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Today’s goal

* Classically, statistics is full of equations.

* This is (partly) because computers have not
been around for long

* Convey the principles behind frequentist
statistics using only numerical methods
(i.e., by using the brute force of computers)
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Courtesy of xkcd.org
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What has happened?
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What’s going to happen next?

e We don’t know.
e Let’s assume ‘more of the same’.
e ‘More of the same’:

— Some process was producing events.

— Events were
* Independent
* |dentically distributed

* Assume “more independent, identically
distributed events will follow”



Uncertainty

 We don’t know exactly what will happen if we
touch the podium again.

e However, we have some data.

* The data allow us to make predictions.

 We can measure our uncertainty about what
will happen with probability.



“Probability”?

* Frequentist:
One specific event will happen next.
Another specific event will happen after that.
All we can say is that over many such events, the frequency of
a specific one occurring will match the frequency we
observed up to now.

— Probability is long-run frequency.

* Bayesian:
| don’t know what will happen next, but | have some beliefs
about what it could be. These beliefs follow the laws of
probability. (My beliefs will reflect more than just the data.)

— Probability is degree of belief.



Frequentist or Bayesian?

* Most statistics you have been exposed to are
‘frequentist’.
— Interpretations of e.g., ‘confidence intervals’ are
rather weird.
— Prior beliefs (such as theory, or good reason)
don’t matter.
 We will be frequentist for most of today, but
there are reasonable Bayesian interpretations
of what we are doing.

e Let’s not worry about it for now.



Our class trajectory

Model-based
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What will happen next?

Courtesy of xkcd.org

* One of the prior events will repeat with a
probability matching its previous frequency.

e So... we can just draw samples (with
replacement!) from the previous data to
predict future data.

* This is resampling



It’s not that simple

Frequency
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What do we want to know?

* The mean font size of a zap?

Courtesy of xkcd.org

* Do zaps happen more often in this case than
otherwise?

* How much bigger are average font sizes at the
podium?

* |f we got zapped at the podium or somewhere
else, which zap would have a bigger font size?



The mean font size of a zap?

ZAP

e Great. Wait. We’re not done.

 What we really want to be able to do is
predict the average font size of zaps we
haven’t yet seen.



Predicting the mean zap in unseen data.

Matlab

O zaps = [810 1010 14 14 18 18 1818 18 22 28 36];

hist(O zaps, 8:2:36);
set(gca, FontSize', 16, 'FontWeight', bald');

5 Edit Plat
—n

8 1012 14 16 18 20 22 24 26 28 30 32 34 36




Predicting the mean zap in unseen data.

ZAP

* This is a good start...

* But we know future events will not be exactly
the same as past events.

* So, the mean zap will not always be: zap

 What else might it be?



Introducing: The Bootstrap!
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Courtesy of |Rudo|ph Erich Raspe. Used with permission.


http://bulfinch.englishatheist.org/baron/Baron.html

Bootstrapping: Make more samples, measures

* General reasoning:
— We will see ‘more of the same’

— We can produce more of the same to predict the
future

— Compute measure (mean) on more of the same
— Tabulate the value of the measure.



Bootstrapping, more specifically

* We have a sample X containing n observations
* Generate possible future samples:

— From X draw n times, producing B,
(another possible sample)

— Compute measure f() on B1 = M1
— Repeat # times.



Predicting the mean zap in unseen data.

600

ntimes = 10000; 500 |
n =length(O_zaps);
400 +
f= @(x) mean(x));

300+
fari = [1mtimes]
B =randsample(© zaps, n, true);
. - 200 -
M@) =£(B);
end
100
hist(M, 80);
%0
funcdon s=randsample(x,n)
Al |I o = i

s@d) = x(ceilfrand()*length(x)))

end

‘Ill.. ”..I

* (Don’t use this code — it is really inefficient,
consider the Matlab function “bootstrap”)




Predicting the mean zap in unseen data.

