinal displacement, how it's oscillating. v is the phase velocity. And we
know that the phase velocity is the square root of Young's modulus over density.
Since we know the ratio of the densities, and the y is the same for both materials,
you know that the ratio of the phase velocity in the two materials, v2 over v1, will be

3, the square root of 9. OK?

And as always, we know that omega/k is the phase velocity. Otherwise, it wouldn't
satisfy this equation. So we know that the k2/k1-- and I'm reminding you, Kk is 2 pi
over the wavelength, right? So k2/k1 is 1/3. OK. So this is the equations of motion

and the constants of it.

What are the boundary conditions? Well, they're slightly different to the one we've
had of strings attached at both ends. We know that, in the middle, the two rods are
attached to each other. So the displacement from equilibrium, whether you're on the
left rod or on the right rod, will be the same. So the one on the left, which | call psi 1,
at position L [INAUDIBLE] t, will be equal to psi 2 at L of t. So that's one boundary

condition.

Another boundary condition is the one analogous to when you have two strings
joined, that the slope of the strings must be the same on both sides because the
junction has no mass. Similarly here, the junction between the two rods has no

mass, so there cannot be a net force on that junction.

And since the y, the Young's modulus, is the same, the tension is the same inside,

then the slope of d psi 1 dx at that junction must equal to d psi dx at the ther.

As | repeat, this is analogous to a junction between two strings when you're talking
about transverse oscillations of strings. The slope at the junction must be the same
on both sides, unless there is a massive object at that junction. And we don't have

such a thing. If there was a heavy bead or something at that junction, this would no

longer be true.

The other thing is, what are the boundary conditions of the ends? On the left end,

it's easier. We said the left end is attached to the wall, therefore it cannot move.



OK? Therefore, the displacement from equilibrium of this left end is equal to 0 at all

times.

The right end is different. It's free, and so it's certainly not 0. What do we know
about that? Well, at the end, the rod ends, and there is no mass or anything there.
So the end of the rod is not pushing anything. There's effective, it's pushing a 0

mass at the end of it.

Therefore, there cannot be a net force on that. And so the rod cannot be
compressed at the end or elongated because then it would be exerting like a spring

attached to nothing with exerted force on it, which is not possible.

And so the rate of change of psi 1 with x of the displacement from equilibrium from x
at the-- sorry, I'm here, I'm here. The slope of psi 2 with respect to x at the end,
which is-- | am sorry. This will be 4L. This is my mistake. This is 4L here. OK. At the
end of the rod, it has to be 0.

OK. So this is now the mathematical description. And all we have to do is solve the
equation of motion subject to these boundary conditions and find out what is the

lowest frequency that satisfies the boundary conditions and the wave equation. OK?

And again, | have written out the solution for you. And let me go a little faster now.
We now have experience. We know that the wave equation has standing wave
solutions, which are some amplitude times a sinusoidal function in x and a

sinusoidal function of time.

And now to save time, | am going to inspect immediately the boundary conditions,
and using, in particular, these boundary conditions, the ones at x equals 0 and 4L
for all time. And I'm going to figure out sinusoidal functions of x and t, which satisfy

these boundary conditions.

Now, we know that we are talking about standing waves. So for both rods, the
angular frequency, the [INAUDIBLE] oscillations in time, will be the same. So this
part will be the same. This part must satisfy the boundary condition at the extreme

left and right, which forces me to write here a sine k and here cosine k2 of what
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happens at the boundaries. OK?

A good exercise for you is slowly think through the boundary conditions and the
general solutions, the normal mode solutions, of the wave equation. And you'll come

to the conclusion that this describes the standing waves in the two rods.

OK. We know further that omega is equal to k1 v1 in the left rod, and equal to k2 v2
in the right rod. This has to be the same in both, as | said, because we are in the
normal mode. We're in a normal mode, where the whole system is oscillating with

the same frequency and phase.

OK. Now, we will use the other bit of information, the boundary conditions at the
junction, which I've written here. And from that, try to find a solution that satisfies

these and see what is the angular frequency of oscillation for that.

So we can now write at x equals L-- these are the two equations. We'll take the
displacement of the rod on the left and make it equal to the right and the slope on

the left equal to the right. On the left, this is the equation. On the right is that.

At that boundary to make the two equal, | get that A1 sine k1 L at x equals L is
equal to A2 cosine times this, all right, at x. When we're talking about x2 equals L, L
minus 4L is minus 3, et cetera. OK? The cosine terms cancel because the time part

cancels because they're the same on both sides.

