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Introduction 
When to Use this Video 

R5 In Math 101, before Unit 2: Applications 
Key Information 
Duration: 14:31of the Derivative, Lecture 6: Linear and Narrator: Prof. Ben Brubaker Quadratic Approximations, in class or at home Materials Needed: R5 Prior knowledge: the definition of the R5��*�,5�(�5*�(�#&derivative, and the equation for a line through a R5��&�/&�.),5),5�)'*/.�, point with a given slope 

Learning Objectives 
After watching this video students will be able to: 

R5 Recognize the linear approximation of a function as the tangent line to the function.
 
R5 Apply linear approximations to solve a simple differential equation.
 
R5 Explain the limitations of linear approximations mathematically and graphically.
 

Motivation 
R5	 There are student misconceptions that the tangent line of a function can only intersect the 

function at one point, as the tangent line to a circle. This is addressed in the video with an 
example function whose tangent line intersects it at more than one point. 

R5	 Because many calculus problems are analytically solvable, linear approximations may seem 
unnecessary. This video provides scaffolding for using linear approximations to simplify 
differential equations. 

R5	 A key element to keep in mind for students is that a linear approximation is only valid near 
the point where the approximation was made. This video ties the understanding of the
range of acceptability to the definition of the derivative. 

Student Experience 
It is highly recommended that the video is paused when prompted so that students are able to attempt the 
activities on their own and then check their solutions against the video. 
During the video, students will: 

R5 Find the equation to the tangent line. 
R5	 Posit why the tangent line is not a good approximation at any intersection point, but only 

tangent intersections. 
R5	 Compute the error between the exact and approximated solutions to a reaction rate problem 

from chemistry. 
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Video Highlights 
This table outlines a collection of activities and important ideas from the video. 

Time Feature Comments 
1:11 Introduction The prerequisite knowledge required for the video 

and the video learning objectives are detailed here. 
1:38 Chapter 1: Linear approximations 

defined 
The linear approximation is defined as the tangent 
line. The relationship between tangent line 
approximations and differentiability is explored. 

3:18 Zoom into function animation Depicts the tangent line as a close approximation 
to the function when zoomed in sufficiently. 

6:37 Chapter 2: Example An example scenario involving reaction rates 
in chemistry is worked through in detail. The 
concentration is found by making a linear 
approximation to the differential equation 
describing the reaction rate.  Afterwards, the 
approximate solution is compared to the exact 
solution, and the error is explored. 

7:55 Activity Find approximate concentration by applying linear 
approximation to simple first order differential 
equation. 

11:11 Activity Determine whether linear approximation is an 
over-estimate, under-estimate, or equal to exact 
function. 

12:11 Activity Find acceptable time range by analyzing when the 
error function is smaller than 5%. 

12:53 Review A review of video concepts is followed by a 
preview of how linear approximations are used 
to solve differential equations, and how Taylor’s 
Remainder Theorem can be useful in identifying 
the error bound of such an approximation. 

Video Summary 
Prof. Ben Brubaker defines and explores the properties of the linear approximation of a function at a 
point. The linear approximation is then applied to solve a simple differential equation encountered in 
chemical kinetics. 
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Math 101 Materials 
Pre-Video Materials 
When appropriate, this guide is accompanied by additional materials to aid in the delivery of some of the 
following activities and discussions. 

1.  Function (Appendix A1)  

Because you may only take a linear approximation of a function at points where the function is 
differentiable, the following question is a concept check regarding differentiability. 

Consider the function pictured in the graph below. 

 10
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At which points is the function NOT differentiable? 
(a) x = -10 
(b) x = -5 
(c) x = 0 
(d) x = 5 
(e) x = 10 

The answer to this question includes all points where the function is not locally a line, so 
the correct answers are (b), (c), and (d).  If students do not agree, have them explain their 
answers to other students until consensus has been reached. 
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2.  Begin a discussion about what it means for a function to be linear.  Start with the following 
problem. 
 