* So this represents
possible scenarios about
what the mean of future
data might be.

e Usually we want to say
something a bit more
concise, like:

— The mean will be
between A and B with
confidence P.



Confidence intervals

* An interval [min to max] which will contain
the measure with some level of confidence, P.

— Confidence as probability

* Probability as frequency of possible outcomes

e Sort all of our outcomes, consider the bounds
of the middle P proportion:



Predicting the mean zap in unseen data.

P = 0.95; ¥ confidence level
omitP = 1-B; 600

lower bound percentile = omitP./2;
upper bound percentile = 1-omitP./2;
lower bound index =

round(lower bound percerntie*rtimes) ;
upper bound index =

round (upper bound percentle*ntimes);

M_sorted = sat(M) ;

lower bound = M_sorted(lower bound index);
upper bound = M_sarted(upper bound index);

CI = [lower bound upper bound]

This can all be done with the “quantile” function

With 95% Confidence:
mean zap between 13 and 22

ZAP ZAP



Bootstrapping

* Mean here was a measure.

* You can use any measure you like, | won’t
judge.

e |t's all good*

e * Some measures are more sensitive to the
“Black Swan”



What do we want to know?

* The mean font size of a zap?  coeyorxicog

* Do zaps happen more often in this case than
otherwise?

* How much bigger are average font sizes at the
podium?

* |f we got zapped at the podium or somewhere
else, which zap would have a bigger font size?



Do zaps happen more often at the podium?
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Podium zaps more often than otherwise?

No
Zap Zap

Podium “ 75%

Otherwise 8 14 36%

 Well... yes... in this set of observations.

 But we might have observed this difference by
chance even if they were the same...



Null Hypothesis Significance Testing

* Hy(null): The effectis O
— These groups have the same mean
— ...same frequency of X
— No correlation is present

* H;: Hyis not true.

* Basically: Are these observations so
improbable under the null hypothesis that we
must begrudgingly reject it?



Podium zaps more often than otherwise?

No
Zap Zap

Podium IECIINERN 75%

Otherwise 8 14 36%

 Well... yes... in this set of observations.

 But we might have observed this difference by
chance same...

 How often would a difference at least this big
have occurred if these were truly the same?

(probability of observing this effect under null
hypothesis)



Introducing: Randomization (permutation)

For most hypothesis tests, null hypothesis is:
These things came from the same process.

So... treat them as such.

Resample many times from this new
combined sample

Measure the difference of interest in these
samples

See if the difference observed is particularly
unlikely



Permutation (simple)

* We have two groups A and B.
* A has n observations, B has m observations.

* Assume they are ‘the same’ (lID), so permute
assignments into A and B
(while maintaining n and m)

* Calculate measure of interest on permutation

GRo6P 4 GRoEP 2

Wik W Wh | WA Y Tk

* Rinse, repeat.

PerMUTATIE A

S PG PG | W Y T




Podium zaps more often than otherwise?

podium=[111111111111111000001];
cther=[11111111000000000000001;

f comp = @(a,b) (Bum(a==1)./ength(a)) - (sum (b==1)./lengch(b)));
d p =f comp(podium, cther);
allobs = fpodium, other];
fari = [Imperm]
permall = allobs (randperm (length(allobs)));
perm podium = permall(:length(podium));

perm_cther = permall (length(podium) +1:end);

P@{) =£f comp(perm podium, perm octher);
end

p = sum(P >= d p).lengcth(P);

Probability that a difference at least this big would have been
observed if these were really ‘the same’? 0.0139



Permutation

* Proportion was a measure here.

* You can use any measure you like, | won’t
judge.

e |t's all good*.

e * Some measures are more sensitive to the
“Black Swan”



How unlikely is too unlikely?

... It is convenient to draw the
line at about the level at which
we can say: "Either there is
something in the treatment, or a
coincidence has occurred such
as does not occur more than
once in twenty trials.”...