So this is the equation we have to satisfy so that the string is not broken. And I'm
just writing it like this because we know that-- we did that earlier-- that k2/k1 is 1/3.
And the cosine of a plus and the minus angle is the same, so I've just replaced that

with plus k1 L.

This is now looking at the slopes of the displacement psi at that boundary. So |
differentiate these with respect to x, all right, this one and that one, and equate
them. And | get this equation, all right? And so in order to satisfy the boundary

conditions and the wave equation, | end up with these two equations.

I've chosen things such that these can be solved analytically. It's not hard. You can
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do it for yourself. You have two equations, two unknowns. The unknown is the ratio

of A2 to A1. That's one unknown. And the other unknown is k1.

You can solve these equations trigonometrically only because I've chosen numbers
of rho, et cetera, which make the answer come out. And you end up that you get ki
from it. Knowing k1, you can calculate omega. And this is the answer you will get. |

won't waste your time here. You can do this algebra for yourselves.

So here I've got the final answer because | had all the input. If | had tried to do the
same with the string one, if | chose some random ratio of the density of the string on
both sides, everything else would have been similar. But here | would have ended

up with a transcendental equation, in general, which | cannot solve analytically.

And so if you take any random case for yourself and try to solve it, you would find
that, at this point, you would be stuck. You would be stuck with a transcendental
equation, which, of course, you could solve numerically over the computer, et

cetera. OK. So that's the end.

And now [I'll come to the third, yet another example of standing waves, this time in
three dimensions. So now we come to the third standing wave problem. And just for

variety, | decided to take one in three dimensions. So the problem is the following.

Suppose you have a room, which is 2 meters in size by 3 meters by 4. What is the
lowest standing wave frequency that you can get in such a room? OK? So it's
basically a problem to do with pressure waves, because that's what sound is,

standing pressure waves in three dimensions.

We are told that, in this particular room, what the density of the air is. We're also
told what the bulk modulus, in other words, how compressed the air can get and
what's the resultant pressure-- what kind of compression gives rise to air. And we

are asked to calculate lowest normal mode frequency of this system.

OK. So how do we do this? Not surprisingly, you'll remember already when we were
talking about one-dimensional system, way the standing waves of strings or on a

rod, et cetera, it's quite complex. If you have three dimensions, the situation is
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getting more and more complicated.

In this course, we don't actually derive the three-dimensional wave equation. But by
analogy with the one-dimensional one and two-dimensional one, we sort of indicate

what form you would expect this to be. And it actually is the case.

The three-dimensional wave equation for a scalar quantity like pressure that has no
direction, all right, is written here. It's the d2p dt squared, like for the one dimension,
is equal to v squared times the gradient squared of the pressure, which, if | write it

in Cartesian coordinates, it's written here.

Clearly, if | take a three-dimensional system but reduced two dimensions with some
small distances so that, in essence, it's a one-dimensional problem, this gives you
the wave equation you would expect. If | remove two of these terms, what | have is

the wave equation in one dimension.

OK. In this equation, p is the excess pressure of the air above its equilibrium
Imagine the room. Everything is at equilibrium. The air is not moving. The pressure

is not changing, et cetera. There will be some pressure.

What we are interested in is what happens if we displace that air from equilibrium,
change its pressure, and let go, what will happen? And so it's that excess pressure

we are interested. That's the p.

And we are interested to see if there is a way to do that such that the air in the room
everywhere, the pressure, oscillates with the same frequency and phase. If it does,

then in that room the air will be in its normal mode, oscillating in its normal mode.

One can show when one derives this-- and | did not derive it, of course-- is that this
v is the phase velocity of propagation of pressure waves in air, the sound velocity,

which is the square root of the bulk modulus divided by the density. OK?

OK. So the translation of this problem is this is the equation of motion of the system.
And what are the boundary conditions? The boundary conditions are that at the

edges of the room, at the walls, the pressure does not change perpendicular to the
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wall.

So for example, the two walls, at the end in the x direction, at the end there, at one
side of the wall, the rate of change of pressure with position and at the other, it will
not change. Top and bottom, perpendicular, it will not change this way. It will not

change.

Why is this the boundary condition? The reason for that is that if you imagine at the
wall, the molecules cannot move, right, because of the wall. So therefore, you

cannot there, near the end, increase the number of molecules.