Choose all of the following that describe a linear function.
(a) (e equation for a line.
(b) A function that is everywhere di'erentiable.
(c) A function that is everywhere continuous.
(d) A discontinuous function whose derivative is constant.
(e) A di'erentiable function whose derivative is constant. 

 
(e best answers here are (a) and (e).  It is important for students to connect the concept 
of linearity to the familiar properties of the line.  (is idea can be explored further through 
class discussion.  Ask students to provide counterexamples, &nding functions that satisfy (b), 
(c), and (d), but are not linear.  (Note that (d) is fairly tricky, and one example is the Cantor 
function.) 
 

 10
1

Post-Video Material H
AT

M

1.  Function Approximations (Appendix A2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
At which points can the function pictured be linearly approximated?  
(a) x = -10
(b) x = -5
(c) x = 0
(d) x = 5
(e) x = 10 

 
Note that this is the inverse of problem 1 in the Pre-Video Materials.  Students should 
recognize that a linear approximation exists precisely at points where the function is 
di'erentiable, so the correct answers are (a) and (e). 
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2.  In physics, it is common to make a small angle argument, which says that for angles 
measured in radians  sin( ) is approximately equal to 
(a) Show that you can obtain this result by taking a linear approximation of sin( ) near 0.
(b) Find a linear approximation for cos( ) when 0.
(c) Is this formula true if is measured in degrees rather than radians? 

3.    Approximate the value of the square root of 902.  What is the error? 
 
 
 

4.  Invite students to discuss how they would construct a quadratic polynomial approximation of 
a function at a point x = 0.   
 
First have students break into small groups of 2 or 3 students and determine what should be 
true, and how to construct such an approximation.  Once consensus has been reached among  10

1

the small groups, after 10 or 15 minutes, open the discussion up to the whole group.   H
AT M

(ey should arrive at the notion that the value of the polynomial should agree with the value 
of the function at the point 0.  In addition, the &rst derivative of the polynomial should agree 
with the &rst derivative of the function at the point 0.  Additionally, the second derivative of the 
polynomial should agree the with second derivative of the function at the point 0.  In particular, 
students should become aware that a function will only have a quadratic approximation at 
points where it is twice di'erentiable. 
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Additional Resources
Going Further
Taylor Series: Linear and quadratic approximations provide sca'olding for the eventual understanding of 
the Taylor series of a function.  After working through linear approximations in detail, you may want to 
pose to students the problem of approximating a function at a point with a polynomial whose value, &rst 
derivative, and second derivative agree with the value, &rst derivative, and second derivative of the function 
at the point.  
An understanding of Taylor series allows a student to gain a stronger hold on understanding where a 
Taylor polynomial is an acceptable approximation through the use of the Taylor Remainder theorem.  
Taylor polynomials are fundamental to a study of numerical methods.   Once a student is aware that a 
function is better and better approximated by Taylor polynomials with more terms, it may then become 
counter intuitive that a method based on a linear approximation would converge more quickly than a 
method based on a quadratic approximation, or Taylor polynomial of degree two.
Small Angle Approximation: Approximations occur frequently within physics.  Every small angle argument 
can be thought of as a linear approximation.  Highlighting this fact can make the approximation seem less 
opaque to beginning students who do not understand why they are making the approximation, and where 
it is valid.
Ordinary Di!erential Equations: In ordinary di'erential equations, students will encounter di'erential 
equations that are not analytically solvable.  An approach to gaining intuition, or arriving at an analytic 
solution necessarily involves making an approximation, often linear or quadratic, near some region of 
interest.  Students will also encounter partial di'erential equations that are unstable, but are linearized S

near critical points.  (ese methods for solving such di'erential equations are basic and fundamental CE

to the physical sciences.  Students having di*culty with such methods might want to return to these UR
SOmaterials to refresh their memories. ER

Multivariable Calculus: (e linear approximation for a single variable function may be helpful for students 
beginning to de&ne linear approximations to functions of more than one variable in a multivariable 
calculus course.  
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