Fisher, 1926

Courtesy of The Barr Smith Library, University of Adelaide. Used with permission.
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may be used as a normal deviate with unit standard error.



Podium zaps more often than otherwise?

Probability that a difference at least this big would have been
observed if these were really ‘the same’? 0.0139

Yes.

“The difference is significant at p<0.05.”

“Significant at p=x”
This is a little bit weird.

(Talk about tails)



What do we want to know?

Courtesy of xkcd.org

* The mean font size of a zap?

* Do zaps happen more often in this case than
otherwise?

* How much bigger are average font sizes at the
podium?

* |f we got zapped at the podium or somewhere
else, which zap would have a bigger font size?



How much bigger are font sizes at podium?
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Font sizes observed

Podium

Frequency
(number of times it happened)

T e ZAP ZAP ZAP

Font Size

Other

Frequency
(number of times it happened)

“wm zap ZAP ZAP ZAP ZAP

Font Size



Bootstrapping functions of two samples

* Same thing as bootstrapping one sample.
 Resample each sample

 Compute function of two samples

* Proceed.



Bootstrapping difference of two samples.

P zap = [8 10 10 10 14 14 18 18 18 18 18 22 28 36];
O zap =[8881010 101014 14 14 18 18 18 28];

f= @(a,b) (mean(a)-mean(b));

nsamp =10000;

fari = [Insamp]
BP = randsample(P zap, length(P zap), true);
BO = randsample(O zap, length(O zap), true);

M@ =£(BP, BO);
end

CI = quantle(M, [0.025, 0.975]);

450 -
350 -
Note: 300 -
Confidence interval contains zero 260}
This is another way of testing null hypotheses. 200 1
(Arguably a much more useful way) 801

100 +

{hﬁ



Bootstrapping two-sample measures

* Mean here was a measure.

* You can use any measure you like, | won’t
judge.

e |t's all good*.

e * Some measures are more sensitive to the
“Black Swan”



What do we want to know?

* The mean font size of a zap?  comeyorxcaong

* Do zaps happen more often in this case than
otherwise?

* How much bigger are average font sizes at the
podium?

* |f we got zapped at the podium or somewhere
else, which zap would have a bigger font size?

* Are font sizes more variable at the podium?



Which zap is more likely to be bigger?

* So far we have asked what we might expect of
reasonably large samples. If our samples
were bigger, we could probably ‘detect’ even
smaller changes.

 We don’t care about being able to detect
small differences. We often want to know,
how much of a difference will it make. Period.

 This is a measure of effect size



Dominance (a simple measure of effect size)

 What is the probability that an observation of
A will be bigger than an observation of B?

e ChooseanA,aB
* Compare
* Repeat



Which zap is more likely to be bigger?

f= @(a, b) (@b);

nsamp = 10000;

fari = [1msamp]
BP = randsample(P_zap, 1, true);
BO = randsample(O_zap, 1, true);

M@) =£(BP, BO);
end

PdO = sum(M>0)./lengch(M)
OdP = sum (M<0)./length(M)
T = sum(M==0)./lengch(M)

d = PAO - OdP

Podium is bigger Tie Other is bigger dominance
0.58 0.19 0.23 0.35

Podium wins.



What do we want to know?

* The mean font size of a zap?  “r=™

* Do zaps happen more often in this case than
otherwise?

* How much bigger are average font sizes at the
podium?

* |f we got zapped at the podium or somewhere
else, which zap would have a bigger font size?



What we need

e An assumption of IID observations
* And a computer

What we get

* Predictive distributions of any measure of our
choosing:

e Confidence intervals
* Significance
e Effect sizes



What more could we want?
* Ability to deal with “factors”

— Generally complicated, can do simple cases.
* Permute within factors

* (Later) resample residuals (requires more assumptions)
(won’t get into dealing with multiple factors)

 Work with really big datasets.
— Wrong class, we are doing stuff numerically.