So perpendicular to it, that the number will be independent of the position, which is
dp dx, is equal to 0. OK? And this is analogous to the string situation, which is

attached to a massless ring where the slope is constant at the boundary. OK.

So with these boundary conditions, what are the solutions of this equation? OK? To
find the most general solution of this equation, it's obviously very, very complicated.
There are infinite possibilities. But from my experience of what happens in one
dimension, we can do a pretty good, intelligent guess. And what I've written here,

we can guess that the solution will look like that.

Why is it like this? Well, first of all, we want a solution of this equation, which is a
normal mode, meaning everything oscillating with the same frequency and phase.
And so independent of where you are, the time dependence must be the same for
everything or else it would not be a normal mode. So that's why that. There is some

amplitude, so that's p maximum.

You would expect symmetry between the three directions. There's nothing special
between them. And you want some function here which satisfies the boundary
conditions. And what you will find is that this, a cosine kx, the slope of this with
respect to x gives you a sine. And at x equals 0, you will get the boundary condition
satisfied. And we'll see in a second what constraint the boundary puts on this at the

other end.

For this to be a solution of our wave equation, we must satisfy this and that. And so
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in some ways, you could say, look, I've guessed it. But then I'll use the uniqueness

there, say, OK, I've guessed it or | knew it. | guessed this was the solution.

I will now check, does it satisfy everything | know, the wave equation and the
boundary conditions? And the answer is yes, it does. And then | use the uniqueness
there that says therefore that is the only solution that satisfies everything | know

about the situation.

OK. Having done that, to get this | used the boundary condition as x equals 0. But |
want this slope also to be 0 at the edges of the room. And that gives me a constraint
on what each one of these cases can be. And you find that kx has to be some
constant pi over Lx, where Lx is the length of the room in the x direction, so that the

slope of this at the edge of the room is 0. Similarly for ky and kz.

And so you find that these L's, m's, and n's, have to be 0, 1, 2, or 3. They cannot all
be 0. If they are all 0, then nothing goes on. This means that k is 0, which makes
omega 0. It's a trivial, uninteresting solution to our wave equation. So at least one of

these has to be non-zero.

So which one will give us the lowest frequency? All right? And so it will be the one
where the k, all right, is as small as possible, which means that the wavelength is as

long as possible. OK?

So if we make the L's and m, which correspond to the room, the 2 meter times 3
meters, those to be 0, the only direction we accept is in the direction of z, which is
the longest dimension of the room, then that will give us the longest wavelength and

therefore lowest frequency. OK?

So k, the largest value of the wavelength, will be when kz is pi over 4m, in other
words, the wavelength in that direction being 8 meters. And since we know that v is
the square root of the bulk modulus divided by the density, | could take the numbers
that are given, | get that the phase velocity, or the velocity of sound in this room, is

342 meters.

The frequency, of course, is equal to the phase velocity over lambda. Or the way |
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normally remember, it's frequency times lambda is the phase velocity. All right? And
| found the longest wavelength is 8 meters. So from that, | get that the lowest

normal mode will oscillate at almost 43 hertz.

I'll just sketch for you here what we've essentially-- we've got this room, and we are
looking for solutions which have the longest wavelength. See, in principle, one could
have a wave like this in this direction. This, the slope, has to be perpendicular at the
boundaries. You could have, in this direction, for example, a wave like that. And in

this direction, you could have [INAUDIBLE] or a higher moment.

So it's hard for me to draw it. But you can imagine this pressure changing in all
directions. But it has to be represented, as | say, by a sinusoidal function whose

slope at the boundaries is always perpendicular like this.

And the wave number is, of course, the sum of the wave number of this squared
plus this squared plus this squared, taken the square root over. The lowest

frequency will be when, in this direction and this direction, it's straight.

There's no change of pressure, no change in this direction. And the only direction is
in this direction, and this is the 4-meter direction. And that corresponds to a

wavelength of 8 meter, which | calculated there.

And so this will behave in the same way as a one-dimensional system. Nothing
changing in two dimensions. And only in one dimension it's changing. That will give

you the lowest normal mode.

And the other normal modes, you can calculate the frequency as you change the
little I, m, and n, play around. Always remember, at least one of them has to be non-

zero. And you can calculate all the frequencies like this.

OK. That's enough for today on standing waves. Thank you.
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