Does the location alter font-size? (one factor)
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Analysis of within-factor variation

* (I made up this name — there may be an
official name out there)

* Define some measure over all three groups,
that answers the question:
“Does this factor alter the observations?”

* Here is an example:
standard deviation of the mean font-size
across different ‘levels’ of the ‘factor’
(can choose something different, e.g., the
range of squared font-sizes across levels)



Permute within factors!

* Null hypothesis:
levels of this factor don’t matter.

e Permute observations across levels

e Build null-hypothesis distribution of this
measure.



Does the location alter font-size?

Z{1,1} = B8 10 10 10 14 14 18 18 18 18 18 22 28 36];
Z{1,2} =8 881010 10 1014 14 14 18 18 18 28];
z{1,3} =8 88810 10 10 10 10 10 10 18 18 36];

figure();

fari = [1:3]
subplct (1, 3,4);
l’I'LS:(Z{l,i}, [8:2:36]);

end

= — [T £ wn =

S 1012141618202224 262830323436 B 102141618202224 262830323436 B 1012141618202224 262830323436

Podium Kitchen Bathroom




Does the location alter font-size?

350

f meas = @(a,b,c) (std([mean(a), mean(b), mean(c)l));
Omeas = f meas(Z{1,1}, Z{1,2}, 2{1,3});

nsamp = 10000;

alldata = [2{1,1}, Z{1,2}, 2{1,3}1;

nl =length(z{1,1});
n2 =length(z{1,2});
n3 =length(Zz{1,3});

fari = [Imsamp]
P = alldata (randperm(nl+n2+n3));

P1 = P(1:nl);
P2 = P(M1+1):01+n2)); P=0.1654
P3 = P((Nn1+n2+1):end);

M@d) =£f meas(P1, P2, P3);
End No

Or “we can’t reject null
p = sum(M >= Omeas)./length(M) hypothesis at p<0.05”




Permuting within factors

e St.Dev. of Mean across levels was our measure.

* You can use any measure you like, | won’t
judge.

e |t's all good*.

e * Some measures are more sensitive to the
“Black Swan”



Really Big Limitation

* “Black swan”
— A general limitation of having incomplete data

* |n case of extreme frequentism, even “dirty
swans” go ignored.

 We can deal with this (to varying degrees) by
specifying beliefs about our ignorance



What more could we want?

* Prettier histograms (more with less)
— Getting a little Bayesian

* Respect dependencies in data

— Generally complicated, can do simple cases.

* Make inferences about the world, rather than
predicting the outcomes of more samples



“Yo’ histograms are ugly”

e “I' don’t think the real future difference will
have those spikes”

* Bayesian!

* New assumption:
Future data will be
“more of the same plus noise”
(kernel density at each data point)



Additional assumptions of ignorance

* Protect against the “black swan” to some
extent

* Increase uncertainty

— Increase range of confidence intervals
— Decrease the level of significance

* (Note: additional beliefs about underlying
distributions [tomorrow] do not just increase
uncertainty, and can have worrying effects)



Our class trajectory

Model-based
A

Frequentist Bayesian

>

v
Data only



Smoothed bootstrap

* Bootstrap, just as before, but to each draw,
add some noise, reflecting our new
assumption that future data will be
“more of the same plus noise”



Smoothed Bootstrap

fari = [Imsamp]
BP = randsample(P zap, length(P zap), true) +randn(l, length (P_zap));
BO = randsample(O_zap, lengch(O zap), true) +randn(1, length (P _zap));

M@) =£f(BP, BO);
end




Hey, this is pretty neat

* | like this Bayesian business.

* What else do | believe about my data that will
allow me to get more from less?

— Smoothed bootstrap
— Resampling residuals
— Pivoted bootstrap

— Scaled, pivoted, smoothed bootstrap of
residuals...

— | think there is a distribution in the world...



Residuals are 1ID; Maybe also Symmetry

e “More of the same deviations from the mean”

* “More of the same magnitude of deviations
from the mean”

* Pivoted boostrap



Pivoted bootstrap

 Compute some measure of central tendency

 Compute deviations from this measure of all
observed data

* Bootstrap deviations, and randomly flip sign.

e Add central measure back in to obtain
bootstrapped sample

* Compute the bootstrapped measure



Pivoted Bootstrap

P zap = [8 10 10 10 14 14 18 18 18 18 18 22 28 36];

f= @(ab)(mean(a));
meanP = £(P_zap);

P zap dev = P _zap - meanp;

fari = [1:10000];
B dev = randsample(P _zap dev, length(P zap), true);
randSign = round (rand(1,length(B dev))).*2-1;
B dev pivct = B dev .* randSigny;
B = meanP + B dev pivct;

M@d) =£B);

end 400

200

150 -

100




Does number of Zs predict font size?
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Does number of Zs predict font size?

Ozap =[1 8;
110
18
112
28
212
216
218
312
318
326
328
4 24
4 32
4 20
538
5 32];

Font Size

40

30

25+

20+

15

10+

Number of Zs

o
o
o
o
&
o
o ]
o
o o ]
o
L -]
1 1 | 1
1 & 3 4 5




Does number of Zs predict font size?

 Measure on the sample of pairs?

* Slope of least-squares regression

— Why? (Right now, no good reason, but we think it
captures something about ‘predicting X from Y’)

— We could have used some measure on rank
orders, etc.



Does number of Zs predict font size?

* Null hypothesis:
Two dimensions are independent.

* Procedure: resample from them
independently to construct new paired
sample

* Obtain measure on new sample
* Repeat, build null-hypothesis distribution, etc.



Does number of Zs predict font size?

e Confidence intervals are more useful.

* How do we bootstrap confidence intervals on
measures of dependency?

 We often only have one observation at each
level of a variable...

* Resample residuals!



Estimating dependencies in data

* Correlation, regression
 We have a set of paired observations.

* Least squares regression parameters



Does number of Zs predict font size?

regression params = regress(0Ozap(:,2), [0Ozap (;,1), onesength(Ozap),1)]);
m = regression params(1);
b = regression params(2);

hald on;
plct([1:5], b+m.*[1:5], 'o', 'Line Width', 2)

40

35

30

25 |

20}

Font Size

16

10}

Number of Zs



Smoothed, pivoted bootstrap of residuals

res z = Ozap(:,2) - (b+m.*Ozap(:,1));
fari = [1:10000]
nz = Ozap(:,1);
B res = randsample(res z, length (nz), true);
randSign = round (rand(length(B res),1)).*2-1;
B res piv = B res .* randSign;
B res piv smoothed = B res piv + randn(ength(nz),1);

B fs =b + m.*nz + B res piv_smoothed;
regression params = regress(B fs, [nz, ones (length(nz),1)]);
Mm (1) = regression params (1);
Mb (i) = regression params(2);
end

Correlation coefficient
Slope Intercept (not shown)




Data

> Measure something about it?

Measure

But these data could have been different...

Predictive
distribution
on measure

on Data

And | have these other data...

Predictive distribution
on between-group

difference of measure.

Confidence intervals

\

!

Effect sizes

v

Predictive distribution
if these data were
“the same”

!

Null Hypothesis

Significance Testing
—




What we have learned

* Resampling (“more of the same”)

* Permutation (“condition assignment is random”)
Null Hypothesis Significance Testing

* Bootstrapping (“more of the same” + measure)
Confidence Intervals
— Smoothed (“more of the same + noise”)
— Residuals (“more of the same deviations”)
— Pivoted (“more of the same symmetric deviations”)

e Dominance to measure effect size
e Watch out for the black swan!



Our Class trajectory More of the same

generative
Model-based process

,T

e of the same
| model

Frequentist
<€

Bayesian
>

“More of the
same + noise”

“More of the v
same” Data only
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